
Enhancing External Consis tency in Rea l -T ime Transactions "

Kwei-Jay Lin and Ching-Shan Peng

Department of Electrical and Computer Engineering
University of California, Irvine, CA 92717

{klin, cpeng}@ece.uci.edu

1 Introduction

Real-time computing brings two new requirements to
database management. The first is the deadline constraint
which requires better scheduling algorithms to meet transac-
tion deadfines. The second requirement is the temporal va-
lidity, or external consistency[Lin89], requirement of data: a
real-time database must prevent data from being corrupted
not only by the executions of concurrent transactions but
also by the delay from sharing computing resources and
real-time scheduler decisions. In this paper, we study the
external consistency requirement in real-time databases. We
propose a semantic-based concurrency control scheme that
prefers the external consistency to the traditional serializ-
ability.

Two new concepts are introduced in our work. An up-
date of a physical object value is considered to be compatible
to those read operations that need to access the most recent
data. Secondly, if a transaction depends strongly on the va-
lidity of the value of an object, a new update may cause the
transaction to be aborted since continuing the transaction
may be harmful to the appfication. A real-Life example is
the stock market database. A trading program may be ex-
ecuted for a long time and its read operations should not
block any new updates. Moreover, if there is a big sudden
change in a particular stock price, it may be better to abort
an on-going transaction rather than letting it make some
invalid decisions.

2 RTDB model

Following the terminology used in [PL95], we define a real-
time object-oriented database to have a database manager,
a set of data objects, and a set of transactions (Figure 1).
A database may be connected to external devices which are
usually some kind of sensors or data collection channels.
Without loss of generality, data objects are partitioned into

*Thi s work w a s s u p p o r t e d in p a r t by c o n t r a c t s f rom the Office
of Nava l R e s e a r c h N 0 0 0 1 4 - 9 4 - 1 - 0 0 3 4 a n d N00014-95-1 -0262 , H u g h e s
A i r c r a f t / U C M I C R O 94-082 a n d 95-097 , a n d the US Navy N S W C D D
N 6 0 9 2 1 - 9 4 - M - 1 2 6 1 a n d N 6 0 9 2 1 - 9 4 - M - 2 7 1 4 .

7External Transact ion : ~
i O e v c e ~ - - - - ~ - _ Manager i

.~ l l _ . 1
I

Ex te rna lS . ~ / - - - - - - I ~
Device ~ ~ - ~ - - I

User
Transactions

i

Figure 1: Real-Time OODB Model

two categories: external data objects (circles in the figure)
that correspond to some physical objects or attributes of
the real world, and derived data objects (boxes in the fig-
ure) that are created and defined by the database as part of
transaction processing. External input devices will initiate
update transactions [AGMK95] to update the external object
values in the database. On the other hand, user transactions
may read from external data, read from derived data, and/or
write derived data. That is, a user transaction may include
any combination of the above operations.

The external consistency problem arises primarily be-
tween the device input operations and operations accessing
that external data. The traditional concurrency control pro-
tocols try to resolve data contention based on the principle
of serializabihty; the external consistency has not been taken
into consideration. Therefore, the execution schedule pro-
duced may not guarantee the external consistency of data
used by transactions a~,d thus inappropriate for real-time
apphcations.

An OODB consists of many objects. Each object has
some internal state which is protected by the object type
abstraction. Formally, using a notation similar to [DW93],
an object type is defined by < N, A, M, CM >. The compo-
nent N is the name of the object type and A is the attr ibute
of the object. Each attribute has a value and a t imestamp
which refers to when the value becomes valid. M is a set
of methods defined. The only way the object state can be
accessed from transactions is to invoke one of the methods
M defined by the object type. Each method has some input
parameters, output parameters, and scheduling (or timing)
parameters. At any time, more than one transactions may
request and execute methods in the same object. In our
model, several concurrent executions of the same or differ-
ent methods are allowed as long as the Compatibility Matrix
(CM) for the object has been so defined.

Suppose an object ha.~ n methods defined. The CM has

26 SIGMOD Record, Vol. 25, No. 1, March 1996

Table 1: An Example Compatibility Matrix (CM)
Get(EX) Get(UP) Get(AB) Set()

GetiEX) ~/ ~/ ~/ X
Get(UP) ~/ ~/ ~/ ~/
Get(AS) ~/ ~/ N/N/__ X
Set() x ~/ x

~/* : The holding Get lock aborts.

n × n entries (e.g. Table 1). C M (a , b) will be checked if an
instance of method a is being executed while method b is
requested by a transaction. The possible values in C M (a , b)
are x/(allowed) and X (reject). Ki t is an ~/, b can be sched-
uled for execution as long as some system time is available.
Otherwise, b will be placed in the block queue. Also associ-
ated with an entry could be some special operation, like to
restart a or b, or to promote the priority of a as defined in
the Priority Inheritance Protocol [LSL90].

2.1 External consistency

Much research has been done on reasoning the correctness of
various concurrency control protocols for databases. Tradi-
tionally, this is done by showing the "equivalence" of one ex-
ecution history to another. For example, it has been shown
that a "serializable" schedule is equivalent to a serial exe-
cution schedule of transactions on a database. Using the
serializability criterion, many have worked on the real-time
concurrency control issue using various protocols. For our
discussion in this paper, we will not consider serializability
as the only correctness criterion as we are more interested
in the temporal validity of data used by transactions.

Define the history H of an object as a sequence of oper-
ations executed by the object on its attributes in respond-
ing to method invocations by transactions. Each operation
is a read , update, or write on an object attribute. Each
operation also has a timestamp on when the operation is
performed, e.g. r(z, 3) is a read operation on attribute z
at time 3. If it is necessary to identify the transaction by
which the operation is requested, a subscript can be denoted,
e.g. r2(x, 3) is a read operation requested by transaction T2.
The following example history performs some operations on"
attributes x, y, z:

H = w(x , 1), w(y, 2), up(z, 3), r(y, 4), r(x, 6), r(z, 7)

Let us now define the concept of external consistency (EC).
History H1 is more externally consistent than H2, or

H1 ~- H2, if

1. H1 - u , u p (- , i) = H2 - U,up(- , i);

2. for all attributes read in any operation of H2, Ha has
a closer or the same update operation before that op-
eration. Moreover, Hi has a closer update before at
least one of the read operations.

For example, Ha ~- H2 in the following two histories:

Ha = up(x, 1), w(y, 2), r(y, 3), up(x, 4), r(x, 5)

H~ = up(x, 1), w(y, 2), r(y, 3), r(x, 5)

From the definition, for each history H, we can define a
>--lattice. HT is defined by inserting an update operation
immediately before each read in H (i.e. the update has the
same timestamp as the read). H~. is defined by removing all

update operations from H except the very first update for
each attribute. In the >--lattice, we can define the E C of a
history H: H has a E C = t if all read operations in H on
any attribute are within t time units from the last update
on that attribute. Therefore H-r has E C = O.

Using the above definition of ~--lattice, we can justify
the correctness of a history H using any concurrency con-
trol protocol by showing its E C < B where B is the external
consistency bound. In this way, it is quite easy to see that
many serializable histories are not acceptable from the ex-
ternal consistency's point of view.

2.2 Semantic-based concurrency control

A semantic-based CM example is shown in Table l. The
top row in the table represents the methods currently being
executed and the leftmost column represents the method
being requested. In order for the transaction manager to
make an appropriate schedule, the compatibility matrix of
the object is examined to check whether a semantic lock
could be granted.

There are three different types of Get method depend-
ing on the different semantics. One can hold an exclusive
read lock (EX), a read lock shared with update (UP), or
a lock which must be aborted (AB) if a new Set method
is requested. The advantage of providing these alternatives
is to allow the cooperative transaction to satisfy the exter-
nal consistency requirement. In other words, it's up to the
transaction to decide which method is to be requested. The
concurrency control protocol can enforce or relax the serial-
izability property based on the transaction semantics. For
example, if the transaction needs to maintain a strict seri-
alizability, it can request for an Get(EX) lock. If a timely
result is more desirable, a Get(UP) lock can improve the
concurrency such that it is not blocked by concurrent up-
dates. A Get(AB) lock will release the lock to the update
transaction and force the transaction to restart to achieve a
better external consistency.

The flexibility of using the semantic-based CM can be
seen from the following example. Suppose a transaction T1
is to calculate a result using some external data x and y:

Ta(z, y) = f (z , y) + g(z, y)

Another transaction T2 is to update the value of x

T~(~) = h(x)

Assume that the functions f and g are invoked in sequence,
and transaction TI is executing f while T2 requests the up-
date. If we use the traditional concurrency control protocols
like 2PL, the lock held by x cannot be released so that there
is no way to execute T2 promptly. Consequently, Ta cannot
use the fresh data to process. Even though the serializability
is maintained, the result might be out-of-date and useless.
Instead, we can use Get(UP) to "anticipate" the coming up-
date to x. When this situation happens, the update request
on x can be granted so that 7"2 can start to update. Trans-
action Ta thus can use the more up-to-date information to
process g.

We have studied the performance of the new concurrency
control protocol by simulation. Our results [PL95] show
that the CM protocol is quite effective in enhancing the
external consistency of real-time transactions.

SIGMOD Record, Vol. 25, No. 1, March 1996 27

3 Future work

One possible future work is the integration of the concur-
rency control protocol with the real-time scheduling algo-
rithm for transactions. For example, when the system uses
the priority driven scheduling, PCP and SRP have been pro-
posed to bound the potential blocking due to priority inver-
sions. In our study, we have evaluated the CM performance
by simulation. A more rigorous study on the scheduling
condition will be needed so that the protocol can be used to
implement hard real-time systems.

Another issue is that update transactions may need to
have different priorities to arbi t ra te their data correctness.
For example, some input device may provide more precise
da ta than others, or some input channel or source may be
more reliable than others. In our current model, CM has two
parameters: method type and lock type. It is possible for us
to add the third parameter to arbi t ra te the importance (or
criticalness) to CM. In fact, there is no theoretical reason
why any number of parameters cannot be used in CM. The
tradeoff is between the power and the efficiency. More work
is needed to select the best practical CM model.

References

[AGMK95] B. Adelberg, H. Garcia-Monila, and B. Kao.
Applying update streams in a soft real-time database
system. In ACM SIGMOD'95, 1995.

[DW93] L. B. C. DiPippo and V. F. Wolfe. Object-based
semantic real-time concurrency control. In IEEE Real-
Time Systems Symposium, Dec. 1993.

[Lin89] Kwei-Jay Lin. Consistency issues in real-time
database systems. In Proceedin9 s of the ~ n d Annual
Hawaii International Conference on System Sciences,
pages 654-661, January 1989.

[PL95] C.S. Peng and K.J. Lin. A semantic-based concur-
rency control protocol for real-time transactions. Sub-
mitted for publication, 1995.

[LSLg0] R. Rajkumar, L. Sha and J. Lehoczky. Priority in-
heritance protocols: An approach to real-time synchro-
nization. IEEE Transactions on Computers, 39(9):1175-
1185, September 1990.

28 SIGMOD Record, Vol. 25, No. 1, March 1996

