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1 Introduction 

Real-time computing brings two new requirements to 
database management. The first is the deadline constraint 
which requires better scheduling algorithms to meet transac- 
tion deadfines. The second requirement is the temporal va- 
lidity, or external consistency[Lin89], requirement of data: a 
real-time database must prevent data from being corrupted 
not only by the executions of concurrent transactions but 
also by the delay from sharing computing resources and 
real-time scheduler decisions. In this paper, we study the 
external consistency requirement in real-time databases. We 
propose a semantic-based concurrency control scheme that 
prefers the external consistency to the traditional serializ- 
ability. 

Two new concepts are introduced in our work. An up- 
date of a physical object value is considered to be compatible 
to those read operations that need to access the most recent 
data. Secondly, if a transaction depends strongly on the va- 
lidity of the value of an object, a new update may cause the 
transaction to be aborted since continuing the transaction 
may be harmful to the appfication. A real-Life example is 
the stock market database. A trading program may be ex- 
ecuted for a long time and its read operations should not 
block any new updates. Moreover, if there is a big sudden 
change in a particular stock price, it may be better to abort 
an on-going transaction rather than letting it make some 
invalid decisions. 

2 RTDB model 

Following the terminology used in [PL95], we define a real- 
time object-oriented database to have a database manager, 
a set of data objects, and a set of transactions (Figure 1). 
A database may be connected to external devices which are 
usually some kind of sensors or data  collection channels. 
Without loss of generality, data objects are partitioned into 
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Figure 1: Real-Time OODB Model 

two categories: external data objects (circles in the figure) 
that correspond to some physical objects or attributes of 
the real world, and derived data objects (boxes in the fig- 
ure) that are created and defined by the database as part of 
transaction processing. External input devices will initiate 
update transactions [AGMK95] to update the external object 
values in the database. On the other hand, user transactions 
may read from external data, read from derived data, and/or  
write derived data. That is, a user transaction may include 
any combination of the above operations. 

The external consistency problem arises primarily be- 
tween the device input operations and operations accessing 
that external data. The traditional concurrency control pro- 
tocols try to resolve data contention based on the principle 
of serializabihty; the external consistency has not been taken 
into consideration. Therefore, the execution schedule pro- 
duced may not guarantee the external consistency of data 
used by transactions a~,d thus inappropriate for real-time 
apphcations. 

An OODB consists of many objects. Each object has 
some internal state which is protected by the object type 
abstraction. Formally, using a notation similar to [DW93], 
an object type is defined by < N, A, M, CM >. The compo- 
nent N is the name of the object type and A is the attr ibute 
of the object. Each attribute has a value and a t imestamp 
which refers to when the value becomes valid. M is a set 
of methods defined. The only way the object state can be 
accessed from transactions is to invoke one of the methods 
M defined by the object type. Each method has some input 
parameters, output parameters, and scheduling (or timing) 
parameters. At any time, more than one transactions may 
request and execute methods in the same object. In our 
model, several concurrent executions of the same or differ- 
ent methods are allowed as long as the Compatibility Matrix 
(CM) for the object has been so defined. 

Suppose an object ha.~ n methods defined. The CM has 
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Table 1: An Example Compatibility Matrix (CM) 
Get(EX) Get(UP) Get(AB) Set() 

GetiEX) ~/ ~/ ~/ X 
Get(UP) ~/ ~/ ~/ ~/ 
Get(AS) ~/ ~/ N/N/__ X 
Set() x ~/ x 

~/* : The holding Get lock aborts. 

n × n entries (e.g. Table 1). C M ( a ,  b) will be checked if an 
instance of method a is being executed while method b is 
requested by a transaction. The possible values in C M ( a ,  b) 
are x/(allowed) and X (reject). Ki t  is an ~/, b can be sched- 
uled for execution as long as some system time is available. 
Otherwise, b will be placed in the block queue. Also associ- 
ated with an entry could be some special operation, like to 
restart a or b, or to promote the priority of a as defined in 
the Priority Inheritance Protocol [LSL90]. 

2.1 External consistency 

Much research has been done on reasoning the correctness of 
various concurrency control protocols for databases. Tradi- 
tionally, this is done by showing the "equivalence" of one ex- 
ecution history to another. For example, it has been shown 
that a "serializable" schedule is equivalent to a serial exe- 
cution schedule of transactions on a database. Using the 
serializability criterion, many have worked on the real-time 
concurrency control issue using various protocols. For our 
discussion in this paper, we will not consider serializability 
as the only correctness criterion as we are more interested 
in the temporal validity of data used by transactions. 

Define the history H of an object as a sequence of oper- 
ations executed by the object on its attributes in respond- 
ing to method invocations by transactions. Each operation 
is a read , update, or write on an object attribute. Each 
operation also has a timestamp on when the operation is 
performed, e.g. r(z, 3) is a read operation on attribute z 
at time 3. If it is necessary to identify the transaction by 
which the operation is requested, a subscript can be denoted, 
e.g. r2(x, 3) is a read operation requested by transaction T2. 
The following example history performs some operations on" 
attributes x, y, z: 

H = w(x ,  1), w(y,  2), up(z,  3), r(y, 4), r(x,  6), r(z,  7) 

Let us now define the concept of external consistency (EC). 
History H1 is more externally consistent than H2, or 

H1 ~- H2, if 

1. H1 - u , u p ( - ,  i) = H2 - U,up( - ,  i); 

2. for all attributes read in any operation of H2, Ha has 
a closer or the same update operation before that op- 
eration. Moreover, Hi has a closer update before at 
least one of the read operations. 

For example, Ha ~- H2 in the following two histories: 

Ha = up(x, 1), w(y,  2), r(y, 3), up(x,  4), r(x, 5) 

H~ = up(x, 1), w(y,  2), r(y, 3), r(x, 5) 

From the definition, for each history H, we can define a 
>--lattice. HT is defined by inserting an update operation 
immediately before each read in H (i.e. the update has the 
same timestamp as the read). H~. is defined by removing all 

update operations from H except the very first update for 
each attribute. In the >--lattice, we can define the E C  of a 
history H: H has a E C  = t if all read operations in H on 
any attribute are within t time units from the last update 
on that attribute. Therefore H-r has E C  = O. 

Using the above definition of ~--lattice, we can justify 
the correctness of a history H using any concurrency con- 
trol protocol by showing its E C  < B where B is the external 
consistency bound. In this way, it is quite easy to see that 
many serializable histories are not acceptable from the ex- 
ternal consistency's point of view. 

2.2 Semantic-based concurrency control 

A semantic-based CM example is shown in Table l. The 
top row in the table represents the methods currently being 
executed and the leftmost column represents the method 
being requested. In order for the transaction manager to 
make an appropriate schedule, the compatibility matrix of 
the object is examined to check whether a semantic lock 
could be granted. 

There are three different types of Get method depend- 
ing on the different semantics. One can hold an exclusive 
read lock (EX), a read lock shared with update (UP), or 
a lock which must be aborted (AB) if a new Set method 
is requested. The advantage of providing these alternatives 
is to allow the cooperative transaction to satisfy the exter- 
nal consistency requirement. In other words, it's up to the 
transaction to decide which method is to be requested. The 
concurrency control protocol can enforce or relax the serial- 
izability property based on the transaction semantics. For 
example, if the transaction needs to maintain a strict seri- 
alizability, it can request for an Get(EX) lock. If a timely 
result is more desirable, a Get(UP) lock can improve the 
concurrency such that it is not blocked by concurrent up- 
dates. A Get(AB) lock will release the lock to the update 
transaction and force the transaction to restart to achieve a 
better external consistency. 

The flexibility of using the semantic-based CM can be 
seen from the following example. Suppose a transaction T1 
is to calculate a result using some external data x and y: 

Ta(z, y) = f ( z , y )  + g(z, y) 

Another transaction T2 is to update the value of x 

T~(~) = h(x)  

Assume that the functions f and g are invoked in sequence, 
and transaction TI is executing f while T2 requests the up- 
date. If we use the traditional concurrency control protocols 
like 2PL, the lock held by x cannot be released so that there 
is no way to execute T2 promptly. Consequently, Ta cannot 
use the fresh data to process. Even though the serializability 
is maintained, the result might be out-of-date and useless. 
Instead, we can use Get(UP)  to "anticipate" the coming up- 
date to x. When this situation happens, the update request 
on x can be granted so that 7"2 can start to update. Trans- 
action Ta thus can use the more up-to-date information to 
process g. 

We have studied the performance of the new concurrency 
control protocol by simulation. Our results [PL95] show 
that the CM protocol is quite effective in enhancing the 
external consistency of real-time transactions. 
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3 Future work 

One possible future work is the integration of the concur- 
rency control protocol with the real-time scheduling algo- 
rithm for transactions. For example, when the system uses 
the priority driven scheduling, PCP and SRP have been pro- 
posed to bound the potential blocking due to priority inver- 
sions. In our study, we have evaluated the CM performance 
by simulation. A more rigorous study on the scheduling 
condition will be needed so that  the protocol can be used to 
implement hard real-time systems. 

Another issue is that  update  transactions may need to 
have different priorities to arbi t ra te  their data  correctness. 
For example, some input device may provide more precise 
da ta  than others, or some input  channel or source may be 
more reliable than others. In our current model, CM has two 
parameters: method type and lock type. It is possible for us 
to add the third parameter  to arbi t ra te  the importance (or 
criticalness) to CM. In fact, there is no theoretical reason 
why any number of parameters  cannot be used in CM. The 
tradeoff is between the power and the efficiency. More work 
is needed to select the best practical CM model. 
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