
METU Interoperable Database System

A. Dogac, C. Dengi, E. Kilic, G. Ozhan, F. Ozcan, S. Nural, C. Evrendilek,

U. Halici, B. Arpinar, P. Koksal, N. Kesim�, S. Mancuhan

Software Research and Development Center

Scienti�c and Technical Research Council of Turkiye

Middle East Technical University (METU)

06531 Ankara Turkiye

email: asuman@srdc.metu.edu.tr

Abstract

METU INteroperable Database System (MIND) is a mul-

tidatabase system that aims at achieving interoperability

among heterogeneous, federated DBMSs. MIND architecture
is based on OMG distributed object management model. It is

implemented on top of a CORBA compliant ORB, namely,

ObjectBroker. MIND provides users a single ODMG-93
compliant common data model, and a single global query lan-

guage based on SQL. This makes it possible to incorporate

both relational and object oriented databases into the system.
Currently Oracle7, Sybase and METU OODBMS (MOOD)

have been incorporated into MIND. The main components of

MIND are a global query processor, a global transactionman-
ager, a schema integrator, interfaces to supported database

systems and a user graphical interface.

In MIND all local databases are encapsulated in a generic
database object with a well de�ned single interface. This

approach hides the di�erences between local databases from

the rest of the system. The integration of export schemas is

currently performed manually by using an object de�nition

language (ODL) which is based on OMG's interface de�ni-

tion language. The DBA builds the integrated schema as a

view over export schemas. The functionalities of ODL allow

selection and restructuring of schema elements from existing

local schemas.

MIND global query optimizer aims at maximizing the par-

allel execution of the intersite joins of the global subqueries.

Through MIND global transaction manager, the serializable
execution of the global transactions are provided.

1 Introduction

In today's enterprises information is typically distributed

among multiple heterogeneous database management sys-

tems. The heterogeneity exists at three basic levels. The
�rst is the platform level. Database systems reside on di�er-

ent hardware, use di�erent operating systems and commu-
nicate with other systems using di�erent communications

protocols. The second level of heterogeneity is the database

management system level. Data is managed by a variety
of database management systems based on di�erent data

models and languages (e.g. �le systems, relational database

systems, object-oriented database systems etc.). Finally the

�Bilkent University, 06533, Ankara Turkiye

third level of heterogeneity is that of semantics. Since dif-
ferent databases have been designed independently semantic

con
icts are likely to be present. This includes schema con-


icts and data con
icts.

Commercially available technology o�ers inadequate

support both for integrated access to multiple databases and

for integrating multiple applications into a comprehensive

framework. Some products o�er dedicated gateways to other

DBMSs with limited capabilities. Thus, they require a

complete change of the organizational structure of existing
databases to cope with heterogeneity.

Another way of achieving interoperability among het-

erogeneous databases is through a multidatabase system. A

multidatabase system (MDBS) is a database system that

drives other database systems and allows the users to simul-

taneously access independent databases using a single data
de�nition and manipulation language. The primary objec-

tive of a MDBS is to signi�cantly enhance productivity in

developing and executing applications that require simul-
taneous access against multiple independent databases. A

multidatabase system provides a single global schema that

represents an integration of the relevant portions of the un-
derlying local databases. The users may formulate queries

and updates against the global schema.

We have implemented a multidatabase system, namely,

METU INteroperable Database system (MIND) on a CORBA

compliant ORB implementation, namely, DEC's ObjectBro-

ker. DEC's ObjectBroker runs on several platforms such
as Windows, SunOS, AIX, Open VMS. Our implementation

platform is SunOS. The source code of version 0.1 is available

through anonymous ftp from ftp://ftp.srdc.metu.edu.tr/pub
/mind/source/mind-V.0.1.tar.gz. In the near future we will

provide a WWW gateway to MIND. Thus MIND will be ac-

cessible using a HTML browser such as Netscape or Mosaic.

CORBA(The Common Object Request Broker Archi-

tecture) which is developed by the Object Management

Group (OMG) [OMG 91] is a speci�cation and an archi-
tecture that provides implementation independent access to

objects on heterogeneous systems. In other words CORBA

handles the heterogeneity at the platform level. In CORBA,

clients ask for work to be done and servers do that work,

all in terms of tasks called operations that are performed

on entities called objects. Applications interact with each

other without knowing where the other applications are on



ORB

Oracle

Server

SyBase
Server

ServerServer Server

Other

MIND

Application

3

MIND
Application

MIND
Application

1

2

DBMS

Oracle Impl.Sybase Impl.

MOODOracle

Impl. Impl.
Other DBMSMOOD

Server-2

Oracle
Impl.

Server-1

Figure 1: A General Overview of the System

the network or how they accomplish their tasks. By using

CORBA's model, it is possible to encapsulate applications

as sets of distributed objects and their associated operations

so that one can plug and unplug those client and server capa-

bilities as they need to be added or replaced in a distributed

system. These properties provide the means to handle het-
erogeneity at the database level. Thus CORBA provides for

an infrastructure for implementing a multidatabase system.

Semantic interoperability remains to be solved at the appli-
cation programming level.

We have de�ned an interface of a generic Database

Object accessible through CORBA and developed multi-
ple implementations of this interface for Oracle7, Sybase

and MOOD (METU Object-Oriented Database System)

[DEOO 94, Dog 94, Dog 95, DAOD 95]. The current imple-
mentation makes it possible to access any of these databases

through CORBA using a global query language based on

SQL. When a client application issues a global SQL query
to access multiple databases, this global query is decom-

posed into global subqueries and these subqueries are sent

to the ORB (CORBA's Object Request Broker) which trans-
fers them to the relevant database servers on the network.

On a server site, the global subquery is executed by using

the corresponding call level interface routines and the result
is returned back to the client again by the ORB. The results

returned to the client from the related servers are processed

by the client if necessary. A general overview of the system

is presented in Figure 1.

The rest of the paper is organized as follows. The
architecture of the MIND system is described in Section

2. Section 3 presents the infrastructure of the system.

The design decisions and experiences in developing generic

Database Object implementations for various DBMSs are

discussed in this Section. Section 4 describes the schema

integration in MIND. The global query manager of the

system is brie
y summarized in Section 5. Section 6 provides

a short description of the global transaction manager.

2 MIND Architecture

MIND architecture is based on OMG distributed object

management model. In other words, MIND allows clients
(users and application programs) to access databases that

reside anywhere in the environment transparently and

without having knowledge of location or format of queries
or operations involved. That is, what clients see are

homogeneous objects acessible through a common interface.

The common interface's data model (i.e., the canonical data
model) is ODMG-93 [Cat 94] and the query language of

the interface is ODMG-93 query language namely, OQL.

Currently only a subset of OQL is operational.
An overall view of MIND Architecture is provided in

Figure 2. The basic components of the system are as follows:

1. A collection of local database agents (LDA). Each LDA:

� maintains export schemas provided by the local

DBMSs represented in ODMG-93 data model,

� translates the queries received in common query

language (OQL) to the local query language and back.

2. A collection of global database agents (GDA). A GDA

contains:

� A global integrated schema,

� a global query processor that is responsible from

parsing, decomposing, and optimizing the queries
[EDNO 95],

� a global transaction manager that ensures serializabil-

ity of multidatabase transactions without violating the

autonomy of local databases.

A client accesses the MIND system through a Global

Database Agent (GDA). For a client a GDA is a server. From

GDA's point of view, LDAs are servers. Symmetrically from

LDA's point of view a GDA is a client.

The infrastructure of the system is build on a CORBA

implementation, namely, DEC's ObjectBroker [KOD 95].

The DBMSs currently registered to the system are Sybase,
Oracle7 and MOOD[Dog 94, Dog 95, DOAD 95].

3 The Infrastructure of MIND

As an initial step in implementing the MIND system, we
encapsulated Oracle7, Sybase, MOOD DBMSs in multi-

ple implementations of a generic Database Object. The

Database Object conveys requests from client to the un-

derlying DBMSs by using the Call Level Interfaces of

these DBMSs. The call level interfaces of these systems

[ORACLE 92, SYBASE 90, Dog 95] support SQL data def-

inition, data manipulation, query, and transaction control

facilities. We have used C binding of call level interface to

access these database servers. Results of the requests re-
turned from the call level interfaces of underlying DBMSs

are conveyed to the client through CORBA.

Our basic implementation decisions in registering di�er-
ent databases to CORBA are as follows:

2



Client Program

Client Part of the 
Client Interface 

CORBA Interface

Client GDA

GDAClient

LDA

LD

LDA
LDA

Cursor Implementation

Type Converters

Export

Schema
RepositoryLD

LD

Global Data
Repository

Repository
Local Data

Client side of
Client Interface Client Interface

Server side of

OQL Parser
Decomposer

Optimizer

Cursor Impl.

Query Processor

Global

Global Transaction Manager

CORBA Interface

GDR

Manager

OQL Parser

OQL to Local SQL
Translator

Server Side of the Client Interface

CORBA Interface

Interface to Local DBMS (e.g. CLI)

Global
Transaction
Agent

Figure 2: An Overview of the MIND Architecture

1) Object granularity: In CORBA, objects can be

de�ned in di�erent granularities. In registering a DBMS to

CORBA an object can be a row in a relation or it can be a

database itself. When �ne granularity objects are registered,

due to insertion and deletion of objects, it may be necessary

to recompile the IDL code. Furthermore IDL code will be

voluminous. Therefore, we have de�ned each database as an

object.

2) Invocation style: CORBA allows both dynamic

and stub-style invocation of the interfaces by the client.
In stub-style interface invocation, the client uses gener-

ated code templates (stubs) that cannot be changed at run

time. In dynamic interface, the client de�nes and builds re-
quests as it runs. We have chosen to use stub-style interface

because in our current implementation all the objects are

known and the interface that the clients use is not likely to
change over time; there is no need for dynamic invocation.

Figure 3 illustrates invoking an operation to a database ob-

ject instance.

3) Mapping client requests to servers: In associating

a client request with a server method, CORBA provides the

following alternatives:

i. One interface to one implementation
ii. One interface to one of many implementations

iii. One interface to multiple implementations

When mapping one interface to one implementation,

there is a direct one-to-one relationship between the opera-

tions in the interface and the methods in the implementa-

tion.

In the second alternative, for any one interface, it is pos-

sible to have several di�erent implementations. Here again,

there is a direct one-to-one relationship between the inter-

face operations and the methods in the implementations.

The third alternative makes it possible to have multi-

ple implementations associated with the same interface, with

each implementation providing only a portion of the inter-

face.

Since every database management system registered to

CORBA provides methods for all of the operations that

the interface de�nition speci�es, the second alternative is
su�cient for our purposes.

4) Object Life Cycle: A client application needs an

object reference to make a request. In CORBA, the initial
object reference can be obtained in one of the following three

ways:

i. The application developer can build the object

reference into the client. This requires the client application
to be compiled together with the server application. During

compilation a built-in object reference is generated in both

codes. Thus the �rst request is statistically bound to this
built-in object reference.

ii. The client can get the object reference from an

external source. This external source could be a �le or a
database containing initial object references in string form.

iii. ObjectBroker allows servers to store initial object

references in the Advertisement Partition of Registery. Then
clients can access the Advertisement Partition to obtain

object references.

The �rst approach makes the system in
exible since it
is impossible to change a statically bound object reference

3



Operation

An object reference to 

a DB Object

Database Client

Client Stub

Object Adapter

Server Skeleton

A Method

Object
Implementation

 DBMS

Interface
DBMS Database

Server

ORB

Figure 3: Invoking an operation to a Database Object

instance through ORB

without recompiling the system.

The second approach is not suitable either, since it is
not feasible to maintain or replicate a single �le or a database

as an external source in a distributed environment.

Therefore, we have chosen the third approach to get

initial object references.We have implemented a server,

namely DB Factory which puts an initial object in the
Advertisement Partition of Registry of ORB. An object

reference selected from the Advertisement Partition is then

used to get the object references of the corresponding DBMS
objects. In other words this object acts as an object factory

for database objects. In this way each client has its own

database object to communicate with the DBMS servers.

5) Activation Policy: A server code contains one of

several implementations for the interface de�ned one for each

of the databases. So every site can have any of the supported
database servers. There is a direct one-to-one relationship

between the interface operations and the methods in the

implementations.

When registering di�erent databases to CORBA, one

has to specify an activation policy for the implementation of

each DBMS. This policy identi�es how each implementation

gets started. An implementation may support one of the

following activation policies :

i. Shared : The server can support more than one
object for the implementation.

ii. Unshared : The server can support only one object
at a time for the implementation.

iii. Server per method : A new server is used for

each method invocation.
iv. Persistent : The server is never started automat-

ically. Once started, it is the same as the shared policy.

For the time being we have chosen the shared activation

policy to our server implementations since it is used

when multiple objects are related and handled by the
implementation. In our system, more than one client may

request an object of a database implementation. Therefore,

the implementations of DBMSs support shared activation
policy.

4 Schema Integration in MIND

MIND implements a four-level schema architecture that

addresses the requirements of dealing with distribution,

autonomy and heterogeneity in a multidatabase system.

This schema architecture includes four di�erent kinds of

schemas:

1) Local Schema: A local schema is the conceptual

schema of a export database system. A local schema is

expressed in the native data model of the export database

and hence di�erent local schemas may be expressed in
di�erent data models.

2) Export Schema: A export schema is derived by
translating local schemas into a canonical data model (which

is ODMG-93 [Cat 94] in our case). The process of schema

translation from a local schema to a export schema generates

mappings between the local schema objects and the export

schema objects.

3) Derived (Federated) Schema: A derived schema

combines the independent export schemas to a (set of)

integrated schema(s). A federated schema also includes
the information on data distribution (mappings) that is

generated when integrating export schemas. The global

query processor transforms commands on the federated
schema into a set of commands on one or more export

schemas.

4) External Schema: In addition, it should be possible to

store additional information that is not derived from export

databases. An external schema de�nes a schema for a user

or application. An external schema can be used to specify a

subset of information in a federated schema that is relevant

to the users of the external schema. Additional integrity
constraints can also be speci�ed in the external schema.

The classes in export and derived schemas behave like

ordinary object classes. They consist of an interface and an

implementation. But unlike ordinary classes, which store

their objects directly, the implementation of the classes in

these schemas derives their objects from the objects of other

classes.

4.1 MIND Schema Integrator

In MIND, schema integration is a two phase process:

1) Investigation phase: First commonalities and dis-

crepancies among the export schemas are determined. This

phase is manual. That is the DBA examines export schemas

4



and de�nes the applicable set of inter-schema correspon-
dences. The basic idea is to evaluate some degree of sim-

ilarity between two or more descriptions, mainly based on

matching names, structures and constraints. The identi�ed
correspondences are prompted according to the classi�cation

of schema con
icts. The classi�cation of schema con
icts are

not provided in this paper due to space limitation.
2) Integration phase: The integrated schema is built ac-

cording to the inter-schema correspondences. The integra-

tion phase cannot be fully automated. Interaction with the
DBA is required to solve con
icts among export schemas.

In MIND, the integration of export schemas is currently

performed manually by using an object de�nition language

(ODL) which is based on OMG's interface de�nition lan-

guage. The DBA builds the integrated schema as a view

over export schemas. The functionalities of ODL allow se-

lection and restructuring of schema elements from existing

local schemas.

In ODL, a schema de�nition is a list of interface

de�nitions whose general form looks as follows:

interface classname:superclass_list {

extent extentname;

keys attr1;

attribute attr_type attr1;

...

relationship OtherClass relname

inverse OtherClass::invrel;

...

}

where classname is the name of the class whose interface
is de�ned; superclass list includes all superclasses of the

class; extentname provides access to the set of all instances

of the class; keys allows to de�ne a set of attributes which
uniquely identi�es each object of the class.

In addition to its interface de�nition, each class needs

information on how to determine the extent and how to map
the attributes onto the local ones. The general syntax for

this mapping de�nition is as follows [HFBK 94]:

mapping classname {

origin typename orig1, ...

def_ext extname as

select classname(orig1:i1,...)

from ... in ...

where ...;

def_attr attname as query; ...

def_rel pathname as [element (]

select classname(orig1:i1, ...)

from ... in ...

where ... [)];

}

The keyword mapping marks the block as a mapping

de�nition for the derived class classname. The origin

clauses de�ne a set of private attributes that store the back-

references to those objects, from which an instance of this

class has been derived. The extent derivation clause starting

with def ext de�nes a query that provides full instantiation

of the derived class. A list of def attr lines de�nes the
mapping for each attribute of the class. And �nally a set of

def rel lines express the relationships between derived classes

as separate queries which actually represent the traversal of
path de�nitions.

These are all speci�cations necessary to describe the fed-

erated schema(s). We are currently developing a graphical

tool which will automatically generate these textual speci-
�cation of class derivations. Our ultimate aim is to estab-

lish a semi-automated technique for deriving an integrated

schema from a set of assertions that state the inter-schema

correspondences. The assertions will be derived as a result

of the investigation phase. To each type of assertion there

will correspond an integration rule so that the system knows

what to do to build the integrated schema.

5 Query Optimization in the MIND

project

MIND query optimizer tries to maximize the parallel

execution of intersite joins of the global subqueries [EDNO
95]. For this purpose, a two step heuristic algorithm has

been developed. The �rst step produces a linear order

from the query graph where the most pro�table joins
appear together in the linear sequence. In the second

step, this order is exploited to maximize the parallelism in

execution of intersite joins by also taking the appearance
times, the communication costs and the conversion costs of

global subqueries into account. The algorithm produces the

schedule, that is, the assignment of join pairs to the sites.

Yet another problem considered in MIND query opti-

mization scheme is data replication. We formulate the query

decomposition in multidatabases in case of data replication

as the following optimization problem [EDNO 95]:

- given an initial assignment of relations and fragments

to the sites, distribute the modi�ed and decomposed query

to the sites such that the independent parallel execution time

is optimized, i.e.,the load distribution is balanced.

For this NP-Complete assignment problem a heuristic
algorithm has also been developed [EDNO 95].

6 MIND Transaction Management

In MIND, Global Transaction Manager (GTM) controls the

execution of global transactions that access data across
sites to preserve consistency (Figure 2). The correctness

criterion for the execution of MIND transactions is chain

con
icting serializability [ZE 93]. Transaction Management
is performed in a distributed manner, therefore global

concurrency control (gcc) is more resilient to site failures

than a centralized gcc.

The problem in providing global serializability in multi-

databases lies in the following: even though the local sched-

ulers provide serializable executions and the execution order

of the global transactions at all local sites are consistent, the
global serializabilty may still be violated. Even tough global

transactions are submitted and committed at all sites in the

same order, their serialization order can change because of
indirect con
icts caused by local transactions.

5



In [GRS 94] a practical solution namely the ticket
method is suggested to enforce serializability of global

transactions in an MDBS environment. In this method,

arti�cial con
icts are introduced between multidatabase
transactions at each site that they are executing by reading

and writing a database item called a ticket. Ticket

values determine the serialization order of multidatabase
transactions at each site. When the local serialization orders

of global transactions are consistent at all sites then the

global serializability is ensured.

In MIND the original ticket idea is extended and im-

plemented in a distributed manner. Global transactions can

be submitted to any of the participating sites which is ca-
pable of coordinating their execution. The GTM to which

a global transaction is submitted becomes the coordinator

for that transaction. GTM employees an optimistic schedul-
ing algorithm which assigns a global timestamp (or global

ticket value) to each global transaction submitted to MDBS.

Global ticket value is assigned according to submission or-
der of transactions to the system and incremented monoton-

ically. Global ticket values are maintained distributedly and

it is not necessary to obtain tickets from a speci�c site. GTM
determines sites involved in the global transaction in coor-

dination with the global query optimizer and distributes the

global subtransactions to Global Transaction Agent (GTA)s
accordingly (Figure 2). GTAs at each site are responsible

from processing global subtransactions and submitting them
to Local DBMS (LDBS)s.

Global subtransactions are serialized in the timestamp

order at all sites. To enforce the timestamp serialization
order of global transactions at all sites, MDBS requires each

subtransaction of a global transaction to perform additional

data manipulation operations on a common data item called

ticket stored in the local database. This technique introduces

forced local con
icts between the subtransactions of global

transactions at each LDBS. The ticket operations guarantee

that the local serialization order is equivalent to the order

of ticket operations, or subtransaction is aborted by the

local system. Hence, global serializability is maintained.

Currently both the global query optimizer and the global

transaction manager is being integrated to the system.

As a �nal word, the goal of this �rst prototype is

to provide clearer insights to the issues involved in a

multidatabase implementation based on OMG's distributed
object management model. And it turns out that the

lessons being learned from the ongoing implementation

e�orts iteratively e�ect the design decisions.

References

[Cat 94] Cattell, R.G.G., The Object Database Stan-

dard: ODMG-93, Morgan Kaufmann, 1994.

[DEC 94a] The Guide to CORBA, Digital Equipment

Corp., August 1994.

[DEC 94b] ObjectBroker, System Integrator's Guide,

Digital Equipment Corp., August 1994.

[DEOO 94] Dogac, A., Evrendilek, C., Okay, T., Ozkan,
C., "METU Object- Oriented DBMS", in

Object-Oriented Database Systems, edited
by Dogac, A., Ozsu, T., Biliris, A., Sellis,

T., Springer-Verlag, 1994.

[Dog 94] Dogac, A., et. al., "METU Object-Oriented

Database System", Demo Description, in
the Proc. ACM SIGMOD Intl. Conf. on

Management of Data, Minneapolis, May

1994.

[Dog 95] Dogac, A., Altinel, A., Ozkan, C., Durusoy,
I., Altintas, I., "METU Object-Oriented

DBMS Kernel", in Proc. of Intl. Conf on

Database and Expert Systems Applications,
London, September 1995 (Lecture Notes in

Computer Science, Springer-Verlag, 1995).

[DAOD 95] Dogac, A., Altinel, M., Ozkan, C., Du-

rusoy, I., "Implementation Aspects of an
Object-Oriented DBMS", in ACM SIGMOD

Record, Vol.24, No.1, March 1995.

[EDNO 95] Evrendilek, C., Dogac, A., Nural, S., Ozcan,

F., "Query Optimization in Multidatabase
Systems", in Proc. of the Next Generation

Information Technologies and Systems, Is-

rael, June 1995.

[GRS 94] D. Georgakopoulos, M. Rusinkiewicz and A.

Sheth, "Using Tickets to Enforce the Seri-

alizability of Multidatabase Transactions",

IEEE Trans. on Data and Knowledge Eng.,
Vol. 6, No.1, 1994.

[HFBK 94] Huck, G., Fankhauser, P., Busse, R., Klas,

W., "IRO-DB : An Object-Oriented Ap-

proach towards Federated and Interoprable
DBMSs", in Proc. of ADBIS '94, Moscow,

May 1994.

[KOD 95] E. Kilic, G. Ozhan, C. Dengi, N. Kesim, P.

Koksal and A. Dogac, "Experiences in Us-
ing CORBA in a Multidatabase Implemen-

tation", in Proc. of 6th Intl. Workshop on

Database and Expert System Applications,
London, Sept. 1995.

[OMG 91] Object Management Group, "The Com-

mon Object Request Broker: Architecture

and Speci�cation", OMG Document Num-
ber 91.12.1, December 1991.

[OMG 94] Object Management Group, "The Common

Object Services Speci�cation, Volume 1",

OMG Document Number 94.1.1, January
1994.

[ORACLE 92] Programmer's Guide to the Oracle Call

Interfaces, Oracle Corporation, December

1992.

[SYBASE 90] Open Client DB-Library /C Reference Man-
ual, Sybase Inc., November 1990.

[ZE 93] A. Zhang and A. Elmagarmid, "A Theory

of Global Concurrency Control in Multi-

database Systems", Journal of VLDB, Vol.
2, No. 3, 1993.

6


