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Abstract 

Many interesting examples in view maintenance involve 
semijoin and outerjoin queries. In this paper we de- 
velop algebraic change propagation algorithms for the 
following operators: semijoin, anti-semijoin, left outer- 
join, right outerjoin, and full outerjoin. 

and extends them for the semijoin and outerjoin op- 
erators. Section 3 reviews change propagation queries 
(under multiple updates) for the base operators, and 
presents corresponding propagation queries for the de- 
rived operators. 

2 Single Update  Propagation 

1 Motivation 

View maintenance algorithms are important for data 
warehouses, database integration, and efficient check- 
ing of integrity constraints [BLT86, CGL+96, GL95, 
GLT97, GJM97, GMS93, HZ96, QW91, RSS96, 
ZGHW95, QGMW96]. Many practical examples of view 
maintenance involve semijoin and outerjoin queries. Al- 
gorithms for incremental maintenance of such queries 
was presented by Gupta et. al in [GJM97]. That pa- 
per presented procedural algorithms, but left open as 
a challenge their algebraic formulation in the style of 
Griffin et. al [GL95, GLT97]. 

Let R, R1, R2, . . .  denote names of relations in a 
database scheme. Let p range over quantifier-free predi- 
cates, and A range over sets of attribute names. Queries 
are generated by the grammar 

S ::~ R 
 p(S) 
HA(S) 
S x S  
S U S  
S n S  
S - S  
S N S  

base relation 
selection 

projection 
cartesian product 

union 
intersection 

difference 
natural join 

In this paper we develop algebraic change propaga- 
tion algorithms for the following operators: semijoin, 
anti-semijoin, left outerjoin, right outerjoin, and full 
outerjoin. There are several advantages to an algebraic 
formulation, over a procedural approach, of incremen- 
tal view maintenance algorithms. First, the results are 
amenable to compile-time and run-time optimizations. 
Second, the correctness of algebraic algorithms is usu- 
ally more apparent. Finally, two algebraic algorithms 
for two distinct relational operators can easily be com- 
posed, using the approach of [GL95, GLT97], to provide 
an algorithm for queries involving both operators. This 
is not always the case with procedural algorithms. 

Outl ine.  Section 2 reviews change propagation 
rules (under single update) fi'om [QWgl. GL95, GLT97], 

The symbols Q, S, T will be used to denote ar- 
bitrary queries. The notation T = S means that for 
all database states, the queries T and S evaluate to 
the same set of tuples. Similarly, the notation T C_ S 
means that for all database states, the result of evaluat- 
ing query T is a subset of the result of evaluating query 
S. 

We can define derived operators such as semijoin 
and outerjoin operators in terms of the above. Nota- 
tional definitions for these operators are presented in 
Figure 1. The notation IS] denotes the set of attributes 
of the query S. The tuple dQ represents the default tu- 
ple of query Q. In SQL, this would be a tuple of the 
correct arity, with only NULL values. 
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S X T  
~ T  
S : : ~ T  
S>,~7_T 

S:]xC_T 

= H[s](SMT) 
= S -  (SC~<T) 
= (S N T) U ( ( ~ T )  x {dT}) 
= (S M T) U ({ds} x ( T ~ S ) )  
= (S:D~T) U ({ds} x ( T ~ S ) )  

semijoin (D1) 
anti-semijoin (D2) 
left outerjoin (D3) 

right outerjoin (D4) 
full outerjoin (Db) 

Figure h Derived operators. 

For ease of presentation, we only consider equal- 
ity join predicates. We further assume that both the 
queries participating in the join operations have the 
same attribute names on which that join is performed. 
For example, in our notation, 

RI><AS = RD<(R.A=S.A)S 

In addition, we shall drop the attribute names where un- 
necessary, hence the above would be written as R~<S. 

2 .1  B a s i c  P r o p a g a t i o n  R u l e s  

Figure 2 is taken from [QW91] and represents the ba- 
sic collection of change propagation equations (for single 
changes) on which all of our work depends. The nota- 
tion v S  and AS represents the delete and insert sets 
respectively for query S. When read from left to right, 
these equations tell us how to propagate an insert/delete 
through a relational operator. 

P1. ap(S - v S )  = ap(S) - a p ( v S )  
P2. ap(S U A S )  = ap(S) U a p ( A S )  
P3. IIA(S-~7S) = n A ( s ) - ( n a ( s ) - n a ( s - v s ) )  
P4. I IA (SU AS) = HA(S) U HA(AS) 
Pb. (S -~7S)  x T = ( S x T ) - ( ~ 7 S x T )  
P6. (SUAS)  x T = ( S x T ) U ( A S x T )  
P7. ( S - v S )  U T = ( S U T ) - ( ~ 7 S - T )  
P8. (SUAS)  U T = ( S U T ) U ( A S - T )  
P9. ( S - ~ 7 S ) - T = ( S - T ) - ( ~ T S - T )  

P10. S - ( T - v T ) = ( S - T ) U ( S N v T )  
PII. (SUAS)-T=(S-T)U(AS-T) 
PI2. S-(TuAT)=(S-T)-(SAAT) 
P13. ( S - v S )  f l T = ( S N T ) - ( v S A T )  
P14. (SUAS)  A T = ( S A T ) u ( A S A T )  
P15. (S-~TS)  M T = ( S M T ) - ( ~ 7 S M T )  
P16. (SUAS)  M T = ( S M T ) U ( A S M T )  

Figure 2: Relational equations used in change propaga- 
tion for base operators. 

Let us consider using the propagation equations of 
Figure 2 to derive a propagation equation for the semi- 
join operator. Suppose we have a view V that contains 
the result of query S~<:T. Assume that v T  is deleted 
from T. We want to compute the change to V, i.e., we 
want find a query X that solves the equation: 

S X ( T  - v T )  = ( S X T )  - X 

Since semijoin is a derived operator, we should be able 
to expand its definition and apply the propagation rules 
of Figure 2. It will be useful to have two auxiliary rules. 
The first is alternative to P3 under the assumption that 
~7S C_ S: 

P3'.  H A ( S - v S )  = I I A ( S ) - - ( I I A ( V S ) - H A ( S - - v S ) )  

We also make use of the following equality: 

R1. (Qt><S) - (Qm<T) = Q c , < ( S ~ T )  

With these equations, we can now 
concise solution to the semijoin equation 
(note that we are not assuming that v T  

S><(T  - v T )  
= II(S M (T - vT))  (by definition) 
= II(S M (T - ( v T  n T))) 
= I I ( ( S M T ) - ( S M ( v T A T ) ) )  (byP15)  
= II(S M T) - 

derive a 
above 

C_ T): 

[H(S M (~7T n T)) - rI(S M (T-vT))]  (by P3') 
(S><T) - [(S><(~7T n T)) - (S t><(T-vT) ) ]  
(SD<T) - (S><((~7T n T ) ~ ( T - v T ) ) )  (by R1) 

Therefore, our solution is 

X = (St><((~7T n T ) ~ ( T  - ~7T))) 

A word of explanation is in order. Let us say that for 
tuples tl, t2 6 T, tl is a fr iend of t2 under predicate P 
iff (tl} MR {t2} ¢ ¢. Now, the sub-expression 

(~7T n T ) ~ ( T  - v T )  

represents the subset of tuples actually deleted from T 
that do not leave any friends behind. We will call such 
tuples loyal. If a tuple s 6 S joins with any of of the 
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P17. 
P18. 
P19. 
P20. 

(S - vS)~<T = (SxT) - VS 

(S U AS)~xT = (SxT) U (ASxT) 
Sm<(T - vT)  : (SIn<T) - (Sm<((V T N T ) - ~ ( T  - vT)))  
SX(T U AT) : (SXT) U (SxAT) 

P21. 
P22. 
P23. 
P24. 

( s  - v S ) ~ T  = ( S - - ~ T )  - v S  

(S U A S ) i ~ T  = ( ~ T )  t] ( A ~ T )  
S ~ ( T  - vT)  = ( S ~ T )  U (Sm<((vT A T)-~:.(T - vT)))  
S~(T O AT) = (S~T) - (SxAT) 

P25. 
P26. 
P27. 
P28. 

(S - vS)I]>~T = (S : :~T)  - ( v S I : ~ T )  
(S  U A S ) I ~ T  = (S : :~T)  U (AS:3~T) 
S::~(T - vT) = ((SD~T) - (S ~ vT)) U ((SX((T N vT)~(T - vT))) x {dT}) 
S:::~(T t3 AT) = ((S:3mT) - ((SIn<AT) x {dT})) t3 (S M AT) 

P29. 
P30. 
P31. 
P32. 

(S -vS)~4=T = ((S~C_T)- (vS M T))U ({ds} x (Tx((SNvS)~(S -vS)))) 
(SUAS)uf:T = ((S~::T)- ({ds) x (TXAS)))U (ASMT) 
S~<C_(T - v T )  = ( S > C T ) -  (S~E:vT) 
S>4::(TUAT) = (S>4::T)U (S~CAT) 

P33. 
P34. 
P35. 
P36. 

(S - v S ) I > C T  = (S:]xCT)  - ( v S : : : ~ T )  U ({ds} x ( T m < ( ( v S  N S ) ~ ( S  - ~7S)))) 
( S U AS):3xCT = ( S:3xCT) U (AS:3~T) - ({ds) x (TIn<AS)) 
S:3xC(T - V/) = (S:3xCT) - (S~<2vT) U ((Sx((vT A T)~(T - vT))) x {dT}) 
S:3xC_(T t3 AT) = ( S ~ T )  t3 ( S t x C A T )  - ((SIn<AT) x {dT}) 

Figure 3: Relational equations used in change propagation for semijoins and outerjoins. 

loyal tuples, then it will have to be deleted from the 
view SI><T since there will be no tuples left in T that 
join with s. 

The other change propagation rules for semijoin 
and outerjoin operators can be derived in a similar 
way. The complete set of propagation rules for these 
operators is listed in Figure 3. Note that equations P19, 
P23, P27, P29, P33 and P35 contain sub-expressions 
for loyal tuples. Also note that, unlike Figure 2, the 
right hand side of some equations in Figure 3 contain 
both delete and insert queries. This is due to the 
fact that the expansion of the left hand side of these 
equations will result in a query where the change 
set occurs both negatively and positively (using the 
terminology of [QW91]). For example, in the expansion 

S:3~(T U AT) 
= (S ~ (T tJ AT)) t] (S - ( S~ < (T  [J AT))) x {dT} 

the subexpression AT appears both negatively and 
positively. 

We shall use the following example to illustrate the 
results obtained in this paper. 

Consider two relations Reg and Course that hold 
the set of students along with the courses they have 
registered for, and the set of courses offered by a uni- 
versity, respectively. The schemas of the two relations 
are defined as (for ease of presentation, we have kept 
the schemas very simple): 

Reg:[student, cname] 
Course:[course, iname] 

where cname is the name of the course taken by a stu- 
dent, and iname is the name of the instructor teach- 
ing a particular course. We allow that students can be 
instructors too. Let the initial set of tuples in these 
relations be: 

Reg 

student cname 

Joe DB 
Mary DB 

Course 

Sam Psych 

course iname 

DB Bob 
AI Tom 
History Jack 
Psych Jill 

Let us define a view CourseReg which contains the 
set of all the courses offered along with the set of stu- 

E X A M P L E  2.1 CourseReg 
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dents (if any) taking those courses, i.e., 

CourseReg -- Course ~]>~¢ourse=cnameReg 

The view CourseReg will have the following tuples (to 
keep the propagation rules simple for illustration later 
on in the section, we leave both the duplicate columns 
course  and cname in the view): 

CourseReg 
course iname student cname 

AI Tom NULL NULL 
DB Bob Joe DB 
DB Bob Mary DB 
History Jack NULL NULL 
Psych Jill Sam Psych 

ble: 
Suppose the following insert is made to the Reg ta- 

AReg = {< Jill, AI >} 

From P28 in Figure 3 we see that the effect of this 
insert on CourseReg will be to perform the following 
updates to the view (the join predicate is implicit here): 

VCourseReg 

ACourseReg 

= (CourseD<{< Jill, AI > } ) x  
{< NULL, NULL >} 

= {<AI, Tom, NULL, NULL>}, 
= Course M {< Jill, AI >} 
= {<AI, Tom, Jill, AI>} 

The final contents of CourseReg will be: 

CourseReg (updated) 
course iname student cname 

AI Tom Jill AI 
DB Bob Joe DB 
DB Bob Mary DB 
History Jack NULL NULL 
Psych Jill Sam Psych 

3 M u l t i ,  U p d a t e  P r o p a g a t i o n  

= {R1 +- (R: - v R : ) O A R : , . . . ,  
R. ( R .  - Y R . )  u ZXRn}, 

where the expressions v R i  and ARi are queries that 
represent sets deleted from and inserted into base re- 
lation Ri respectively. If Q is a query, then ~?(Q) 
represents the application of the substitution ~ to Q, 
and represents the query constructed from Q by re- 
placing each occurrence of table name R~ by the query 
(R1 - vR1) U AR1. 

For incremental view maintenance, the substitution 
77 can either be derived from an update transaction or 
from a collection of change logs. In the first case, ~(Q) 
represents the value that Q will have in after the up- 
date transaction has committed. In the case of change 
logs, ~(Q) represents the value that Q had at a point 
in the past when the change logs were initialized. For 
a detailed discussion of "past" and "future" queries, 
see [CGL+96]. 

Suppose Q is a query and y is a change substitu- 
tion. We would like to determine how y's changes to the 
base relations propagate to changes in the value of Q. 
There are several ways of computing changes to Q. One 
approach is to iteratively apply the propagation rules to 
individual updates in any order we like. In general, this 
would result in a solution of the form 

y(Q) = ( ' "  ((Q opx El) op 2 E2) . . .  op2, E2,) 

where opi 6 {- ,  U} and Ei is obtained from "pulling up" 
the delete or insert set of some relation by repeatedly 
applying simple propagation rules. Suppose we want a 
result of the form: 

= (Q -  TQ) u AQ. (1) 

For the simple operators, Qian and Wiederhold [QW91] 
showed that this can be accomplished simply by apply- 
ing the propagation rules in the correct order. However, 
this approach will not work for many of the propaga- 
tion rules in Figure 3 since a single insert or delete can 
propagate to an insert and a delete query. 

Alternatively, we can follow the approach of [GL95, 
GLT97] and define recursive functions A0?,Q ) and 
~7(~, Q), such that 

The last section presented simple propagation rules that 
treat only single updates to a single relation. In this 
section, we consider simultaneous updates to multiple 
relations. In order to formalize this, we introduce the 
concept of a change substitution. Change substitutions 
are substitutions of the form 

y(Q) = (Q - ~7(~, Q)) o A(~, Q). (2) 

This approach naturally extends to propagation rules 
for the derived semijoin and outerjoin operators. The 
resulting queries are greatly simplified by assuming that 
the change substitution contain only minimal updates. 
Following [QW91], we define minimality as follows: 
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q v q  

S x T  

S - ~ T  

S:3~T 

ScxCT 

S : 3>,C T 

( S t x : ( V ~ T m ) )  U (vSm<(T - vT))  U ( v S D < ( A T X T ) )  

((S - v S ) X ( Z i ~ T ) )  U (vS--DJ.T) 

(vS:3~T) U (S M v T )  U (((S - v S ) m < ( A ~ T ) )  x {dT}) 

(S~4::vT) U ( v S  M T) U ({ds} x ((T - v T ) m < ( A ~ S ) ) )  

( v S Z ~ T )  U (S>f :vT)  U (((S - v S ) D < ( Z i ~ T ) )  x {dT}) U 

({ds} x ((T - v T ) X ( A ~ S ) ) )  

Q zxo 
Sm<T ((S - v S ) t > < ( A ~ T ) )  U ( A S X T  m) 

S - ~ T  ((S - v S ) m < ( v ~ T ' n ) )  O (AS--~T m) 

S:2~T (AS::~T m) U (Sm M AT) U (((S - v S ) m < ( v ~ T " ) )  x {dr}) 

S ~ 4 = T  (S"~,,C.AT) U (AS.M T m) U ({ds} x ( ( r  - v T ) X ( v ~ S m ) ) )  

S:]xCT (AS:3~T m) U (Sr"~C_AT) U (((S - v S ) m < ( v ~ T ' n ) )  x {dT}) U 

({ds} x ((T - v T ) m < ( v ~ S m ) ) )  

Figure 4: Mutually recursive functions ~7 and A. 

(a) V(y,Q) c_ Q : All deleted tuples are in the set 
generated by Q. 

(b) Q N A(y, Q) = ¢ : All inserted tuples are new. 

We also assume that each change substitution ~? is 
minimal in the sense that for each i we have: 1) ~7Ri C_ 
Ri, and 2) Ri N ARi = ¢. 

For simplicity, we have abbreviated Z~(r/, Q) as AQ 
and ~7(~, Q) as vQ.  In this figure, and throughout this 
paper, the notation Qm represents any query equivalent 
to w(Q). 

Based on the propagation rules listed in Figure 3, 
minimal change propagation queries for semijoin and 
outerjoin operators can be derived, and are listed in 
Figure 4. It is important to mention here that these 
queries are not unique, and it is possible to derive dif- 
ferent equivalent forms. 

EXAMPLE 3.1FacultyCourseReg 

Continuing with the example presented in the previ- 
ous section, consider another view FacultyCourseReg 
which is defined as a subset of CourseReg where the 
instructor teaching the course is not a student. In rela- 
tional form: 

FacultyCourseReg = 

CourseReg ~i .... R,g.stua,ntReg 

The initial value of this view (before the insert into 
Reg) is: 

FacultyCourseReg 
course iname student cname 

AI Tom NULL NULL 

DB Bob Joe DB 
DB Bob Mary DB 
History Jack NULL NULL 
Psych Jill Sam Psych 

Let us determine the updates to this view on the 
same insert to Reg as in Example 2.1. From Figure 4 
(after some simplication since we know that ACourse = 
VCourse = VReg = ¢), we see that (note that the 
anti-semijoin predicate is now different than the first 
example): 

vFacultyCourseReg 

= (CourseReg- VCourseReg)D~(iReg~Reg)U 

~CourseReg~Reg 

= (CourseReg-- {< AI, Tom, NULL, NULL >})D< 
({< Jill, AI >}~Beg)  U 
{< AI, Tom, NULL, NULL > } ~ R e g  

= {<AI, Tom, NULL, NULL>} U 
{<Psych, Jill, Sam, Psych>}, 

and, 
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/kFacultyCourseReg 
-- ACourseReg~(Reg (J AReg) 
= {< AI, Tom, Jill, AI > } ~ ( R e g  U {< Jill, AI >}) 
= {<AI, Tom, Jill, AI>} 

The final result of the view will be: 

FacultyCourseReg (updated) 
c o u r s e  iname student c n a m e  

AI Tom Jill AI 
DB Bob Joe DB 
DB Bob Mary DB 
History Jack NULL NULL 

4 A c k n o w l e d g m e n t s  

We would like to thank Daniel Lieuwen for his comments 
on improving the presentation of the paper. 
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