SENTINEL: An Object-Oriented DBMS With Event-Based Rules *

S. Chakravarthy
Database Systems Research and Development Center
Computer and Information Science and Engineering Department
University of Florida, Gainesville, FL 32611
Email:sharma@cise.ufl.edu
URL: http://www.cise.ufl.edu/~sharma

1 Introduction

Active or reactive database management systems (DBMSs)
provide an event-based rule capability that can be used
to support a number of database functionality (e.g., in-
tegrity enforcement, view materialization, management of
index structures, applicability of compiled query plans when
access methods change) in a uniform way. Rules used for
supporting active capability consists of: an event expression,
one or more conditions, an action, and a set of attributes.
An event expression specifies the sequence of events whose
occurrence triggers the evaluation of the condition. A con-
dition is a side effect-free boolean computation (set com-
putation in general) on the database state and an action
is an arbitrary sequence of operations. Attributes, typically,
specify rule characteristics such as coupling mode, event con-
sumption mode, and precedence relationship among rules.
A rule with these components is termed an ECA or event-
condition-action rule in the literature [3].

2 Paradigm Differences

Clearly, there is a paradigm shift when we move from the
relational model to an object-oriented one. The differences
between the two data models profoundly influence how the
concepts and techniques are carried over from one model
to the other. Below, we enumerate some of the differences
between the data models that led to the design choices made
for Sentinel.

1. In contrast to a fixed number of pre-defined primitive
system events in the relational model (e.g., update,
insert, delete), every method/message is a potential
event in an OODBMS. These methods are defined in
application classes, making detection potentially more
difficult.

2. The principle of encapsulation and further the distinc-
tions between features supported (e.g., private, pro-

*This work was supported in part by the Office of Naval Technol-
ogy and the Navy Command, Control and Ocean Surveillance Center
RDT&E Division, and by the Rome Laboratory. Some of the ear-
lier work was supported by the the NSF Grant (IR1-9011218), Texas
Instruments, Dallas, and Sofréavia Services, France.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD ‘97 AZ,USA
© 1997 ACM 0-89791-911-4/97/0005...$3.50

572

tected, and public in C++, class and instance attributes
in Common Lisp with Flavors) need to be accounted
for; this is orthogonal to both the access control issue
and global nature of rules in the relational database
context,

3. The principle of inheritance and its effect on rule in-
corporation, and

4. Scope, accessibility, and visibility of object states for
rules.

The above differences imply that some of the techniques
used in the relational context may not be appropriate for the
QO paradigm. For example, large number of methods (both
user and system defined) entail that event detection cannot
be hard-wired into a few system defined functions. The user
should be able to selectively define events and the system
should be responsible for detecting them efficiently. As an-
other example, the design should be uniformly applicable to
all features supported by the paradigm (e.g., inheritance and
various attribute categories in a class) and should be prefer-
ably independent of the implementation. Unlike a relational
system where all the shared data is considered global (sub-
ject to access privileges), the scoping rules of an OO model
need to be preserved. Finally, addition of attributes (or new
abstractions) to support rules need to conform to sound soft-
ware engineering principles.

Another dimension of choice is the object-oriented envi-
ronment into which ECA rules are being incorporated. For
example, statically compiled languages, such as C++ may
make implementation of some features extremely difficult
{or even impossible) as compared to dynamically interpreted
languages such as Common Lisp or Smalltalk. Support for
dynamic addition of rules is relatively easy in the latter en-
vironments whereas it is not possible to support it without
relinking unless a C++ interpreter is used. This choice of
environment may limit the capability of the system in some
ways.

3 Design Choices

The following design choices were made for incorporating
active capability into Sentinel:

1. Support primitive (e.g., database, temporal, and exter-
nal) events as well as composite events using a small
set of event operators. Support a broad set of event
consumption modes to meet the requirements of com-
posite events for a large number of applications.

2. Augment the specification of an object class with an
event interface,

. Support primitive event recorders, composite event de-
tectors, and rules as first class objects,

. Allow rules to be triggered by events spanning several
objects,

5. Allow an object to dynamically specify which objects
to react to in response to their state changes, and

. Provide a uniform mechanism for associating rules to
all instances of a class as well as individual instances
of one or more classes.

. Support visualization of events/rules and interactive
debugging to facilitate the design of rules

. Provide a way to support rules based on global events
(primitive and composite events defined and detected
in other applications) for distributed active environ-
ments

. Provide support for defining rules dynamically to the
extent possible. This requires at the least relinking of
the application with a library of rules declared outside
of the application.

The above design augments an OO model to include
active capability. Event interface extends the expressive
power of the resulting system, preserves encapsulation, sup-
ports monitoring of multiple objects possibly from different
classes, and reduces the number of rules to be specified. It
supports an incremental design capability for user applica-
tions. At design time, while defining a class, the user is
not required to explicitly list all the rules applicable to that
class. At runtime, new rules can be added and associated
(applied) with (to) existing objects in the database. Conse-
quently, to a large extent, the extensibility and modularity
of the resulting system is not compromised. Finally, the
above design facilitates creation of rules with event, con-
dition, and action components both at compile time and
at runtime by choosing an appropriate implementation. As
rules are objects in their own right, it is possible to intro-
duce new features (for example, providing a new conflict res-
olution strategy) without modifications to application code.
This can be done by adding methods only to the rule class.

The last three items augment the basic active function-
ality to make it useful for larger classes of applications. We
strongly believe that the utility of the system will be signif-
icantly enhanced with the availability of appropriate tools.

3.1 Object Classification

In order to support active capability, we introduce two ad-
ditional object types: reactive and notifiable. These two
object types augment the passive objects supported in an
0O system. An active database designer creates a schema
which defines object classes for an application. In addition,
the designer categorizes object classes to be reactive ~ to pro-
duce appropriate events, and notifiable, to consume events
generated by a reactive class.

Passive objects : These are conventional objects. They do
not generate events. An object that needs to be monitored
(by informing other objects of its state changes) cannot be
passive.

573

Reactive objects : Objects that need to be monitored
(i.e., on which rules will be defined) need to be made reac-
tive. The event interface of objects enables them to declare
any, possibly all, of their methods as event generators. If
a method is declared as an event generator, the object will
detect and signal other objects when the method is invoked.
Thus, reactive objects communicate with other objects to
signal the occurrence of primitive events.

Notifiable objects : Notifiable objects, on the other hand,
are those objects capable of being informed of the events
produced by reactive objects. Therefore, notifiable objects
become aware of a reactive object’s state changes and take
appropriate measures (by evaluating conditions and execut-
ing actions).

4

Events are broadly classified into: i) primitive events: events
that are pre-defined in the system, ii) Composite events:
events that are formed by applying a set of operators to
primitive and composite events. The event classification is
shown in Figure 1.

Snoop - The Event Specification Language

e e
T~ TR
Transaction Class Method Global Method Absolose Reixive

Figure 1: Event Classification

4.1 Snoop Event Operators

Below, we summarize the operators supported in Snoop with
brief explanations:

1. AND (A): Conjunction of two events E; and E,, de-
noted E) AEj, occurs when both E; and E; occur (the
order of occurrence of E; and Ej is irrelevant).

2. OR (]): Disjunction of two events E; and E2, denoted
E; VE,, occurs when either E; or E; occurs (simulta-
neous occurrence is currently excluded).

. SEQ (>»): Sequence of two events E; and E;, denoted
E\>»>E>, occurs when E; occurs provided E) has al-
ready occurred. This implies that the time of occur-
rence of E, is guaranteed to be less than the time of
occurrence of Ej.

. NOT (!): The NOT operator, denoted !(E;,E-,E3),
detects the non-occurrence of the event F; in the closed
interval formed by E; and Es. It is rather similar to
the SEQ operator except that F> should not occur be-
tween E; and Ej.

5. A: One can express the occurrence of an aperiodic
event in the half-open interval formed by E; and FEjs.
An aperiodic event is denoted as A(E1, Ez, E3), where
E., E; and E; are arbitrary events. The event A is
signaled each time E; occurs during the half-open in-
terval defined by E) and E3.

. A*: This is a cumulative variant of A expressed as
A*(Ey, E2, Es). It is useful when a given event is
signaled more than once during a given interval, but

rather than detecting the event and firing the rule ev-
ery time the event occurs, the rule has to be fired only
once. A® is detected when E3 occurs and accumulates
the occurrences of E; in the half-open interval formed
by E1 and E3.

. P: A periodic event is defined as an event E that
repeats itself within a constant and finite amount of
time. It is denoted as P(E:, E2, E3), where E; and
Ej3 are any types of events and E; is a relative temporal
event. P occurs for every amount of time specified with
the time string of E; in the half-open interval (E;, Es].
The time string should be positive and should not have
any wild card to prohibit continuous occurrences of P.

. P*: P* is a cumulative variant of P and is denoted
by P*(Ei, E2, E3). P* occurs only once when Ej
occurs and accumulates the time of occurrences of the
periodic event whenever E; occurs.

. PLUS (+): Sequence of an event E; after a time inter-
val TI, denoted E; + [TI] occurs when TI time units
are elapsed after E; occurs.

4.2 Parameter Contexts or Event Consumption Modes

The notion of parameter contexts is introduced in Snoop to
capture application semantics for computing the parameters
or consuming event occurrences (of composite events) when
they are not unique. These contexts are precisely defined
using the notion of initiator and terminator events. An ini-
tiator of a composite event is a constituent event which can
start one detection of the composite event, and a terminator
is a constituent event which can detect an occurrence of the
composite event.

* Recent: In this context, not all occurrences/instances
of a constituent event will be used in detecting a com-
posite event, only the most recent occurrence of the
initiator for any event that has started the detection
of that event is used. When an event occurs, the event
is detected and all the occurrences of events that can-
not be the initiators of that event in the future are
deleted (or flushed). Furthermore, an initiator of an
event (primitive or composite) will continue to initiate
new event occurrences until a new initiator occurs.

¢ Chronicle: In this context, for an event occurrence,
the initiator, terminator pair is unique (after a detec-
tion, the initiator and the terminator are flushed). The
oldest initiator is paired with the oldest terminator for
each event (i.e., in chronological order of occurrence).

e Continuous: In this context, each initiator of an
event starts the detection of that event and is saved
until a terminator occurs. A terminator is paired with
every initiator. Thus the terminator may detect one
or more occurrences of the same event. The initiator
and the terminator are discarded after an event is de-
tected. This context is especially useful for tracking
trends of interest in a moving window governed by the
initiator event.

e Cumulative: In this context, all occurrences of an
event type are accumulated as instances of that event
until a terminator occurs (that is, the event is de-
tected). Thus all the occurrences of the event detection
are packaged in timely order. Whenever an event is de-
tected, all the occurrences that are used for detecting
that event are deleted.

574

5 Sentinel Architecture

Sentinel is based on the Open OODB [11]. Sentinel's ECA
rule support enhances the Open OODB from a passive OODB
to an active one.

Figure 2: Sentinel Architecture

Figure 2 indicates the functional modules of the open
OODB and the extensions for Sentinel. These extensions
include:

¢ Primitive event detection: A method can be specified
as a primitive event, and the occurrences of the primi-
tive events are notified to the local event detector when
the method is invoked. We have modified the Open
OODB preprocessor to wrap the method invocation
with the notifications to the local event detector in
order to detect primitive events.

e Composite event detection: Composite events defined
within an application are detected by using a sequence
of primitive events detected according to the specified
parameter context of the composited event [4, 8]. Each
Open OODB application has its own local event detec-
tor.

o Nested transactions: The transaction manager in the
client address space supports nested transactions [2]
for concurrent execution of rules. Solaris threads are
used both for prioritized and concurrent rule execu-
tion.

¢ Snoop preprocessor: The Snoop preprocessor trans-
forms the ECA rules specified either as part of a class
definition or as part of an application. The preproces-
sor converts the high-level user specification of ECA
rules specified in Snoop language [6] into appropriate
code for event detection, parameter computation, and
rule execution.

Figure 3 shows how the class lattice of the Open OODB
has been extended by Sentinel. The classes outside the dot-
ted box have been introduced for providing active capability.
This figure also shows the kernel-level enhancements to the
Open OODB modules to accommodate nested subtransac-
tions.

5.1

Current release of Sentinel (Sentinel release 0.9) has the fol-
lowing functionality:

Implementation Status

1. A full event detector (both primitive and composite
events in all the contexts proposed in the sentinel re-
ports, viz. recent, chronicle, continuous, cumulative,
and unrestricted). This has been implemented as a
separate module (and can be executed as a separate
thread in each application/client).

2. Support for rules and events both at the class and in-
stance level. Sentinel (user-friendly) specification of
rules is translated by a sentinel pre-processor written
at UF which transforms the source code. This is fed to
the Open OODB pre-processor which generates wrap-
pers for methods in addition to other translations.

3. A dynamic rule editor for specifying rules outside of
the application in an interactive manner. These rules
can be enabled and disabled requiring only relinking
(and not recompilation of the application). For de-
tails, refer to [10}. Condition and action portion of a
rule can either be C++ functions, OQL (Object Query
Language) statements, or a combination thereof.

4. A global event detectior for detecting and managing
events across applications. The global event detector
communicates with the local event detectors through
RPC and socket-based communication to detect global
events (not shown in Figure 2). For details, refer to [9]

5. Rules are currently executed as nested transactions us-
ing the priority information supplied along with rules.
Both concurrent execution of rules using nested trans-
actions and serial execution using priorities are sup-
ported by Sentinel. Nested transactions are supported
in the client address space and a separate lock table
is maintained by Sentinel. This essentially gives a two
level transaction management; top level transaction
concurrency is controlled by Exodus at the server and
the nested transaction concurrency (without recovery)
is controlled by the client.

6. Rule execution can be visualized using a visualization
tool [7]. This tool shows both rule execution and event
detection graphically. This tool can be used on a dump
created by Sentinel (along the lines of Xdb but meant
as a rule/event debugger, not a low level one). We
are currently extending this tool to support: i) on-
line visualization (as the application is being executed)
and as a post-execution visualization tool, ii) interac-
tive tool to enable/disable event detection and sub-
scribe/unsubscribe rules. This is a tool for debugging
rule-rule interaction, rule-database object interaction,
and interaction among database objects. Locking and
other information is displayed on demand.

7. Two applications are being developed: a planning ap-
plication for the Navy and a ”clean-room” manufac-
turing application. The planning applications is being
extended to include weather data and its effect on unit
objects and plans. The "clean-room” application is be-
ing developed to stress-test the ECA rule capability.

6 Demonstration

The following Sentinel features will be demonstarted at Sig-
mod’97: a) Application development with ECA rule capa-
bility, b) Local event detector, c) Global event detector, d)
Dynamic rule editor, e) rule visualization and debugging en-
vironment

Meated trensactiems
leck info held here)

(wonam) /(wmun) Pillriargfins nu'.-“
1 }
(ressssacrion seos)
DIODUS SEIWER

Top level transaction
info held hare}

Figure 3: Class lattice and transaction manager of Sentinel

References

[1] E. Anwar, L. Maugis, and S. Chakravarthy. A
New Perspective on Rule Support for Object-Oriented
Databases. In SIGMOD Proceedings, pages 99-108,
Washington, D.C., May 1993.

[2] R. Badani. Nested Transactions for Concurrent Exe-
cution of Rules: Design and Implementation. Master’s
thesis, CIS Department, University of Florida, October
1993.

[3] S. Chakravarthy et al. HiPAC: A Research Project in
Active, Time-Constrained Database Management (Fi-
nal Report). Technical Report XAIT-89-02, Xerox Ad-
vanced Information Technology, Cambridge, MA, Aug.
1989.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-
K. Kim. Composite Events for Active Databases: Se-
mantics, Contexts, and Detection. In VLDB Proceed-
ings, pages 606-617, August 1994.

[5] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin,
and R. Badani. ECA Rule Integration into an
OODBMS: Architecture and Implementation. In JCDE
Proceedings, pages 341-349, Feb. 1995.

[6] S. Chakravarthy and D. Mishra. Snoop: An Expressive
Event Specification Language for Active Databases.
Data and Knowledge Engineering, 14(10):1-26, Octo-
ber 1994.

[7] S. Chakravarthy, Z. Tamizuddin, and J. Zhou. SIEVE:
An Interactive Visualization and Explanation Tool for
active Databases. In RIDS ’95 Proceedings, pages 179~
191, October 1995.

[8] H. Lee. Support for temporal events in sentinel: De-
sign, implementation, and preprocessing. Master’s the-
sis, CISE, University of Florida, Aug 1996.

[9] H. Liao. Global events in sentinel: Design and imple-
mentation of a global event detector. Master’s thesis,
CISE, University of Florida, January 1997.

[10] P. Madhabushi. Dynamic rule editor for sentinel: De-
sign and implementation. Master’s thesis, ECE, Uni-
versity of Florida, March 1997.

[11] OODB. Open OODB Toolkit, Release 0.2 (Alpha) Doc-
ument. Texas Instruments, Dallas, September 1993.

