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1 Introduction 

There is a great need for building research proto- 
types of real-time database systems, because existing 
techniques are often ad hoc or concealed in internal 
solutions, and few, if any, commercial offerings ex- 
ist. As real-time applications inherently use reactive 
mechanisms, and a wealth of results now exists on 
active database management systems [5], we decided 
to build DeeDS, a [D]istributed Activ[e], Real-Tim[el 
[D]atabase [S]ystem prototype. This research effort 
is challenging due to the unique combination of re- 
active mechanisms, distributed technology, dynamic 
scheduling, and integrated monitoring, under a mix- 
ture of soft and hard real-time constraints. To make 
all this feasible with a limited amount of man-power, 
we have taken a deliberate approach of building with 
existing components where possible, and including 
only those features absolutely necessary to obtain the 
benefit of each of the architectural dimensions. At 
the same time, features and implementation methods 
have been chosen to best promote predictability and 
efficiency in such a complex system, while preserving 
flexibility for further research in this area [2, 1]. 

2 DeeDS 

2.1 Motivation 

When studying complex real-time systems we found 
that they often require distribution and sophisticated 
sharing of extensive amounts of data, with full or par- 
tial replication of the database. For example, in in- 
tegrated vehicle systems control we have identified a 
need for autonomous nodes controlling individual sub- 
systems and handling large amounts of data locally 
under hard timing constraints (e.g., fuel injection, ig- 
nition control), while at the same time requiring pa- 
rameters from other subsystems on a much less crit- 
ical time scale (e.g., from the transmission, environ- 
ment sensors). Similar features have been identified in 
automated manufacturing and time-constrained dis- 

*This work was supported by NUTEK (The Swedish National 
Board for Industrial  and Technical Development) and the Ministry 
of Education and Science in Sweden. 

tributed naming services. 
When building distributed databases, sources of 

unpredictability are introduced due to network com- 
munication and distributed commit processing, as 
well as disk accesses. Hence, in order to guarantee 
the timeliness and predictability of the system, the 
sources of unpredictability must either be eliminated, 
or the software must become time-cognizant. By plac- 
ing the database in main-memory, unpredictable disk 
access delays are avoided [14]. Further, in order to 
guarantee local data availability and eliminate net- 
work communication, the database will be (virtually) 
fully replicated. Finally, in the studied application 
scenarios, temporary inconsistencies of the distributed 
database can be allowed. Hence, updates are made lo- 
cally and propagated to all nodes in a way that guar- 
antees eventual consistency [6]. 

Transactions are either periodic or sporadic, where 
the latter are executed in response to an event or sit- 
uation. In DeeDS, this reactive behavior is modeled 
with event-condition-action rules (ECA) [11], which 
allow for efficient situation monitoring, and database 
constraint enforcing [27]. 

2.2 Technical Overview 

The DeeDS architecture [1] separates application- 
related functions from critical system services. The 
former consist of a rule manager module, an object 
store (OBST [10]), and a storage manager (tdbm) [7]. 
The latter include scheduling [4], and event monitor- 
ing. The underlying distributed real-time operating 
system kernel is OSE Delta [25]. 

The rule manager receives event instances from the 
event monitor and executes rules that are triggered 
by the event. If the condition is satisfied the action 
is presented to the scheduler for execution. Rules are 
extended with the ability to specify timing constraints 
on triggered actions. 

When an event has been detected, efficient selec- 
tion of potentially triggered rules is important. In 
DeeDS, rules are associated with specific events in or- 
der to reduce unnecessary rule triggering. Thus we 
only notify those rules which are specifically interested 
in the event occurrence [3]. 
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To make rule execution predictable, coupling 
modes are restricted [9], and cascade triggering is lim- 
ited, in order to attain an upper bound on the max- 
imum exccution time of t~'ansactions. Moreover, con- 
dition evaluation is limited to logical expressions on 
events and object parameters, and method invoca- 
tions. 

Transactions are scheduled dynamically, and their 
timing constraints are expressed as parameterized 
value functions. Parameterization reduces storage re- 
quirements and computational cost, compared to arbi- 
trary value functions. The workload consists of trans- 
actions with varying deadline criticality, i.e., critical 
and non-critical. The scheduling algorithm must, dur- 
ing transient overloads, favor critical transactions over 
non-critical transactions in order to maintain timeli- 
ness. Early work on real-time scheduling of multi-level 
transactions has been carried out in [18, 21]. In [26], 
priority assignment policies for active real-time data- 
bases have been studied and evaluated. 

Each critical transaction will have a contingency 
plan with reduced computational requirements, which 
is invoked when the original transaction cannot meet 
its deadline. This could be in response to a transient 
overload detected by the scheduler. In [17], we defined 
a scheduling model for a deadline-driven scheduler for 
OSE Delta. 

The critical system services execute on a dedicated 
processor to simplify overhead cost models, manage 
event criticality [4], avoid probe-effect [28], and in- 
crease concurrency in the system. Moreover, the 
scheduler continuously monitors the remaining exe- 
cution time of each transaction using milestones [19]. 

We thus n,ake use of hybrid monitoring tech- 
niques, based on both software and hardware moni- 
toring, for predictable and efficient event monitoring 
[16]. The interaction between the scheduler and the 
event monitor is performed during fixed intervals, and 
can either be synchronous (time-triggered), or asyn- 
chronous (event-triggered). Preliminary results show 
that the synchronous interaction style results in higher 
throughput but longer unavoidable minimum delay 
than the asynchronous interaction style if an incre- 
mental scheduler is used [24]. 

The event monitor detects primitive and compos- 
ite events (using event graphs [12]) and disseminates 
the corresponding event instances to subscribing re- 
cipients [23], e.g., the rule manager. Predictability 
is imposed by limiting event constructors [11, 9] and 
contexts [12]. Incomplete event instances are flushed 
when they are invalid, e.g., when the transaction, in 
which their constituents were generated, aborts or 
commits [9]. 

3 Related Work 

Few research projects on active time-constrained data- 
bases have been presented [13]. One of them is HiPAC 
[11], in which the idea of using production rules as the 
paradigm for rule specification is proposed, and differ- 
ent coupling modes for condition evaluation and trig- 
gered actions are identified. No implementation of the 
complete system is however made, albeit a strawman 
architecture has been presented. 

In REACH [9], the impact on timeliness of using 
different coupling modes is investigated, as well as the 
use of contingency actions. The event monitoring in 
REACH is distributed in the system, which is possi- 
ble, but currently not exploited, in DeeDS. REACH 
uses milestones [8] to detect whether a transaction will 
meet its deadline. In DeeDS, the use of milestones is 
extended to detect that a transaction will finish ear- 
lier than calculated, and thereby leaves slack time to 
be used by other transactions. REACH is disk-based, 
whereas DeeDS is main-memory resident. It should be 
noted that neither REACH nor HiPAC is distributed. 

ARTS-RTDB [22] is a relational, distributed real- 
time database system. While database nodes in 
DeeDS are fully replicated and communicate asyn- 
chronously, ARTS-RTDB consists of one or more 
database servers which communicate with clients us- 
ing synchronous message passing. Moreover, ARTS- 
RTDB does not include reactive mechanisms. 

The idea of using dedicated processors for applica- 
tion processes and scheduling processes, however not 
necessarily in a database system, was first adopted 
in the Spring-project [29], in which they focused on 
giving on-line guarantees for meeting task deadlines. 
Distributed hybrid monitoring has been investigated 
in the INCAS project [16], but DeeDS differs by sup- 
porting composite events and, currently, only allows 
local event detection. 

4 Conclusions 

The DeeDS prototype is currently being implemented 
for the OSE Delta kernel in a UNIX development en- 
vironment. We have ported tdbm [20] and extended 
it for the preemptive environment, and we are in the 
process of porting OBST and integrating the two in 
cooperation with OBST developers at FZI. Trial im- 
plementations have been made of lazy replication algo- 
rithms [15] and simulation results have been obtained 
for several scheduling techniques. 

The DeeDS prototype represents a unique integra- 
tion of several advanced concepts such as active func- 
tionality, distribution, and real-time database systems 
with hard and soft deadlines. We believe that the 
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key concepts are the use of lazy replication and main [14] 
memory residency to avoid unpredictable delays, con- 
tingency plans to guarantee schedulability, and event 
criticality and dual processor architecture to make [15] 
event monitoring and scheduling predictable. 
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