
DeeDS Towards a Distributed and Active Real-Time Database System*

S.F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson and B. Eftring
Department of Computer Science, University of SkSvde, Sweden

email: {sten, jorgen, joakim, jonas, spiff, bengt}@ida.his.se

1 Introduction

There is a great need for building research proto-
types of real-time database systems, because existing
techniques are often ad hoc or concealed in internal
solutions, and few, if any, commercial offerings ex-
ist. As real-time applications inherently use reactive
mechanisms, and a wealth of results now exists on
active database management systems [5], we decided
to build DeeDS, a [D]istributed Activ[e], Real-Tim[el
[D]atabase [S]ystem prototype. This research effort
is challenging due to the unique combination of re-
active mechanisms, distributed technology, dynamic
scheduling, and integrated monitoring, under a mix-
ture of soft and hard real-time constraints. To make
all this feasible with a limited amount of man-power,
we have taken a deliberate approach of building with
existing components where possible, and including
only those features absolutely necessary to obtain the
benefit of each of the architectural dimensions. At
the same time, features and implementation methods
have been chosen to best promote predictability and
efficiency in such a complex system, while preserving
flexibility for further research in this area [2, 1].

2 DeeDS

2.1 Motivation

When studying complex real-time systems we found
that they often require distribution and sophisticated
sharing of extensive amounts of data, with full or par-
tial replication of the database. For example, in in-
tegrated vehicle systems control we have identified a
need for autonomous nodes controlling individual sub-
systems and handling large amounts of data locally
under hard timing constraints (e.g., fuel injection, ig-
nition control), while at the same time requiring pa-
rameters from other subsystems on a much less crit-
ical time scale (e.g., from the transmission, environ-
ment sensors). Similar features have been identified in
automated manufacturing and time-constrained dis-

*This work was supported by NUTEK (The Swedish National
Board for Industrial and Technical Development) and the Ministry
of Education and Science in Sweden.

tributed naming services.
When building distributed databases, sources of

unpredictability are introduced due to network com-
munication and distributed commit processing, as
well as disk accesses. Hence, in order to guarantee
the timeliness and predictability of the system, the
sources of unpredictability must either be eliminated,
or the software must become time-cognizant. By plac-
ing the database in main-memory, unpredictable disk
access delays are avoided [14]. Further, in order to
guarantee local data availability and eliminate net-
work communication, the database will be (virtually)
fully replicated. Finally, in the studied application
scenarios, temporary inconsistencies of the distributed
database can be allowed. Hence, updates are made lo-
cally and propagated to all nodes in a way that guar-
antees eventual consistency [6].

Transactions are either periodic or sporadic, where
the latter are executed in response to an event or sit-
uation. In DeeDS, this reactive behavior is modeled
with event-condition-action rules (ECA) [11], which
allow for efficient situation monitoring, and database
constraint enforcing [27].

2.2 Technical Overview

The DeeDS architecture [1] separates application-
related functions from critical system services. The
former consist of a rule manager module, an object
store (OBST [10]), and a storage manager (tdbm) [7].
The latter include scheduling [4], and event monitor-
ing. The underlying distributed real-time operating
system kernel is OSE Delta [25].

The rule manager receives event instances from the
event monitor and executes rules that are triggered
by the event. If the condition is satisfied the action
is presented to the scheduler for execution. Rules are
extended with the ability to specify timing constraints
on triggered actions.

When an event has been detected, efficient selec-
tion of potentially triggered rules is important. In
DeeDS, rules are associated with specific events in or-
der to reduce unnecessary rule triggering. Thus we
only notify those rules which are specifically interested
in the event occurrence [3].

38 S I G M O D Record , Vol. 25, No. 1, March 1996

To make rule execution predictable, coupling
modes are restricted [9], and cascade triggering is lim-
ited, in order to attain an upper bound on the max-
imum exccution time of t~'ansactions. Moreover, con-
dition evaluation is limited to logical expressions on
events and object parameters, and method invoca-
tions.

Transactions are scheduled dynamically, and their
timing constraints are expressed as parameterized
value functions. Parameterization reduces storage re-
quirements and computational cost, compared to arbi-
trary value functions. The workload consists of trans-
actions with varying deadline criticality, i.e., critical
and non-critical. The scheduling algorithm must, dur-
ing transient overloads, favor critical transactions over
non-critical transactions in order to maintain timeli-
ness. Early work on real-time scheduling of multi-level
transactions has been carried out in [18, 21]. In [26],
priority assignment policies for active real-time data-
bases have been studied and evaluated.

Each critical transaction will have a contingency
plan with reduced computational requirements, which
is invoked when the original transaction cannot meet
its deadline. This could be in response to a transient
overload detected by the scheduler. In [17], we defined
a scheduling model for a deadline-driven scheduler for
OSE Delta.

The critical system services execute on a dedicated
processor to simplify overhead cost models, manage
event criticality [4], avoid probe-effect [28], and in-
crease concurrency in the system. Moreover, the
scheduler continuously monitors the remaining exe-
cution time of each transaction using milestones [19].

We thus n,ake use of hybrid monitoring tech-
niques, based on both software and hardware moni-
toring, for predictable and efficient event monitoring
[16]. The interaction between the scheduler and the
event monitor is performed during fixed intervals, and
can either be synchronous (time-triggered), or asyn-
chronous (event-triggered). Preliminary results show
that the synchronous interaction style results in higher
throughput but longer unavoidable minimum delay
than the asynchronous interaction style if an incre-
mental scheduler is used [24].

The event monitor detects primitive and compos-
ite events (using event graphs [12]) and disseminates
the corresponding event instances to subscribing re-
cipients [23], e.g., the rule manager. Predictability
is imposed by limiting event constructors [11, 9] and
contexts [12]. Incomplete event instances are flushed
when they are invalid, e.g., when the transaction, in
which their constituents were generated, aborts or
commits [9].

3 Related Work

Few research projects on active time-constrained data-
bases have been presented [13]. One of them is HiPAC
[11], in which the idea of using production rules as the
paradigm for rule specification is proposed, and differ-
ent coupling modes for condition evaluation and trig-
gered actions are identified. No implementation of the
complete system is however made, albeit a strawman
architecture has been presented.

In REACH [9], the impact on timeliness of using
different coupling modes is investigated, as well as the
use of contingency actions. The event monitoring in
REACH is distributed in the system, which is possi-
ble, but currently not exploited, in DeeDS. REACH
uses milestones [8] to detect whether a transaction will
meet its deadline. In DeeDS, the use of milestones is
extended to detect that a transaction will finish ear-
lier than calculated, and thereby leaves slack time to
be used by other transactions. REACH is disk-based,
whereas DeeDS is main-memory resident. It should be
noted that neither REACH nor HiPAC is distributed.

ARTS-RTDB [22] is a relational, distributed real-
time database system. While database nodes in
DeeDS are fully replicated and communicate asyn-
chronously, ARTS-RTDB consists of one or more
database servers which communicate with clients us-
ing synchronous message passing. Moreover, ARTS-
RTDB does not include reactive mechanisms.

The idea of using dedicated processors for applica-
tion processes and scheduling processes, however not
necessarily in a database system, was first adopted
in the Spring-project [29], in which they focused on
giving on-line guarantees for meeting task deadlines.
Distributed hybrid monitoring has been investigated
in the INCAS project [16], but DeeDS differs by sup-
porting composite events and, currently, only allows
local event detection.

4 Conclusions

The DeeDS prototype is currently being implemented
for the OSE Delta kernel in a UNIX development en-
vironment. We have ported tdbm [20] and extended
it for the preemptive environment, and we are in the
process of porting OBST and integrating the two in
cooperation with OBST developers at FZI. Trial im-
plementations have been made of lazy replication algo-
rithms [15] and simulation results have been obtained
for several scheduling techniques.

The DeeDS prototype represents a unique integra-
tion of several advanced concepts such as active func-
tionality, distribution, and real-time database systems
with hard and soft deadlines. We believe that the

S I G M O D Record, Vol. 25, No. 1, M a r c h 1996 39

key concepts are the use of lazy replication and main [14]
memory residency to avoid unpredictable delays, con-
tingency plans to guarantee schedulability, and event
criticality and dual processor architecture to make [15]
event monitoring and scheduling predictable.

References

[1] S. Andler, M. Berndtsson, B. Eftring J. Eriksson,
J. Hansson, and J. Mellin. DeeDS - distributed active
real-time database system. Tech. Rep. HS-IDA-TR-
95-008, Dept. of Comp. Sci., U. of Sk6vde, 1995.

[2] S. Andler, J. Hansson, J. Eriksson, and J. Mellin.
The distributed reconfigurable real-time database
systems project. Tech. Rep. HS-IDA-TR-94-006,
Dept. of Comp. Sci., U. of SkSvde, Sep 1994.

[3] M. Berndtsson. Reactive Object-Oriented Databases
and CIM. In Proc. 5th Int'l Conf. on Database and
Expert System Applications, Athens, Greece, pp 769-
778, Sep 1994.

[4] M. Berndtsson and J. Hansson. Issues in active real-
time databases. [5], pp 142-157.

[5] M. Berndtsson and J. Hansson, eds. Proc. 1st Int'l
Workshop on Active and Real-Time Database Sys-
tems (ARTDB-95), SkSvde, Sweden, Workshops in
Computing. Springer Verlag (London), Jun 1995.

[6] A.D. BirreU et al. Grapevine: An exercise in dis-
tributed computing. Comm. of the ACM, 25(4):260-
274, Apr 1982.

[7] B. Brachman and G. Neufeld. TDBM: A DBM li-
brary with atomic transactions. Tech. rep., Dept. of
Comp. Sci., U. of British Columbia, 1992.

[8] H. Branding et al. Rules in an open system: The
REACH rule system. In N.W. Paton and M.H.
Williams, eds, Rules in Database Systems, Edin-
burgh, pp 111-126. Springer-Verlag, 1993.

[9] A. P. Buchmann et al. Building an integrated active
OODBMS: Requirements, architecture, and design
decisions. Data Engineering, 1995.

[10] E. Casais et al. OBST--an overview. Tech. Rep.
FZI.039.1, FZI, Karlsruhe, Germany, 1992.

[11] S. Chakravarthy et al. HiPAC: A research project in
active time-constained database management. Final
technical report. Tech. Rep. XAIT-89-02, Xerox Adv.
Info. rech., Aug 1989.

[12] S. Chakravarthy and D. Mishra. Snoop: An event
specification language for active databases. Knowl-
edge and Data Engr., 13(3), Oct 1994.

[13] J. Eriksson. Real-time and active databases: A sur-
vey. Dept. of Comp. Sci. U. of SkSvde. In prepara-
tion.

H. Garcia-Molina and K. Salem. Main memory
database systems: An overview. IEEE Trans. on
Knowledge and Data En9r., 4:6:509-516, Feb 1992.

P.M. Gustavsson. How to get predictable updates
using lazy replication in a distributed real-time
database system. Master's thesis, Dept. of Comp.
Sci., U. of SkSvde, Sep 1995.

[16] D. Haban and D. Wybranietz. A hybrid monitor
for behavior and performance analysis of distributed
systems. IEEE Trans. on So~tw. Engr., 16(2):197-
211, Feb 1990.

[17] J. Hansson. Dynamic real-time scheduling in OSE
Delta. Tech. Rep. HS-IDA-TR-94-007, Dept. Comp.
Sci., U. of SkSvde, Aug 1994.

[18] J. Hansson. Dynamic real-time transaction schedul-
ing with multiple combined performance metrics.
Tech. Rep. HS-IDA-TR-94-005, Dept. of Comp. Sci.,
U. of Sk6vde, Jun 1994.

[19] F. Jahanian et al. Runtime monitoring of timing
constraints in distributed real-time systems. Real-
Time Systems, 7(3), Nov 1994.

[20] M. Johansson. A storage manager for an experimen-
tal distributed real-time database platform. Master's
thesis, Dept. of Comp. Sci., U. of SkSvde, Sep 1994.

[21] Y. Kim and S.H. Son. Predictability and Consistency
in Real-Time Database Systems, ch. 21, pp 509-531.
Prentice Hall, 1995.

[22] Y-K Kim et al. A database server for distributed
real-time systems: Issues and experiences. Tech. rep.,
Dept. of Comp. Sci., U. of Virginia, 1994.

[23] J. Mellin. Survey of event monitoring in distributed
real-time systems. Dept. of Computer Science. Uni-
versity of SkSvde. In preparation.

[24] J. Mellin, J. Hansson, and S.F. Andler. Deriving
design constraints from a system services model for
a real-time DBMS. Tech. Rep. HS-IDA-TR-95-010,
Dept. of Comp. Sci., Dec 1995. Subm. for publ.

[25] OSE Delta soft kernel R1.0 getting started & user's
guide. ENEA DATA, Sweden, 1995.

[26] B. Purimetla et al. Priority assignment in real-time
active databases. Tech. rep., Dept. of Comp. Sci., U.
of Massachussets, 1994.

[27] K. Ramamritham. Real-time databases. In Conf.
Proc. Distributed and Parallel Databases, pp 199-
226, Boston, 1993. Kluwer Academic Publishers.

[28] W. Schiitz. Fundamental issues in testing distributed
real-time systems. Real-Time Systems, 7(2):129-157,
Sep 1994.

[29] J.A. Stankovic and K. Ramamritham. The Spring
kernel: A new paradigm for real-time systems. IEEE
Softw., 8(3), May 1991.

40 S I G M O D Record , Vol. 25, No. 1, March 1996

