
Algebraic Change Propagation for Semijoin and
Outerjoin Queries

T i m o t h y Griffin, B h a r a t K u m a r
Bell Labo ra to r i e s

Lucen t Technologies
{gr i f f in ,bhara t}@research .be l l - l abs .com

Abstract

Many interesting examples in view maintenance involve
semijoin and outerjoin queries. In this paper we de-
velop algebraic change propagation algorithms for the
following operators: semijoin, anti-semijoin, left outer-
join, right outerjoin, and full outerjoin.

and extends them for the semijoin and outerjoin op-
erators. Section 3 reviews change propagation queries
(under multiple updates) for the base operators, and
presents corresponding propagation queries for the de-
rived operators.

2 Single Update Propagation

1 Motivation

View maintenance algorithms are important for data
warehouses, database integration, and efficient check-
ing of integrity constraints [BLT86, CGL+96, GL95,
GLT97, GJM97, GMS93, HZ96, QW91, RSS96,
ZGHW95, QGMW96]. Many practical examples of view
maintenance involve semijoin and outerjoin queries. Al-
gorithms for incremental maintenance of such queries
was presented by Gupta et. al in [GJM97]. That pa-
per presented procedural algorithms, but left open as
a challenge their algebraic formulation in the style of
Griffin et. al [GL95, GLT97].

Let R, R1, R2, . . . denote names of relations in a
database scheme. Let p range over quantifier-free predi-
cates, and A range over sets of attribute names. Queries
are generated by the grammar

S ::~ R
 p(S)
HA(S)
S x S
S U S
S n S
S - S
S N S

base relation
selection

projection
cartesian product

union
intersection

difference
natural join

In this paper we develop algebraic change propaga-
tion algorithms for the following operators: semijoin,
anti-semijoin, left outerjoin, right outerjoin, and full
outerjoin. There are several advantages to an algebraic
formulation, over a procedural approach, of incremen-
tal view maintenance algorithms. First, the results are
amenable to compile-time and run-time optimizations.
Second, the correctness of algebraic algorithms is usu-
ally more apparent. Finally, two algebraic algorithms
for two distinct relational operators can easily be com-
posed, using the approach of [GL95, GLT97], to provide
an algorithm for queries involving both operators. This
is not always the case with procedural algorithms.

Outl ine. Section 2 reviews change propagation
rules (under single update) fi'om [QWgl. GL95, GLT97],

The symbols Q, S, T will be used to denote ar-
bitrary queries. The notation T = S means that for
all database states, the queries T and S evaluate to
the same set of tuples. Similarly, the notation T C_ S
means that for all database states, the result of evaluat-
ing query T is a subset of the result of evaluating query
S.

We can define derived operators such as semijoin
and outerjoin operators in terms of the above. Nota-
tional definitions for these operators are presented in
Figure 1. The notation IS] denotes the set of attributes
of the query S. The tuple dQ represents the default tu-
ple of query Q. In SQL, this would be a tuple of the
correct arity, with only NULL values.

22 S I G M O D Record, Vol. 27, No. 3, Sep tember 1998

S X T
~ T
S : : ~ T
S>,~7_T

S:]xC_T

= H[s](SMT)
= S - (SC~<T)
= (S N T) U ((~ T) x {dT})
= (S M T) U ({ds} x (T ~ S))
= (S:D~T) U ({ds} x (T ~ S))

semijoin (D1)
anti-semijoin (D2)
left outerjoin (D3)

right outerjoin (D4)
full outerjoin (Db)

Figure h Derived operators.

For ease of presentation, we only consider equal-
ity join predicates. We further assume that both the
queries participating in the join operations have the
same attribute names on which that join is performed.
For example, in our notation,

RI><AS = RD<(R.A=S.A)S

In addition, we shall drop the attribute names where un-
necessary, hence the above would be written as R~<S.

2 .1 B a s i c P r o p a g a t i o n R u l e s

Figure 2 is taken from [QW91] and represents the ba-
sic collection of change propagation equations (for single
changes) on which all of our work depends. The nota-
tion v S and AS represents the delete and insert sets
respectively for query S. When read from left to right,
these equations tell us how to propagate an insert/delete
through a relational operator.

P1. ap(S - v S) = ap(S) - a p (v S)
P2. ap(S U A S) = ap(S) U a p (A S)
P3. IIA(S-~7S) = n A (s) - (n a (s) - n a (s - v s))
P4. I IA (SU AS) = HA(S) U HA(AS)
Pb. (S -~7S) x T = (S x T) - (~ 7 S x T)
P6. (SUAS) x T = (S x T) U (A S x T)
P7. (S - v S) U T = (S U T) - (~ 7 S - T)
P8. (SUAS) U T = (S U T) U (A S - T)
P9. (S - ~ 7 S) - T = (S - T) - (~ T S - T)

P10. S - (T - v T) = (S - T) U (S N v T)
PII. (SUAS)-T=(S-T)U(AS-T)
PI2. S-(TuAT)=(S-T)-(SAAT)
P13. (S - v S) f l T = (S N T) - (v S A T)
P14. (SUAS) A T = (S A T) u (A S A T)
P15. (S-~TS) M T = (S M T) - (~ 7 S M T)
P16. (SUAS) M T = (S M T) U (A S M T)

Figure 2: Relational equations used in change propaga-
tion for base operators.

Let us consider using the propagation equations of
Figure 2 to derive a propagation equation for the semi-
join operator. Suppose we have a view V that contains
the result of query S~<:T. Assume that v T is deleted
from T. We want to compute the change to V, i.e., we
want find a query X that solves the equation:

S X (T - v T) = (S X T) - X

Since semijoin is a derived operator, we should be able
to expand its definition and apply the propagation rules
of Figure 2. It will be useful to have two auxiliary rules.
The first is alternative to P3 under the assumption that
~7S C_ S:

P3'. H A (S - v S) = I I A (S) - - (I I A (V S) - H A (S - - v S))

We also make use of the following equality:

R1. (Qt><S) - (Qm<T) = Q c , < (S ~ T)

With these equations, we can now
concise solution to the semijoin equation
(note that we are not assuming that v T

S><(T - v T)
= II(S M (T - vT)) (by definition)
= II(S M (T - (v T n T)))
= I I ((S M T) - (S M (v T A T))) (byP15)
= II(S M T) -

derive a
above

C_ T):

[H(S M (~7T n T)) - rI(S M (T-vT))] (by P3')
(S><T) - [(S><(~7T n T)) - (S t><(T-vT))]
(SD<T) - (S><((~7T n T) ~ (T - v T))) (by R1)

Therefore, our solution is

X = (St><((~7T n T) ~ (T - ~7T)))

A word of explanation is in order. Let us say that for
tuples tl, t2 6 T, tl is a fr iend of t2 under predicate P
iff (tl} MR {t2} ¢ ¢. Now, the sub-expression

(~7T n T) ~ (T - v T)

represents the subset of tuples actually deleted from T
that do not leave any friends behind. We will call such
tuples loyal. If a tuple s 6 S joins with any of of the

S IGMOD Record, Vol. 27, No. 3, September 1998 23

P17.
P18.
P19.
P20.

(S - vS)~<T = (SxT) - VS

(S U AS)~xT = (SxT) U (ASxT)
Sm<(T - vT) : (SIn<T) - (Sm<((V T N T) - ~ (T - vT)))
SX(T U AT) : (SXT) U (SxAT)

P21.
P22.
P23.
P24.

(s - v S) ~ T = (S - - ~ T) - v S

(S U A S) i ~ T = (~ T) t] (A ~ T)
S ~ (T - vT) = (S ~ T) U (Sm<((vT A T)-~:.(T - vT)))
S~(T O AT) = (S~T) - (SxAT)

P25.
P26.
P27.
P28.

(S - vS)I]>~T = (S : :~T) - (v S I : ~ T)
(S U A S) I ~ T = (S : :~T) U (AS:3~T)
S::~(T - vT) = ((SD~T) - (S ~ vT)) U ((SX((T N vT)~(T - vT))) x {dT})
S:::~(T t3 AT) = ((S:3mT) - ((SIn<AT) x {dT})) t3 (S M AT)

P29.
P30.
P31.
P32.

(S -vS)~4=T = ((S~C_T)- (vS M T))U ({ds} x (Tx((SNvS)~(S -vS))))
(SUAS)uf:T = ((S~::T)- ({ds) x (TXAS)))U (ASMT)
S~<C_(T - v T) = (S > C T) - (S~E:vT)
S>4::(TUAT) = (S>4::T)U (S~CAT)

P33.
P34.
P35.
P36.

(S - v S) I > C T = (S:]xCT) - (v S : : : ~ T) U ({ds} x (T m < ((v S N S) ~ (S - ~7S))))
(S U AS):3xCT = (S:3xCT) U (AS:3~T) - ({ds) x (TIn<AS))
S:3xC(T - V/) = (S:3xCT) - (S~<2vT) U ((Sx((vT A T)~(T - vT))) x {dT})
S:3xC_(T t3 AT) = (S ~ T) t3 (S t x C A T) - ((SIn<AT) x {dT})

Figure 3: Relational equations used in change propagation for semijoins and outerjoins.

loyal tuples, then it will have to be deleted from the
view SI><T since there will be no tuples left in T that
join with s.

The other change propagation rules for semijoin
and outerjoin operators can be derived in a similar
way. The complete set of propagation rules for these
operators is listed in Figure 3. Note that equations P19,
P23, P27, P29, P33 and P35 contain sub-expressions
for loyal tuples. Also note that, unlike Figure 2, the
right hand side of some equations in Figure 3 contain
both delete and insert queries. This is due to the
fact that the expansion of the left hand side of these
equations will result in a query where the change
set occurs both negatively and positively (using the
terminology of [QW91]). For example, in the expansion

S:3~(T U AT)
= (S ~ (T tJ AT)) t] (S - (S~ < (T [J AT))) x {dT}

the subexpression AT appears both negatively and
positively.

We shall use the following example to illustrate the
results obtained in this paper.

Consider two relations Reg and Course that hold
the set of students along with the courses they have
registered for, and the set of courses offered by a uni-
versity, respectively. The schemas of the two relations
are defined as (for ease of presentation, we have kept
the schemas very simple):

Reg:[student, cname]
Course:[course, iname]

where cname is the name of the course taken by a stu-
dent, and iname is the name of the instructor teach-
ing a particular course. We allow that students can be
instructors too. Let the initial set of tuples in these
relations be:

Reg

student cname

Joe DB
Mary DB

Course

Sam Psych

course iname

DB Bob
AI Tom
History Jack
Psych Jill

Let us define a view CourseReg which contains the
set of all the courses offered along with the set of stu-

E X A M P L E 2.1 CourseReg

24 S IGMOD Record, Vol. 27, No. 3, September 1998

dents (if any) taking those courses, i.e.,

CourseReg -- Course ~]>~¢ourse=cnameReg

The view CourseReg will have the following tuples (to
keep the propagation rules simple for illustration later
on in the section, we leave both the duplicate columns
course and cname in the view):

CourseReg
course iname student cname

AI Tom NULL NULL
DB Bob Joe DB
DB Bob Mary DB
History Jack NULL NULL
Psych Jill Sam Psych

ble:
Suppose the following insert is made to the Reg ta-

AReg = {< Jill, AI >}

From P28 in Figure 3 we see that the effect of this
insert on CourseReg will be to perform the following
updates to the view (the join predicate is implicit here):

VCourseReg

ACourseReg

= (CourseD<{< Jill, AI > }) x
{< NULL, NULL >}

= {<AI, Tom, NULL, NULL>},
= Course M {< Jill, AI >}
= {<AI, Tom, Jill, AI>}

The final contents of CourseReg will be:

CourseReg (updated)
course iname student cname

AI Tom Jill AI
DB Bob Joe DB
DB Bob Mary DB
History Jack NULL NULL
Psych Jill Sam Psych

3 M u l t i , U p d a t e P r o p a g a t i o n

= {R1 +- (R: - v R :) O A R : , . . . ,
R. (R . - Y R .) u ZXRn},

where the expressions v R i and ARi are queries that
represent sets deleted from and inserted into base re-
lation Ri respectively. If Q is a query, then ~?(Q)
represents the application of the substitution ~ to Q,
and represents the query constructed from Q by re-
placing each occurrence of table name R~ by the query
(R1 - vR1) U AR1.

For incremental view maintenance, the substitution
77 can either be derived from an update transaction or
from a collection of change logs. In the first case, ~(Q)
represents the value that Q will have in after the up-
date transaction has committed. In the case of change
logs, ~(Q) represents the value that Q had at a point
in the past when the change logs were initialized. For
a detailed discussion of "past" and "future" queries,
see [CGL+96].

Suppose Q is a query and y is a change substitu-
tion. We would like to determine how y's changes to the
base relations propagate to changes in the value of Q.
There are several ways of computing changes to Q. One
approach is to iteratively apply the propagation rules to
individual updates in any order we like. In general, this
would result in a solution of the form

y(Q) = (' " ((Q opx El) op 2 E2) . . . op2, E2,)

where opi 6 {- , U} and Ei is obtained from "pulling up"
the delete or insert set of some relation by repeatedly
applying simple propagation rules. Suppose we want a
result of the form:

= (Q - TQ) u AQ. (1)

For the simple operators, Qian and Wiederhold [QW91]
showed that this can be accomplished simply by apply-
ing the propagation rules in the correct order. However,
this approach will not work for many of the propaga-
tion rules in Figure 3 since a single insert or delete can
propagate to an insert and a delete query.

Alternatively, we can follow the approach of [GL95,
GLT97] and define recursive functions A0?,Q) and
~7(~, Q), such that

The last section presented simple propagation rules that
treat only single updates to a single relation. In this
section, we consider simultaneous updates to multiple
relations. In order to formalize this, we introduce the
concept of a change substitution. Change substitutions
are substitutions of the form

y(Q) = (Q - ~7(~, Q)) o A(~, Q). (2)

This approach naturally extends to propagation rules
for the derived semijoin and outerjoin operators. The
resulting queries are greatly simplified by assuming that
the change substitution contain only minimal updates.
Following [QW91], we define minimality as follows:

S IGMOD Record, Vol. 27, No. 3, September 1998 25

q v q

S x T

S - ~ T

S:3~T

ScxCT

S : 3>,C T

(S t x : (V ~ T m)) U (vSm<(T - vT)) U (v S D < (A T X T))

((S - v S) X (Z i ~ T)) U (vS--DJ.T)

(vS:3~T) U (S M v T) U (((S - v S) m < (A ~ T)) x {dT})

(S~4::vT) U (v S M T) U ({ds} x ((T - v T) m < (A ~ S)))

(v S Z ~ T) U (S>f :vT) U (((S - v S) D < (Z i ~ T)) x {dT}) U

({ds} x ((T - v T) X (A ~ S)))

Q zxo
Sm<T ((S - v S) t > < (A ~ T)) U (A S X T m)

S - ~ T ((S - v S) m < (v ~ T ' n)) O (AS--~T m)

S:2~T (AS::~T m) U (Sm M AT) U (((S - v S) m < (v ~ T ")) x {dr})

S ~ 4 = T (S"~,,C.AT) U (AS.M T m) U ({ds} x ((r - v T) X (v ~ S m)))

S:]xCT (AS:3~T m) U (Sr"~C_AT) U (((S - v S) m < (v ~ T ' n)) x {dT}) U

({ds} x ((T - v T) m < (v ~ S m)))

Figure 4: Mutually recursive functions ~7 and A.

(a) V(y,Q) c_ Q : All deleted tuples are in the set
generated by Q.

(b) Q N A(y, Q) = ¢ : All inserted tuples are new.

We also assume that each change substitution ~? is
minimal in the sense that for each i we have: 1) ~7Ri C_
Ri, and 2) Ri N ARi = ¢.

For simplicity, we have abbreviated Z~(r/, Q) as AQ
and ~7(~, Q) as vQ. In this figure, and throughout this
paper, the notation Qm represents any query equivalent
to w(Q).

Based on the propagation rules listed in Figure 3,
minimal change propagation queries for semijoin and
outerjoin operators can be derived, and are listed in
Figure 4. It is important to mention here that these
queries are not unique, and it is possible to derive dif-
ferent equivalent forms.

EXAMPLE 3.1FacultyCourseReg

Continuing with the example presented in the previ-
ous section, consider another view FacultyCourseReg
which is defined as a subset of CourseReg where the
instructor teaching the course is not a student. In rela-
tional form:

FacultyCourseReg =

CourseReg ~i R,g.stua,ntReg

The initial value of this view (before the insert into
Reg) is:

FacultyCourseReg
course iname student cname

AI Tom NULL NULL

DB Bob Joe DB
DB Bob Mary DB
History Jack NULL NULL
Psych Jill Sam Psych

Let us determine the updates to this view on the
same insert to Reg as in Example 2.1. From Figure 4
(after some simplication since we know that ACourse =
VCourse = VReg = ¢), we see that (note that the
anti-semijoin predicate is now different than the first
example):

vFacultyCourseReg

= (CourseReg- VCourseReg)D~(iReg~Reg)U

~CourseReg~Reg

= (CourseReg-- {< AI, Tom, NULL, NULL >})D<
({< Jill, AI >}~Beg) U
{< AI, Tom, NULL, NULL > } ~ R e g

= {<AI, Tom, NULL, NULL>} U
{<Psych, Jill, Sam, Psych>},

and,

26 S IGMOD Record, Vol. 27, No. 3, September 1998

/kFacultyCourseReg
-- ACourseReg~(Reg (J AReg)
= {< AI, Tom, Jill, AI > } ~ (R e g U {< Jill, AI >})
= {<AI, Tom, Jill, AI>}

The final result of the view will be:

FacultyCourseReg (updated)
c o u r s e iname student c n a m e

AI Tom Jill AI
DB Bob Joe DB
DB Bob Mary DB
History Jack NULL NULL

4 A c k n o w l e d g m e n t s

We would like to thank Daniel Lieuwen for his comments
on improving the presentation of the paper.

References

[BLT86] J.A. Blakeley, P.-A. Laxson, and F.W.
Tompa. Efficiently updating materialized
views. In SIGMOD, pages 61-71, 1986.

[CGL+96] L. Colby, T. Griffin, L. Libkin, I. S. Mu-
mick, and H. Trickey. Algorithms for de-
ferred view maintenance. In SIGMOD,
pages 469-480. ACM Press, 1996.

[GJM97] A. Gupta, H.V. Jagadish, and I.S. Mumick.
Maintenance and self-maintenance of out-
erjoin views. In Next Generation Informa-
tion Technology and Systems, 1997.

[GL95] T. Griffin and L. Libkin. Incremental main-
tenance of views with duplicates. In SIG-
MOD, pages 328-339. ACM Press, 1995.

[GLT97] Timothy Griffin, Leonid Libkin, and
Howard Trickey. An improved algorithm
for incremental recomputation of active
relational expressions. IEEE Transac-
tions on Knowledge and Data Engineering,
9(3):508-511, 1997.

[GMS93] A. Gupta, I.S. Mumick, and V.S. Subrah-
manian. Maintaining views incrementally.
In SIGMOD, pages 157-166, 1993.

[HZ96]

[QGMW96]

[QW91]

[Rss96]

[ZGHW95]

R. Hull and G. Zhou. A framework for
supporting data integration using the ma-
terialized and virtual approaches. In SIG-
MOD, pages 481-492, 1996.

D. Quass, A. Gupta, I.S. Mumick, and
J. Widom. Making views self-maintainable
for data warehousing. In Parallel and Dis-
tributed Information Systems, pages 1-30,
1996.

X. Qian and G. Wiederhold. Incremental
recomputation of active relational expres-
sions. IEEE Transactions on Knowledge
and Data Engineering, 3(3):337-341, 1991.

K.A. Ross, D. Srivastava, and S. Su-
darshan. Materialized view maintenance
and integrity constraint checking: Trading
space for time. In SIGMOD, pages 447-
458. ACM Press, June 1996.

Y. Zhuge, H. Garcia-Molina, J. Hammer,
and J. Widom. View maintenance in a
warehousing environment. In SIGMOD,
pages 316-327, San Jose, California, May
1995.

S IGMOD Record, Vol. 27, No. 3, September 1998 27

