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Introduction 
The Mariposa distributed database management 
system is an ongoing research project at the 
University of California at Berkeley under 
Professor Michael Stonebraker. This project 
addresses several issues in distributed data 
management and has defined the following 
goals: 

Scalability: Our goal is for Mariposa to scale 
to 10,000 sites. This makes it necessary for 
Mariposa sites to operate autonomously and 
without global synchronization. Database 
activities such as class creation, updates, 
deletions, fragmentation and data movement 
must happen without notifying any central 
authority. 

Fragmentation: Every Mariposa table, or 
class, is horizontally partitioned into a collection 
of fragments which together store the instances 
of the table. The collection of fragments can be 
structured (partitioned by predicate-based 
distribution criteria) or unstructured 
(partitioned randomly or in round-robin order). 

Data movement: Fragments can move from 
one site to another without quiescing the 
database. Data movement makes it possible for 
Mariposa sites to offioad and obtain data objects, 
resulting in load balancing and better system 
throughput. 

Flexible copies: Copies can enhance data 
availability and provide faster query processing 
through parallel execution. However, the cost of 
maintaining the consistency of a large set of 
replicas can be prohibitive if conventional 
techniques (e.g., two-phase commit) are used. 
Mariposa provides a replica-management system 
that avoids the expensive synchronization 
requirements of conventional replica systems 
without sacrificing transaction serializability. 
Copies are at the granularity of fragments. The 
copy mechanism is discussed at greater length in 
[31. 

Flexible system management: The behavior of 
Mariposa sites is controlled by scripts written in 
an enhanced version of Tcl. 

Mariposa is an example of an agoric system. 
The term agoric comes from the Greek word for 
market place: agora. An agoric system mimics 
a capitalist economy with buyers negotiating 
with sellers to purchase goods and services. In 
Mariposa, the buyers and sellers are the 
Mariposa servers. The goods are computational 
resources (CPU time, disk space and bandwidth, 
and network capacity) and data. Mariposa sites 
negotiate with one another to perform query 
processing, move data between sites and so 
forth. Agoric systems have the key feature of 
extreme scalability. System information is 
decentralized: there is no master site. 

The Mariposa Architecture 
Mariposa consists of the modules shown in 
Figure 1. The user submits a query such as 
SELECT * FROM EMP and a bid curve at the 
home site. The bid curve has cost on the y axis 
and time on the x axis and specifies how much 
the user is willing to spend to have his or her 
query processed within a given amount of time. 
The unit of cost is dollars. The home site is 
simply the site where the query originated. The 
query passes through a parser and an optimizer 
and is turned into a query plan. In Figure 1, the 
query SELECT * FROM ~ has been 
transformed into a scan over the EMP relation. 
The optimizer can be as simple or as 
sophisticated as necessary. Both the parser and 
the optimizer (and, later, the query broker) use 
information from a Mariposa name server. 
Name servers provide system metadata 
including type information, data fragmentation 
and placement, etc. The query plan produced by 
the optimizer is passed into thefragmenter. The 
fragmenter alters the single-site plan to reflect 
the underlying data fragmentation. In Figure 1 
the scan of the ~ relation has been 
transformed into two scans over the fragments 
~1I~1 and ~ m 2 ,  which are merged together. 
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The fragmented plan is passed into the query 
broker, whose job it is to assign a processing site 
to each node in the plan tree. The query broker 
follows one of two protocols: In the long 
protocol, illustrated in Figure 1, the query 
broker contacts bidder processes running at 
potential processing sites, passing along some 
portion of the query plan and soliciting a bid. 
The bidder responds with a bid which contains 
the cost and time the bidder site will require to 
perform the work specified. In Figure 1, the 
broker has asked two potential processing sites 
to bid on the scan over ~11~1, and gotten back 
twobids: ($5, 5 minutes) and ($10, 30 

seconds). The bidder's response is 
determined completely by a script written in Tel, 
to which we have added extensions. The broker 
selects the set of bids that will solve the query as 
far under the bid curve as possible. Once the 
broker has determined the processing sites, the 
distributed plan is passed to a coordinator 
module, which contacts the processing sites to 
begin execution. The user's bid curve will 
determine in part the sites that will process the 
query. For example, a Cray would probably 
charge more than a PC but take less time. A bid 
curve with a steep slope, indicating that a fast 

Figure 1 

answer is valuable, would select the faster 
processor. 

In the short protocol, which is not shown in 
Figure 1, the broker does not contact bidder sites 
first, but uses information gathered from the 
name server and from previous queries to select 
processing sites. It then contacts the processing 
sites, telling them to run the subquery and send 
a bill. The short protocol can result in a query 
running for a cost and time that are more than 
the user specified in the bid curve. It can also 
result in a query not being run at all, since the 
bidder sites can refuse to process the subquery 
sent by the broker. 

There is also a data broker process running at 
each site. The data broker determines which 
data fragments the site will attempt to acquire 
and which fragments the site will get rid of. It 
uses information about which data fragments 
have been accessed in the past and how much 
has been spent to access them. The data 
broker's behavior, like that of the bidder, is 
determined by a script written in an extended 
version of Tel. The data broker also contacts 
bidder sites to obtain the purchase price for a 
fragment it is interested in buying, or the sale 
price for a fragment it is interested in selling. In 
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Figure 1, the data broker has asked Site 1 how 
much it would cost to buy the mv/p1 fragment. 
Site 1 has sent back a selling price of $20. 

The Mariposa architecture and the economic 
paradigm are discussed further in [1], [2] and 
[4]. 

The Fragmenter 
After the static optimizer passes the query plan 
to the fragmenter, the fragmenter breaks up the 
underlying table scans into fragmented scans. If 
there is more than one relation involved in the 
query, and if at least one of the relations is 
fragmented, there is more than one fragmented 
plan that is equivalent to the original 
unfragmented plan. For example, the query 
"SELECT * from EMP, DEPT where 

EMP. deptno = DEPT. no" m a y  be 
converted into the plan tree shown in Figure 2 
by the optimizer before fragmentation. In this 
plan, the two relations, m~, and DEPT, are first 
scanned (denoted by as) and then sorted into 
temporary relations before being joined. The 
join algorithm used in this example would be a 
merge join. 

JOIN 

I 
I I 

SS(TEMP) SS(TEMP) 

I I 
SORT SORT 

[ I 
SS(EMP) SS(DEPT) 

Figure 2 

Assume the EMP relation were partitioned into 
two fragments, EMPI and EMP2, and the DEPT 
relation were fragmented similarly into DEPTI 
and DEPT2. The fragmenter could produce 
either of the plans shown in Figure 3, among 
others. The placement of merge nodes in the 
plans shown in Figure 3 affects their potential 
for parallel execution. Merge nodes accept 
multiple tuple streams as input and output a 
single tuple stream. In the top plan in Figure 3, 
the merge nodes have been placed immediately 
above the sequential scans, essentially turning 
the fragmented scans into scans over the entire 

relation. The rest of the plan is identical to that 
in Figure 2. In the bottom plan, the merge node 
was inserted at the root of the plan tree. Each 
storage fragment is sorted and joined with each 
fragment from the other class, and the results 
are merged. In general, ff relations k and E are 
divided into fA and fa fragments, a join over A 
and B can be divided into as few as one or as 
many as fAx fa joins. The greater the number 
of joins, the greater the potential for parallel 
execution of the plan. 

T h e  Q u e r y  B r o k e r  

The Mariposa query broker, after being handed 
the fragmented query plan by the fragmenter, 
assigns a processing site to each node in the 
query plan using either the short protocol or the 
long protocol. Using the long protocol assures 
that the query can be run within the user's 
time/cost constraints at the processing sites 
which have won the bidding process. The long 
protocol also allows the system as a whole to 
adapt dynamically to changing resource 
utilization. The processing sites may adjust 
their bids according to the current demand for 
resources. This use of "market forces" results in 
a natural form of load-balancing: as resources 
become overutilized, or scarce, their prices can 
be raised and less expensive alternatives are 
used. In the long protocol, after the query broker 
accepts the fragmented plan from the 
fragmenter, the first thing it does is to divide the 
fragmented plan into a set of non-overlapping 
subplans, called plan chunks. Each plan chunk 
is sent out whole to potential processing sites. 
Dividing a plan into many small chunks 
increases the potential for parallel and pipelined 
execution of the plan, while dividing it into a 
few large chunks decreases potential parallelism 
and pipelining. The effects on query processing 
of breaking up plans in different ways is an area 
for future study. 

The second thing the query broker does is 
determine the set of bidder sites to contact for 
each plan chunk. The set of bidder sites 
contacted is determined by a Tel script, and can 
therefore be changed by the user. After 
determining the bidder sites for each plan 
chunk, the query broker solicits each site for a 
bid, passing it the plan chunk. When the query 
broker has received bids from all the bidder 
sites, it determines the set of bidders which can 
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run the query as far below the bid curve as 
possible. Control is then passed to the 
coordinator, which notifies the winning bidders 
and coordinates execution of the final plan. 

T h e  B i d d e r  

The bidder site receives a plan chunk from a 
remote query broker and passes it to the bidder 
script. The bidder script returns a value 
indicating whether or not it is willing to bid, and 
if it is willing, it also returns the cost and time 
estimate. The bidder script is written in an 
enhanced Tcl. The query plan passed in to the 
bidder is represented as a Tel list. Information 
about the base relations accessed by the query, 
such as number of tuples and number of pages, 
is also made available to the Tcl script. The 
bidder may formulate its bid in any way. As an 
example, the bidder could recursively descend 

idle sites, providing a crude form of load- 
balancing. 

One important Tcl extension we have made for 
the bidder is the SubContract command. It is 
possible that a bidder may be able to process 
part but not all of a subquery it is sent by the 
broker. For example, if the plan in Figure 2 
were received by a bidder site which only had 
the EMP relation but not the DEPT relation, it 
could process all of the plan except the scan over 
DEPT. In this case, the bidder can solicit sub- 
bids from other bidder sites for the part of the 
plan it cannot process itself. It adds the sub-bids 
into the bid it returns to the original broker site. 

The Data Broker 

The data broker's beha,dor, like that of the 
bidder, is determined completely by scripts 
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Figure 3 

the query plan, assigning a cost to each node 
depending on the estimated resource 
consumption (disk I/O and CPU time), 
effectively mimicking a traditional static single- 
site optimizer. This pricing strategy, could be 
enhanced by having the bidder multiply the cost- 
based bid by the current load average. This 
would cause busier sites to charge more than 

written in an enhanced Tcl. The data broker 
may make use of system catalogs that record the 
sub-plans which originated locally and how 
much was paid to process them. We have added 
a command to Tcl which allows the data broker 
to query these catalogs: the CostHistory 
command takes two arguments: a list of 
operations the broker is interested in, and a time 
interval. The data broker queries the system 
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catalogs for subplans which contain all of the 
operations and were processed within the time 
interval. For example, to find out how much the 
site has paid for joins between RI and R2 during 
the last hour, the data broker would make the 
call "set Cost [CostHistory "RI R2 

JOIN" "NOW-I NOW"]" 

We have also added the PurchaseCost 
command. PurchaseCost takes a fragment name 
as an argument and returns a list of storage sites 
and how much they will charge to sell the 
fragment or a copy of the fragment. For 
example, the return value for PurchaseCost 
EMP1 may be (1 5) (2 10), indicating that 
EMP1 is stored at sites 1 and 2, and that they 
will charge $5 and $10 respectively to sell it. In 
order to buy a fragment, the data broker uses the 
Tel extension PurchaseFragment, which takes 
the fragment name and the storage site from 
which the data broker will purchase it. 

Implementation Status 
The Mariposa system was released in June of 
this year and is currently ported to Digital 
Equipment's Alpha architecture running OSF/1. 
We are porting to other architectures and expect 
to have versions for Solaris and Windows/NT by 
the first quarter of 1997. The Mariposa source 
code, documentation and papers are available 
from the Mariposa web server at 
http://epoch.cs.berkeley.edu:8000/mariposa. 

The author is currently conducting experiments 
to test the system's ability to perform automatic 
load balancing through the query, automatic 
data layout through the data broker, as well as 
the system's ability to scale. 
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