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1 I n t r o d u c t i o n  

We have designed a system, called STRUDEL, which applies familiar concepts from database management  
systems, to the process of building web sites. The main motivation for developing STRUDEL is the observation 
that  with current technology, creating and managing large sites is tedious, because a site designer must 
simultaneously perform (at least) three tasks: (1) choosing what information will be available at the site, (2) 
organizing that  information in individual pages or in graphs of linked pages, and (3) specifying the visual 
presentation of pages in HTML. Furthermore, since there is no separation between the physical organization 
of the information underlying a web site and the logical view we have on it, changing or restructuring a site 
are unwieldy tasks. 

In STRUDEL, the web site manager can separate the logical view of information available at a web site, 
the structure of that  information in linked pages, and the graphical presentation of pages in HTML. First, 
the site builder defines independently the data  that  will be available at the site. This process may require 
creating an integrated view of data from multiple (external) sources. Second, the site builder defines the 
structure of the web-site. The structure is defined as a view over the underlying information, and different 
versions of the site can be defined by specifying multiple views. Finally, the graphical representation of the 
pages in the web site is specified. 

This paper describes the query language that  lies at the heart  of the STRUDEL system. In STRUDEL, we  

model the da ta  at the different levels as graphs. That  is, the data  in the external sources, the da ta  in the 
integrated view and the web-site itself are modeled as graphs. A graph model is appropriate because site da ta  
may be derived from multiple sources, such as existing database systems and HTML files. Consequently, 
our system requires a query language for (1) defining the integrated view of the data, and (2) defining the 
structure of web sites. An important  requirement of our query language is that  it be able to construct graphs. 
Our query processor needs to be able to answer queries tha t  involve accessing different da ta  sources. Even 
though we model the sources as containing graphs, we cannot assume they have a uniform representation of 
graphs. Hence, our query processor needs to adhere to possible limitations on access to data  in the graphs, 
and should be able to exploit additional querying capabilities that  an external source may have. We have 
designed a general framework for processing STRUDEL queries over multiple unstructured data  sources, and 
are designing optimizations that  use the capabilities of external sources whenever possible. 

The purpose of this paper is to describe the syntax and semantics of STRUQL, the query language at 
the core of STRUDEL. We believe that  STRuQL is a language of independent interest, and is useful for other 
applications involving the management of semistructured data, as well as a view definition language for such 
data. We discuss the relationship of STRUQL to other languages proposed in the li terature in Section 6: 
see [Abi97, Bun97]. 

2 STRUDEL A r c h i t e c t u r e  

In every level of the STRUDEL system, data  is viewed uniformly as a graph. At the bot tom-most  level, da ta  
is stored in STRUDEL'S data graph repository or in external sources. External  sources may have a variety of 
formats, but  each is translated into the graph data  model by a wrapper (see Figure 1). STRUDEL'S graph 
model is similar to tha t  of OEM [PGMW95]. A data  graph contains objects connected by directed edges 
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labeled with string-valued attribute names. Objects are either nodes, carrying a unique object identifier 
(oid), or are atomic values, such as integers, strings, files, etc. STRUDEL also provides named collections of 
objects, i.e., sets of oids: technically speaking these are redundant,  since every collection can be represented 
as a wide subtree, but we included them in the data model for convenience. 

The data graph describes the logical structure of all the information available at that  site, and may be 
obtained by integrating information from the various external sources. This integration is done in a similar 
way to recently proposed data  integration prototypes such as Tsimmis [PGMW95] and the Information 
Manifold [LRO96]. Given the data  graph, a site builder can define one or more site graphs; each site graph 
represents the logical s tructure of the information displayed at tha t  site (i.e., a node for every web page and 
attributes describing the information in the page and links between pages). There can be several site graphs, 
corresponding to different versions (or views) of the web site. Finally, the HTML generator constructs a 
browsable HTML graph from a graph site. The HTML generator creates a web page for every node in the 
site graph, using the values of the attr ibutes of the node. 

H T M L  Graph (physical Web Site) 

HTML Generator 

l Site Graph 

Site Definition 

Query 

Processor 

[' 
l"" 

I Wrapper I 

Data Graph 

Mediator 
L 

I Wrapper I 

Figure 1: STRUDEL Architecture 

In STRUDEL, we need to query and /o r  to transform graphs: (1) at the integration level, when data  from 
different external sources is integrated into the data  graph, and (2) at the site-graph definition level, when site 
graphs are constructed from a data  graph. In addition, STRUDEL'S design enables us to provide an interface 
for ad-hoc queries over a web site. We use the same query and transformation language, STRUQL(Site 
TRansformation Und Query Language), at all three levels. We describe STRUQL's core fragment next. 

3 Data Model  and Query Language 

Data M o d e l .  Our data  model is a minor variation on the graph model OEM [PGMW95], designed for 
semistructured data. First we fix a universe of values, and one of labels. All integers, reals, strings, true and 
false are values, while labels are typically strings. A database is a directed, finite graph, whose set of nodes 

S I G M O D  R e c o r d ,  Vol .  26, No.  3, S e p t e m b e r  1997 5 



6 

consists of a finite set of oids and a finite set of values. Edges can go from oids to oids, and from oids to 
values, but an edge cannot emanate  at a value. Labels are at tached to edges: for any two nodes x, y and any 
label a there can be at most  one edge between x and y labeled a; when tha t ' s  the case we write x --+ a --+ y. In 
addition to the graph, the database  also contains a number of collections. Each collection is a set of nodes. 
Intuitively, the collections are the entry points to the graph. For example, the graph may  have a collection 
Root(x), consisting of a single node x which is the graph 's  root. There is an implicit schema associated to 
that  database,  namely the number  and names of the collections. 

Q u e r y  L a n g u a g e :  B a s i c  S y n t a x .  To start ,  consider the following STRUQL query which returns all 
PostScript  papers directly accessible from home pages: 

where HomePages (p), p -+ " P a p e r "  -~ q, isPostScript(q) 

collect PostscriptPages(q) 

Here HomePages  is a collection, " P a p e r "  is an edge label, and isPostScript  is a predicate testing whether 
node q is a PostScript  file. The condition p --+ "Paper" -+ q means that  there exists an edge labeled " P a p e r "  
from p to q. The query constructs a new collection, PostscriptPages, consisting of all answers. 

STRUQL is novel, in the way it combines regular expressions with the creation of new graphs from existing 
graphs; its create, and link clauses specify new graphs. The following example copies the input graph and 
adds a "Home" edge from each node back to the root: 

where Root(p), p -~ • -+ q, q --+ l --+ q' 

create N(p),  N(q),  N(q')  

link N(q) --+ l --+ N(q') ,  N(q) --~ "Home" --+ N(p) 

collect NewRoot(  N (p) ) 

The * in p --~ * -~ q denotes a regular pa th  expressions: in this simple case it means any pa th  from p to q. N 
is a Skolem function creating new oids. The  query first finds all nodes q reachable from the root  p (including 
p itself) and all nodes q~ directly accessible from q by one link labeled I. Then it constructs new nodes N(q) 
and N(q ' ) :  in effect, this copies all nodes accessible from the root. The query adds a link I between any 
pair of nodes tha t  were linked in the original graph and adds a new Home link tha t  points to the new root. 
Finally, it creates an output  collection NewRoot  that  contains the new graph 's  root. 

A similar query produces a site graph, i.e., a view of the input graph, called TextOnly, tha t  excludes any 
nodes tha t  contain image files: I 

where Root(p), p --+ • --+ q, q -~ l --+ q', not (islmageFile(q')) 

create  N(p),  N(q),  N(q') 

link N(q) --+ l -+ N(q') ,  

collect TextOnlyRoot( N (p) ) 

In the general syntax, STRUQL has four clauses, select, create, link, collect whose syntax is given below: 

where Ci, • • •, Ck 

create N1,.  • •, Nn 

link L 1 , . . . , L p  

collect G 1 , . . . ,  Gq 

The C 's  in the where clause are called conditions and are given by the grammar:  

C ::= PathCond I BoolCond 

PathCond ::= NodeExpr--+ R P E  --~ NodeExpr 

1This example is inspired by an inconsistency in the CNN web site ht~p://w~.cnn.com. The site provides a link to a 
text-only version. But, surprisingly, by following the links from that page one ends up again at pages with images. 
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Tha t  is, a condition can be either a path condition, or a boolean condition. Path  conditions are regular pa th  
expressions, R P E  between two nodes: 

R P E  ::= LabeIConst I LabeIVar i UnaryBooICond I "-" I (RPE.RPE)  I (RPE"I"RPE) I RPE"*"  I R P E "  ÷ " 

We use quotation marks  here to distinguish the syntax from the me ta  syntax. Here UnaryBoolCond is 
a boolean combination of user-defined external functions on labels. For example the pa th  condition x --~ 
(isMyEdge) + -+y uses the user-defined function isMyEdge(a), and is satisfied whenever there exists a pa th  
from x to y whose labels form the sequence a l , . . . , a n  and the following hold: n > 1, isMyEdge(al), ..., 
isMyEdge( an ). The wild-char _ denotes any label (and is the same as the predicate true). We abbreviate  
(_). with • and (_)+ with +, thus writing x -+ * -4 y instead of x -+ (_)* --~ y. 

A BoolCond is an arbi t rary  boolean condition on nodes, values, and labels. Atomic boolean conditions 
are collection memberships,  like Root(x), built-in predicates, like x < y, or user defined predicates, like 
isPostScript(x). Note tha t  we cannot negate pa th  conditions, i.e. the query where Root(x), not (x -~ • -+ y) 
is not legal. As explained below we can express this query in STRUQL, using composed queries. 

Node expressions occur in all three clauses create, link, and collect. Node expressions are either (1) node 
variables, or (2) Skolem terms. The lat ter  are obtained by applying a Skolem function (of any arity) to 
either of the following: node expressions, label variables, or values. In the create clause each of N 1 , . . . ,  N~ 
is a Skolem term. In the link clause, each L is of the form NE1 -+ VC -+ NE2, where VC is a label variable 
or constant,  NE1 is a Skolem term, and NE2 a node expression. Finally, each G in the collect clause is of 
the form CollectionNarne(NodeExpr). 

Q u e r y  B l o c k s  STRuQL queries are typically larger than  OLTP or Decision Support  da tabase  queries, 
because they have to construct new graphs, with a diversity rich enough to please a human viewer. For 
tha t  reason we allow the where, create, link, and collect clauses to be interleaved, and introduce some block 
s t ructure  into the language. We give the syntax below. There is one 2 named input graph and one named 
output graph per query: 

BlocT: ::= ( where CI, . . . ,Ck ,  

[create N 1 , . . . ,  Nn] 

[link L1,.. . ,  Lp] 
[collect G1,..., Gq] 
["{" Block,... ,  Block "}"]) • 

Query ::= input ident 

Block 

output ident 

Here ( . . . ) .  means repetit ion and [...] means tha t  . . .  is optional. For example the following query copies tha t  
portion of the graph named DataGraph which is reachable only through at t r ibutes  "Paper", "TechReport", 
"Title", "Abstract", "Author". In addition it constructs a special node Authors() and connects it to all pages 

corresponding to "Author"s. The output  graph is called SiteGraph. One way to write this in STRuQL is: 

input DataGraph 

where Root(x),x --~ * -+ y,y -~ l -~ z, 

l in { "Paper", "TechReport", "Title", "Abstract", "Author"} 

create Authors(), Page(y), Page(z) 

link Page(y) --+ l --~ Page(z) 

where x --+ * --+ yl,  yl  --~ "Author" --+ z l  

link Authors() --+ "Author" --+ Page(zl) 

output SiteGraph 

2In order to integrate information from several source, we allow multiple input graphs. When multiple input graphs are 
present, every occurrence of a collection needs to be preceded by a graph name. For clarity of presentation however, we focus 
on queries with only one input graph. 
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Intermixing the where, create, link clauses makes the query easier to read. This is nothing more than syntactic 
convenience, since the meaning is the same as that  of the query in which all clauses are joined together: 

input DataGraph 

where Root(x), x --~ * --+ y, y --+ l --~ z, 

l in { "Paper", "TechReport', "Title", "Abstract", "Author"} 

x --~ * --~ y l ,  y l  --+ "Author" --+ z l  

create Authors(), Page(y), Page(z) 

link Page(y) --+ l --+ Page(z) 

Authors() -+ "Author"--+ Page(zl  ) 

output SiteGraph 

There is a certain sense that  the variables y l ,  z l  are redundant:  indeed any valid binding of y l ,  z l  is also a 
valid binding of y, z. But the converse is not true, andSmfaet- there is-a special action done for the variables 
yl ,  z l  which is not done for any y, z. This makes the query harder  to read. By using blocks we can avoid 
having to introduce the new variables: 

input DataGraph 

where Root(x) ,x  --~ • -~ y ,y  --~ l --+ z, 

l in { "Paper", "TechReport", "Title", "Abstract", "Author"} 

create Authors(), Page(y), Page(z) 

link Page(y) --+ l -+ Page(z) 

{ where l = "Author" 

link Authors() --~ "Author ' -~  Page(z) 

} 
output SiteGraph 

The semantics of queries with nested blocks can be reduced to tha t  of queries without nested blocks. For 
example each query of the form: 

where E(x ,  y, z) 

create C(x,  y, z) 

link L(x,  y, z) 

{ where E l ( x , y , z , u , v )  

create Cl (x ,  y, z, u, v) 

link L l (x ,  y, z, u, v) 

} 

where E,  C, L, E l ,  C1, L1 are expressions for the corresponding clause, is equivalent to the following query 
without block structure. 

where E(x ,  y, z), E ( x l ,  y l ,  z l ) ,  E l ( x l ,  y l ,  z l ,  u, v) 

create C(x,  y, z), C l ( x l ,  y l ,  z l ,  u, v) 

link L(x,  y, z), L ( x l ,  y l ,  z l ,  u, v) 

Finally we note that  the query with block structure is easier to evaluate than that  without. A query processor 
would need to discover the variable redundancy in the query without block structure (that every binding of 
x l , y l , z l  is a binding for x , y , z  too). 

Q u e r y  C o m p o s i t i o n  We can express query composition in STRUQL by replacing the graph name in 
input with another STRUQL query. Recall that  where Root(x) ,x  --+ • --+ y, not (x --+ "A" .  --+ y) collect C(y) 
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is incorrect, because we do not allow negations on path conditions. However we can express that  query as 
a composition of two STrtuQL queries. For example, if the collection Root is guaranteed to contain exactly 
one element, then the following is a correct translation: 

input ( input  G 

where Root(x),x -+ "A"* --+ y 

collect D(y) ) 

where Root(x), x -~ * --~ y, not (D(y)) 

collect C(y) 

The general case requires a more involved translation. 

4 STRUQL Semant ics  

STrtuQL's semantics can be described in two stages. The query stage depends only on the where clause 
and produces all possible bindings of variables to values that  satisfy all conditions in the clause; its result 
is a relation with one column for each node or label variable in the where clause. The construction stage 
constructs a new graph from this relation, based on the create, link, collect clauses. We explain the details 
next. 

We adopt active-domain semantics for STRuQL. For a data  graph G, let O be the set of all oids and 
values in the graph, and L be the set of all labels in G. Let V be the set of all node and label variables in a 
query. The meaning of the where-clause is the set of assignments 0 : V --+ O t2 L that  satisfy all conditions 
in the where clause. Each assignment maps node variables to O and edge variables to L. The meaning of 
the create - l ink -collect  clauses is as follows. First, the create clause specifies what new nodes to create: for 
each row in the relation, one new node is created, corresponding to each Skolem term in the create clause. 
Second, the link clause specifies what edges to construct in the output  graph: that  is, an edge is created for 
every triplet in the link clause. Finally, the collect clause places nodes in the newly defined collections. 

Two comments are in order. First, notice that,  when a Skolem function is applied to the same arguments 
stemming from two different rows, then the same node is returned. Second, conceptually, the result of the 
query is a new graph, consisting of: (1) a fresh copy of the old graph, and (2) all the new nodes, links, and 
collections created explicitly in the query. Thus, edges in the link clause pointing "back" to the old graph 
are actually pointing to the fresh copy. Furthermore, the collections of the new graph are precisely those 
defined in collect. 

However, the active-domain semantics is unsatisfactory because it depends on how we define the active 
domain; the semantics changes if, for example, we compute the active domain only for the accessible part  
of the graph. The situation is similar to the domain independence issue in the relational calculus: there 
it is solved by considering range-restricted queries, which are guaranteed to be domain independent, i.e., 
their semantics does not change if we artificially change the active domain. We are currently specifying 
range-restriction rules for STRUQL. 

5 Expressive power 

STRUQL's regular path expressions, like those in LOREL and UnQL, require graph traversal and, therefore, 
the computation of transitive closure. The ability to compute the transitive closure of an input graph does 
not imply the ability to compute the transitive closure of an arbitrary binary or 2n-ary relation. This is 
proven formally for UnQL [BDHS96]. Surprisingly, STRUQL can express transitive closure of an arbitrary 
relation as the composition of two queries a. For example, consider the tree-encoding of a binary relation 
R(A, B) with attributes A and B, as shown below. We can compute all nodes reachable from "x" with two 
STrtuQL queries. The first constructs the graph corresponding to the relation R(A, B), and the second uses 
the regular expression * to find all nodes accessible from the root. 

3It follows from the result in [BDHS96] that a single where -link query cannot express transitive closure. 
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input ( where Root(r),r -4 "tup" -4 sl,  r -4 "tup" -4 s2, 

sl -4 "A" -4 xl, s l  -4 "B" -+ yl  

s2 -4 "A" -4 x2, s2 -4 "B" -4 y2 

yl  = x2 

create N(yl) ,  N(x2) 

link N(yl )  -+ "bogus" --~ N(x2) 

collect NewRoot(N(" x") ) ) 

where NewRoot(x), x -4 * -4 N(y) 

collect Result(y) 

II A I B  II "tu " 
"x . . . .  Y" II "A"/% . . . .  A"/%" "A"/%" 
"y" "z" 
"y" "w' "x" "y" "y" "z" "y" "w" 

We can prove that STRUQL has precisely the same expressive power as first order logic extended with 
transitive closure [Imm87], FO +TC. That is, considering a two-sorted (with sorts Oid and Label), first order 
vocabulary T = {E, C1, . . . ,  Ck}, where E(Oid, Label, Old) is the edge relation and Cl(Oid) , . . , ,  Ck(Oid) 
are the collections, then a boolean query over this vocabulary is expressible in pure StruQL (i.e. without 
external predicates) if and only if it is expressible in FO + TC. 

6 Related Languages 

Several languages have been developed for querying and restructuring graph and semistructured data. For 
example, the LOREL language [QRS+95, AGM+97] has been developed in the Tsimmis project for the 
application of data integration. In comparison to STrtUQL, LOREL has the equivalent expressive power to 
the whe re  clause of STRuQL, but unlike LOREL, STRUQL can construct an arbitrary new output graph 
(with the c rea te  and link clauses). This feature is strictly necessary in the application of creating web sites. 

UnQL [BDHS96], another query language for semistructured data, can construct arbitrary new graphs. 
However, as explained above, STRuQL is more expressive than UnQL: the latter cannot compute transitive 
closure of an arbitrary 2n-ary relation. 

In theory, STRUQL has precisely the same expressive power as stratified linear datalog. However the 
translation of STRUQL queries into stratified linear datalog results in cumbersome and hard to understand 
queries. In particular, STRUQL enables a concise representation of regular path expressions and clearly 
separates the querying and the creation of a graph creation. 

GraphLog [CEH+94] is another query language designed for general purpose database applications, suc- 
ceeding G and G+ [CMW87, CMW88, Woo88]. GraphLog combines datalog notation with a visual query 
language and has the same expressive power as stratified linear datalog. 
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