Picture Programming Project

Nita Goyal, Charles Hoch, Ravi Krishnamurthy
Brian Meckler, Michael Suckow, Moshe Zloof

Hewlett-Packard Laboratories, Palo Alto, CA
lastname@hpl.hp.com

Introduction

If Picture is worth a thousand words, why are we still
writing programs using words? This is the lofty guiding
principle for the ICBE system being developed by Picture
programming project at HP Labs. The goal of ICBE
system is to build most (database) applications pictorially
and declaratively. Furthermore, end users with no
programming background are expected to do this pictorial
programming, We have currently implemented a subset of
this goal that pertains to the problem of presenting data for
subsequent browsing and interaction. Such presentation for
browsing and interactions is termed rendering of data. The
rendering applications have gained new importance in the
context of World Wide Web, where not only large amounts
of data need to be rendered but also the programming
knowledge of a typical web publisher is quite rudimentary.
Therefore,
the goal of the current system is to allow a web
publisher with rudimentary programming
background to build rendering applications that
can be embedded as an applet in a web page.

In today’s technology, each application renders the data
from a database in an application-dependent manner,
typically programmed using some GUI builder and
traditional programming language. The semantics of
human-computer interactions with the data (albeit,
application specific), is hard wired into the program and
typically redone for every new application. To address this
problem, we proposed a declarative language called
Rendering By Example (RBE) [KZ95], in which rendering
characteristics could be stated in an application
independent manner. For a large class of rendered data, a
program in RBE can declaratively specify the inherently
procedural interaction semantics.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD '97 AZ,USA
© 1997 ACM 0-89791-911-4/97/0005...$3.50

514

A declarative program addresses the problem of
application independent semantics and the reusability in
many applications, but web publishers may still not be able
to program in it. To assure that they can build these
rendering applications, the process of constructing an
application must mimic the process of using the
application. We assume that anybody can use a rendering
application and understand the interactions in the context
of that particular application. Therefore, web publishers
construct a new rendering application by starting from a
sample rendering application that is actually working and
is running against an actual data and then modifying it.
Once the modified sample is what the web publisher wants
in his/her rendering application, then the system infers the
“rendering program” from that example.

This approach to programming by example is quite
different from QBE wherein a representative example is
stated in the context of the template (i.e., schema) of a
table and that example constitutes the program; ti.e.,
conceptually, the program in QBE is a domain calculus
statement over table templates.

In this document, we explain the application independent
abstractions in RBE and the WYSIWIG process of
programming starting from an example.

Rendering By Example

Rendering By Example (RBE) was proposed in [KZ95] as
a declarative language to express a rendering of data,
where a rendering is defined as a presentation of data with
subsequent browsing and interaction semantics.

A rendering of data consists of a set of screen widgets
populated with data. Such rendering applications allow the
browsing and interaction with the data in ways specific to
that application. These application-specific rendering
applications facilitate the user to find and assimilate the
data. Rendering of data is widely used in most applications
that have a GUI interface and therefore is not a new
concept. But the novelty here is the process of constructing
such rendering applications.

Traditional programming using a state of the art GUI
builder would require the following steps.

1) Place the widgets on the screen; i.e., paint the screen.
2) Program each event for the widgets, wherein the
semantics of the interactions are specified. These
include changing data in other widgets and
restricting/facilitating the choices of interactions in
widgets etc.
This type of event programming deals with not only the
inter-widget relationships but also has to deal with the
idiosyncrasies of the individual widgets and the windowing
environment. Thus, the resulting code is fairly complex.
Further, the semantics of interacting with a widget can
potentially affect the data in many other widgets. As a
result, the programming complexity grows non-linearly
with the number of widgets on the screen.

In contrast, a rendering application written in RBE (i.e,,
rendering program) is a declarative statement of the
rendering. We propose abstractions that can be used to
specify any rendering program so that the behavior due to
interactions in the rendering can be expressed. A rendering
program is stated in a pictorial fashion by placing the
widgets on the screen and binding the widgets to the
attributes in the database.

The effects of an interaction are observed within the
widgets involved in the interaction as well as in other
widgets not involved in the interaction. Without loss of
generality' let us consider the effects of user interaction
with a single widget. So the effects of an interaction can be
categorized as intra-widget and inter-widget depending on
where the changes occur.

e Intra-widget: These are effects of interactions with a
widget that are within the same widget. Dropping
down a pick-list, choosing one element in a radio
button group, multi-selecting elements of a list/table
are examples of intra-widget effects.

o Inter-widget: These are effects that change widgets
other than the interaction widget. Examples are
changing the data shown in other widgets and
restricting the access to data in other widgets.

Note that an interaction can have both intra- and inter-

effects and each of these effects may transitively have other

effects.

Intra-widget effects can be abstracted by categorizing the
widgets by a set of properties. Examples of properties are
set/singleton representability, duplicates representability,
value selectability, multi-value selectability etc. Using
these properties of widgets not only can the intra-widget
behavior be characterized but also the inter-widget
behavior can be implied. For example, if a set of values is
rendered in a text-box, which usually can only represent a

1
Effects due to interaction with more than one widget can be generalized as
the union of individual effects.

515

singleton value, then the system must provide some means
to navigate to other values in the data such as back/next
buttons. Further, extending the system to include new
widgets can be made semi-automatic using these widget
properties. As a result of this widget categorization, a
rendering program has been defined to have appropriate
meaning for all possible combinations of properties. In
other words, the semantics of a rendering is not based on
the individual idiosyncrasies of any widget such as text-box
or radio button but of some generic properties. We
conclude from this observation that any widget in a given
rendering can be replaced by any other widget and the
“meaning” of the new rendering can be appropriately
defined; i.c., the system will manage the intra-widget and
inter-widget behavior appropriately.

Inter-widget effects in any rendering are typically localized
by some grouping of widgets that are either visually or
semantically obvious to the user. Sub-forms and two-level
forms are examples of this type of grouping. Such groups
are necessary because if every widget can potentially affect
every other widget on the screen then the rendering is
likely to become incomprehensible. But group of widgets
can affect other groups, which means that the same
incomprehensibility problem for widget can also affect the
groups, if there are lots of groups. In order to avoid this
recurrent problem, groups are typically hierarchically
ordered in most renderings and groups can only affect the
groups below and not vice versa. Such a hierarchical
decomposition of the set of widgets on the screen is an
assumption widely used in rendering applications. We
make the same assumption and term each group in the
hierarchy a lJevel. The rendering semantics can be
recursively defined based on th¢ hierarchy and the
semantics of a single level. Note that specifying the levels
can be done graphically or by declaring the parent of each
widget.

Inter-widget effects within a single level can be categorized
into three categories.

1) Synchronized Level

2) Dynamic Level

3) Anchored Level
These three categories of levels dictate the behavior of the
widgets with respect to each other in the level. The specific
meaning of each is beyond the scope of this write-up. It can
be argued that these three categories are comprehensive for
most renderings. Thus, the inter-widget effects of any
interaction can be expressed by declaring the category of
the level. Note that a category of any level can be changed
to another and the net effect is to give a new behavior
amongst the widgets in the level. This is true irrespective
of the set of widgets in that level.

In summary, a rendering program is constructed as

follows:

1) Place the widgets on the screen; i.e., paint the screen.

2) Hierarchically partition the set of widgets on the
screen,

3) Declare the category of each level.

4) Bind the widgets to the attributes from the database.

This results in a rendering program that is devoid of events

programming and other such procedural coding.

Even though these steps may seem straightforward and
simple, it is still a daunting task for an user to
conceptualize their rendering applications in terms of the
above abstractions such as level categories, widgets
classifications etc. We address this problem next.

WYSIWIG Programming Environment

There are two major problems with programming;

1) Where to begin? This is the age-old writers’ block
problem faced by any author. The web publisher has
the same problem in deciding where to begin in
constructing the rendering program.

2) Indirect programming: Programming has always been
indirect in the sense that the execution of the program
is the ultimate goal and a program is an indirect
statement of that ultimate goal. Consider text with
HTML tags that represents a web page. Obviously
editing/constructing this HTML file is an indirect
specification of the ultimate web page. In contrast, a
WYSIWIG web page editor is a direct manipulation of
that page and a vast improvement over editing the
HTML file.

In our current implementation, we have addressed these

two problems to enable web publishers to construct

rendering applications easily.

We address the writers’ block problem by allowing the web
publisher to peruse through large selection of samples and
choose one of them to modify. Each sample is a running
rendering application, using actual data, which enables the
web publisher to test run that rendering. Further, it is likely
to be easier to modify an existing application than
constructing one from scratch, if

a) the starting application is similar to the one web

publisher has in mind; and

b) the modifications are easy to do.
The former is assured by providing a large sample base
that can be extended by the web publisher’s own rendering
applications and the latter is achieved by performing the
modification to the running application in a WYSIWIG
fashion.

WYSIWIG modification of a running application is the
process of changing the rendering application to another
rendering application. This is very similar to the
spreadsheet programming wherein the formulae are edited

516

directly into a spreadsheet that is a running application and
the effect of the modification are immediately seen. In a
rendering application, the repertoire of WYSIWIG
modification includes changes to the interactions with the
widgets. If each such modification results in a new
rendering application that also works and can be “test
run”, then the web publisher can make incremental
changes until the final program matches exactly what they
have in their mind. The well-known advantages of
WYSIWIG editing are the direct specification of the
changes to the application, immediate feedback of those
changes and the ability for trial and error. All of these are
very useful advantages that enable the web publisher to
construct the rendering application that behaves exactly in
the manner one wishes. Further, it also facilitates making
incremental modification to the rendering application to
cope with future needs.

The WYSIWIG modus operandi is possible because every
rendering program can be mutated by a sequence of
modifications to any other rendering program. This
reachability property is mainly due to the fact that the
declarative specification of level categories and widget
categories allow all combinations with appropriate
semantics for interactions. Therefore, mutating by
changing level/widget categories as well as adding new
levels/widgets ensure that any rendering application can be
constructed through a series of mutations.

ICBE System

Rendering is but a part of the entire ICBE language. ICBE
has many other abstractions so that general applications
can be expressed. Applications in ICBE is viewed as the
customization of the user-interface and the system, where
the system customization is done by interoperating with
existing databases, applications and other business objects.

In order for ICBE to be general, we designed the language
to be extensible so that any ICBE program can be extended
by escaping to a programming language that does not
violate the declarative aspects of the ICBE language. To do
this, we chose a domain calculus, Horn clause logic based
language termed Logict+ [GHKMS 95] that integrates
naturally into ICBE. As Logict+ is a complete
programming language, we chose to implement the ICBE
system in this language. We reported on this experience in
[GHKMS 95]. In this sense, the current ICBE system is an
ICBE application bootstrapped in ICBE system.

{GHKMS 95] Goyal, N., Hoch, C., Krishnamurthy, R, Meckler,
B., and Suckow, M. "Is GUI Programming a Database Research
Problem?", SIGMOD 96, Montreal, Canada.

[KZ95] Krishnamurthy, R., and Zloof, M. M., "RBE: Rendering-
By-Example”, Intl. Conference on Data Engineering, Taipeli,
1995.

