
The Mariposa Distributed Database Management System
Jeff Sidell

j sidellOcs.berkeley.edu

Introduction
The Mariposa distributed database management
system is an ongoing research project at the
University of California at Berkeley under
Professor Michael Stonebraker. This project
addresses several issues in distributed data
management and has defined the following
goals:

Scalability: Our goal is for Mariposa to scale
to 10,000 sites. This makes it necessary for
Mariposa sites to operate autonomously and
without global synchronization. Database
activities such as class creation, updates,
deletions, fragmentation and data movement
must happen without notifying any central
authority.

Fragmentation: Every Mariposa table, or
class, is horizontally partitioned into a collection
of fragments which together store the instances
of the table. The collection of fragments can be
structured (partitioned by predicate-based
distribution criteria) or unstructured
(partitioned randomly or in round-robin order).

Data movement: Fragments can move from
one site to another without quiescing the
database. Data movement makes it possible for
Mariposa sites to offioad and obtain data objects,
resulting in load balancing and better system
throughput.

Flexible copies: Copies can enhance data
availability and provide faster query processing
through parallel execution. However, the cost of
maintaining the consistency of a large set of
replicas can be prohibitive if conventional
techniques (e.g., two-phase commit) are used.
Mariposa provides a replica-management system
that avoids the expensive synchronization
requirements of conventional replica systems
without sacrificing transaction serializability.
Copies are at the granularity of fragments. The
copy mechanism is discussed at greater length in
[31.

Flexible system management: The behavior of
Mariposa sites is controlled by scripts written in
an enhanced version of Tcl.

Mariposa is an example of an agoric system.
The term agoric comes from the Greek word for
market place: agora. An agoric system mimics
a capitalist economy with buyers negotiating
with sellers to purchase goods and services. In
Mariposa, the buyers and sellers are the
Mariposa servers. The goods are computational
resources (CPU time, disk space and bandwidth,
and network capacity) and data. Mariposa sites
negotiate with one another to perform query
processing, move data between sites and so
forth. Agoric systems have the key feature of
extreme scalability. System information is
decentralized: there is no master site.

The Mariposa Architecture
Mariposa consists of the modules shown in
Figure 1. The user submits a query such as
SELECT * FROM EMP and a bid curve at the
home site. The bid curve has cost on the y axis
and time on the x axis and specifies how much
the user is willing to spend to have his or her
query processed within a given amount of time.
The unit of cost is dollars. The home site is
simply the site where the query originated. The
query passes through a parser and an optimizer
and is turned into a query plan. In Figure 1, the
query SELECT * FROM ~ has been
transformed into a scan over the EMP relation.
The optimizer can be as simple or as
sophisticated as necessary. Both the parser and
the optimizer (and, later, the query broker) use
information from a Mariposa name server.
Name servers provide system metadata
including type information, data fragmentation
and placement, etc. The query plan produced by
the optimizer is passed into thefragmenter. The
fragmenter alters the single-site plan to reflect
the underlying data fragmentation. In Figure 1
the scan of the ~ relation has been
transformed into two scans over the fragments
~1I~1 and ~ m 2 , which are merged together.

76 S I G M O D Record , Vol. 25, No. 4, D e c e m b e r 1996

HOME S1TE

SELECT * FROM EMP;

Parser
Optimizer

PROCESSING SITE 1

Fragrnenter ~- Data Broker ~ ~-...-,-..~__ Bidder

- , :t~= ~ f2.C'-- PROCESSING SITE 2

Coordinator

The fragmented plan is passed into the query
broker, whose job it is to assign a processing site
to each node in the plan tree. The query broker
follows one of two protocols: In the long
protocol, illustrated in Figure 1, the query
broker contacts bidder processes running at
potential processing sites, passing along some
portion of the query plan and soliciting a bid.
The bidder responds with a bid which contains
the cost and time the bidder site will require to
perform the work specified. In Figure 1, the
broker has asked two potential processing sites
to bid on the scan over ~11~1, and gotten back
twobids: ($5, 5 minutes) and ($10, 30

seconds). The bidder's response is
determined completely by a script written in Tel,
to which we have added extensions. The broker
selects the set of bids that will solve the query as
far under the bid curve as possible. Once the
broker has determined the processing sites, the
distributed plan is passed to a coordinator
module, which contacts the processing sites to
begin execution. The user's bid curve will
determine in part the sites that will process the
query. For example, a Cray would probably
charge more than a PC but take less time. A bid
curve with a steep slope, indicating that a fast

Figure 1

answer is valuable, would select the faster
processor.

In the short protocol, which is not shown in
Figure 1, the broker does not contact bidder sites
first, but uses information gathered from the
name server and from previous queries to select
processing sites. It then contacts the processing
sites, telling them to run the subquery and send
a bill. The short protocol can result in a query
running for a cost and time that are more than
the user specified in the bid curve. It can also
result in a query not being run at all, since the
bidder sites can refuse to process the subquery
sent by the broker.

There is also a data broker process running at
each site. The data broker determines which
data fragments the site will attempt to acquire
and which fragments the site will get rid of. It
uses information about which data fragments
have been accessed in the past and how much
has been spent to access them. The data
broker's behavior, like that of the bidder, is
determined by a script written in an extended
version of Tel. The data broker also contacts
bidder sites to obtain the purchase price for a
fragment it is interested in buying, or the sale
price for a fragment it is interested in selling. In

S I G M O D R e c o r d , Vol. 25, No. 4, D e c e m b e r 1996 77

Figure 1, the data broker has asked Site 1 how
much it would cost to buy the mv/p1 fragment.
Site 1 has sent back a selling price of $20.

The Mariposa architecture and the economic
paradigm are discussed further in [1], [2] and
[4].

The Fragmenter
After the static optimizer passes the query plan
to the fragmenter, the fragmenter breaks up the
underlying table scans into fragmented scans. If
there is more than one relation involved in the
query, and if at least one of the relations is
fragmented, there is more than one fragmented
plan that is equivalent to the original
unfragmented plan. For example, the query
"SELECT * from EMP, DEPT where

EMP. deptno = DEPT. no" m a y be
converted into the plan tree shown in Figure 2
by the optimizer before fragmentation. In this
plan, the two relations, m~, and DEPT, are first
scanned (denoted by as) and then sorted into
temporary relations before being joined. The
join algorithm used in this example would be a
merge join.

JOIN

I
I I

SS(TEMP) SS(TEMP)

I I
SORT SORT

[I
SS(EMP) SS(DEPT)

Figure 2

Assume the EMP relation were partitioned into
two fragments, EMPI and EMP2, and the DEPT
relation were fragmented similarly into DEPTI
and DEPT2. The fragmenter could produce
either of the plans shown in Figure 3, among
others. The placement of merge nodes in the
plans shown in Figure 3 affects their potential
for parallel execution. Merge nodes accept
multiple tuple streams as input and output a
single tuple stream. In the top plan in Figure 3,
the merge nodes have been placed immediately
above the sequential scans, essentially turning
the fragmented scans into scans over the entire

relation. The rest of the plan is identical to that
in Figure 2. In the bottom plan, the merge node
was inserted at the root of the plan tree. Each
storage fragment is sorted and joined with each
fragment from the other class, and the results
are merged. In general, ff relations k and E are
divided into fA and fa fragments, a join over A
and B can be divided into as few as one or as
many as fAx fa joins. The greater the number
of joins, the greater the potential for parallel
execution of the plan.

T h e Q u e r y B r o k e r

The Mariposa query broker, after being handed
the fragmented query plan by the fragmenter,
assigns a processing site to each node in the
query plan using either the short protocol or the
long protocol. Using the long protocol assures
that the query can be run within the user's
time/cost constraints at the processing sites
which have won the bidding process. The long
protocol also allows the system as a whole to
adapt dynamically to changing resource
utilization. The processing sites may adjust
their bids according to the current demand for
resources. This use of "market forces" results in
a natural form of load-balancing: as resources
become overutilized, or scarce, their prices can
be raised and less expensive alternatives are
used. In the long protocol, after the query broker
accepts the fragmented plan from the
fragmenter, the first thing it does is to divide the
fragmented plan into a set of non-overlapping
subplans, called plan chunks. Each plan chunk
is sent out whole to potential processing sites.
Dividing a plan into many small chunks
increases the potential for parallel and pipelined
execution of the plan, while dividing it into a
few large chunks decreases potential parallelism
and pipelining. The effects on query processing
of breaking up plans in different ways is an area
for future study.

The second thing the query broker does is
determine the set of bidder sites to contact for
each plan chunk. The set of bidder sites
contacted is determined by a Tel script, and can
therefore be changed by the user. After
determining the bidder sites for each plan
chunk, the query broker solicits each site for a
bid, passing it the plan chunk. When the query
broker has received bids from all the bidder
sites, it determines the set of bidders which can

78 S I G M O D Record , Vol. 25, No. 4, D e c e m b e r 1996

run the query as far below the bid curve as
possible. Control is then passed to the
coordinator, which notifies the winning bidders
and coordinates execution of the final plan.

T h e B i d d e r

The bidder site receives a plan chunk from a
remote query broker and passes it to the bidder
script. The bidder script returns a value
indicating whether or not it is willing to bid, and
if it is willing, it also returns the cost and time
estimate. The bidder script is written in an
enhanced Tcl. The query plan passed in to the
bidder is represented as a Tel list. Information
about the base relations accessed by the query,
such as number of tuples and number of pages,
is also made available to the Tcl script. The
bidder may formulate its bid in any way. As an
example, the bidder could recursively descend

idle sites, providing a crude form of load-
balancing.

One important Tcl extension we have made for
the bidder is the SubContract command. It is
possible that a bidder may be able to process
part but not all of a subquery it is sent by the
broker. For example, if the plan in Figure 2
were received by a bidder site which only had
the EMP relation but not the DEPT relation, it
could process all of the plan except the scan over
DEPT. In this case, the bidder can solicit sub-
bids from other bidder sites for the part of the
plan it cannot process itself. It adds the sub-bids
into the bid it returns to the original broker site.

The Data Broker

The data broker's beha,dor, like that of the
bidder, is determined completely by scripts

JOIN
I ,

MERGE MERGE

I I I I
SS(EMPI) SS(EMP2) SS(DEPTI) SS(DEPT2)

i I
JOIN JOIN

I I
I I I I

SS(TEMP) SS(TEMP) SS(TEMP) SS(TEMP)

I I I I
SORT SORT SORT SORT

I I I I
SS(EMPI) SS(DEPTI) SS(EMPI) SS(DEPT2)

MERGE
I

l
JOIN

I
I

SS(TEMP)

I
SORT

I
SS(EMP2)

I
JOIN

I
I I I

SS(TEMP) SS(TEMP) SS(TEMP)

I I I
SORT SORT SORT

I I I
SS(DEPTI) SS(EMP2) SS(DEPT2)

Figure 3

the query plan, assigning a cost to each node
depending on the estimated resource
consumption (disk I/O and CPU time),
effectively mimicking a traditional static single-
site optimizer. This pricing strategy, could be
enhanced by having the bidder multiply the cost-
based bid by the current load average. This
would cause busier sites to charge more than

written in an enhanced Tcl. The data broker
may make use of system catalogs that record the
sub-plans which originated locally and how
much was paid to process them. We have added
a command to Tcl which allows the data broker
to query these catalogs: the CostHistory
command takes two arguments: a list of
operations the broker is interested in, and a time
interval. The data broker queries the system

S I G M O D R e c o r d , Vol. 25, No. 4, D e c e m b e r 1996 79

catalogs for subplans which contain all of the
operations and were processed within the time
interval. For example, to find out how much the
site has paid for joins between RI and R2 during
the last hour, the data broker would make the
call "set Cost [CostHistory "RI R2

JOIN" "NOW-I NOW"]"

We have also added the PurchaseCost
command. PurchaseCost takes a fragment name
as an argument and returns a list of storage sites
and how much they will charge to sell the
fragment or a copy of the fragment. For
example, the return value for PurchaseCost
EMP1 may be (1 5) (2 10), indicating that
EMP1 is stored at sites 1 and 2, and that they
will charge $5 and $10 respectively to sell it. In
order to buy a fragment, the data broker uses the
Tel extension PurchaseFragment, which takes
the fragment name and the storage site from
which the data broker will purchase it.

Implementation Status
The Mariposa system was released in June of
this year and is currently ported to Digital
Equipment's Alpha architecture running OSF/1.
We are porting to other architectures and expect
to have versions for Solaris and Windows/NT by
the first quarter of 1997. The Mariposa source
code, documentation and papers are available
from the Mariposa web server at
http://epoch.cs.berkeley.edu:8000/mariposa.

The author is currently conducting experiments
to test the system's ability to perform automatic
load balancing through the query, automatic
data layout through the data broker, as well as
the system's ability to scale.

[1] Mariposa: A New Architecture for Distributed Data, Sequoia 2000 Technical Report 93/31, University
of California, Berkeley, CA, May 1993. Appeared in: Proceedings of 1994 1EEE lOth International
Conference on Data Engineering, Houston, TX, USA, 14-18 Feb. 1994. Los Alamitos, CA, USA: IEEE
Comput. Soc. Press, 1994. p. 54-65.

[2] An Economic Paradigm for Query Processing and Data Migration in Mariposa, Sequoia 2000
Technical Report 94/49, University of California, Berkeley, CA, Apr. 1994. Appeared in: Proceedings of
3rd International Conference on Parallel and Distributed Information Systems, Austin, TX, USA, 28-30
Sept. 1994. Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 1994. p. 58-67.

[3] Data Replication in Mariposa, Sequoia 2000 Technical Report 95/62, University of California,
Berkeley, CA, June 1995. Appeared in: Proceedings of the 12th International Conference on Data
Engineering, New Orleans, LA, Feb. 1996.

[4] Mariposa: A Wide-Area Distributed Database System, Sequoia 2000 Technical Report 95/63,
University of California, Berkeley, CA, June 1995. Appeared in: I/LDB Journal 5, 1 (Jan. 1996), p. 48-
63.

80 S I G M O D Record , Vol. 25, No. 4, D e c e m b e r 1996

