
“one Size Fits All” Database Architectures Do Not Work For DSS
By Clark D, French

The current state of internal database technology today is a

“One Size Fits All” approach, Whether the database is

being used to solve an OLTP problem or a DSS problem.

all of the leading database manufacturers believe they have

the right solution. This would be correct if the needs of an

OLTP application resembled those of a DSS application.

But in fact. their needs are very different, The physical

database internal architecture designed to optimize for

OLTP is very different from one designed to optimize for

DSS, Not only would these two architectures be different,

they would also be opposing. An architecture that

optimized for DSS will degrade OLTP. and vice versa. We

can say that OLTP and DSS have “Opposing Laws of

Database Physics”

There is also a relationship between the volume of data

and the ability of a gwen optimized approach to work well.

When the amount of data a database has is small, the

difference in performance between an OLTP-based

database architecture and a DS- based architecture is not

very important, As the volume of data increases. the need

for and the ability for one approach to stand out above

another becomes more apparent

The current database manufactures have designed database

architectures optimized for their main business, OLTP.

They have attempted to use their existing OLTP

architectures to address the DSS side of the business, The

performance of even simple user questions, such as “How

many of my female customers in Mass. bought product

A?”, can take hours to run. This has created a problem:

“TOO Much Data, Not Enough Information”.

I believe that over the next several years both the

traditional database manufactures and others will develop

internal database architectures optimized for DSS, New

and immature examples exist today with products like

Interactive Query Accelerator from Sybase, Redbrick, and

OMNIDEX from DISC, The future may bring separate

products or substantial add-ens to the traditional database

providers’ existing product suites.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

?Machinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD ‘ 95,San Jose, CA USA
0 1995 ACM 0-89791-731 -6/95/0005,.$3.50

The following table illustrates some of the differences

between OLTP and DSS from an application usage

perspective,

OLTP VS. DSS.

Pre-determined Queries AdHoc Queries

Simple Queries Complex Queries

Small Found Sets Large Found Sets

Short Transactions Long Transactions

Update/Select Select (Read Only)

Real Time Update Batch Update

Detail Row Retrieval Aggregation and Group

I By

High Selectiv@ Queries Low Selectivity Queries

The above comparison. although obvious. helps highlight

the fact that most of the major commercial databases today

have designed their products for OLTP.

AdHoc Queries

One of the most important problem areas a d~tabase must

address to be successful at DSS is adhoc query

performance. I submit that a dlftlcult problem is made

worse by the traditional database prowders who attempt to

solve it using OLTP based query optimizers . indexes and

physical architectures Adhoc queries become easier when

a new approach is taken, There 1sa better way than just

using parallel table scans.

One approach is instead of trying to predict the queries and

apply poorly suited indexing and query processing

techniques. to attempt to understand the data and its usage

to see lf query performance can be improved, I have found

that there is a relationship between certain attributes of the

data and how the data is typically used within the SQL
language for DSS These data attributes are typically static

over the life of the data and hence predictable. where the

queries are not Some of these data attributes are

cardinahty, distribution. and value range

Data Attributes and SOL

There is a relationship between a column’s cardinality and

its usage with the SQL language, A column that has a low

cardinality. say under 1000 unique values. tends to be used

in SQL WHERE clauses and GROUP BY clauses most
frequently in DSS, When used in the SQL WHERE clause.

a low cardinalitv column is usually used in EQ and NE

predicates, It is” rare to see a low cardinalio column used

in range queries and aggregates in DSS.

449

A column that has an extremely high cardinah~, say o~er

100,000 unique values. tends to be used in SQL WHERE

clauses and in aggregates m the SQL PROJECTION most

frequently in DSS, When used in the SQL WHERE clause.

a high Cardinality column is usually a range predicate

The follo}ving table highlights this relationship

~

As stated above. data cardinality. distribution and value

range tend to be relatwely static over time, A column like

STATE may have a cardinality of 50: it may grow to 100

but will probably not grow to 100000, With a column like

STATE, CA has many more records in a typical database

than RI and that tends to stay relatively static over time,

Now that we have described the relationship between data

attributes and SQL common usage; LY lt po.wble to de.wgn

an Index that takes advantage of know ortrlb utes of the

data to lncreo,w qt{ety time perji)rmance ?

Bitma~ Indexes

One example is the bitmap indexing used by products such

as OMNIDX, Model 2(M. Foxpro, and IQ Accelerator from

Sybase, Developed in the 1960’s. this indexing approach

gains performance by only handling low cardinality data,

It represents each distinct value as arrays of bits where a 1

or 0 in each relative position in the array represents True

or False for that value for the corresponding relative record

wlthm the database relational table, This approach 1s

sometimes referred to as inverted-list,

The use of bitmaps also helps in another problem area for

DSS. The traditional OLTP database optimizer approach of

building up record lists. although great for OLTP small

found sets. is cumbersome at best for large multnnilhon

record found sets typically found m D SS, Bitmaps are

ideal for representing large found sets, When multiple
predicates are used m a query. the arrays of bits for each

value can be easily combined using boolean operations,

Thus, for a 1 million record table called customerj asking

the question; “Please tell me the rows where STATE=MA

and PRODUCT= A”. would result in reading two 128k byte
arrays from disk and then ANDing them together. This 1s

a far more efllcient approach than scanning 80 percent of

two large traditional OLTP B-trees or doing a table scan,

It should also be noted that this indexing approach M very

meflicient at OLTP @pe queries If the found sets were

traditionally small. reading in 128k would be a slower

approach to solving the query, This indicates that OLTP

and DSS are often opposing problems, Optmuzing for one

often slows down the other proportionately

This bitmap, value-based indexing scheme also addresses

the typical DSS usage. It is very good at deterrmning EC?.

NE and GROUP BY queries, It M compact when used

correctly, quick to load. and can be incrementally loaded

without creating working set problems

Other Techniques

There are other techniques for gaining adhoc query

performance in DSS by understanding attributes of the data

and its usage within SQL Some of these are currently

under patient pending and being used by Sybase’s IQ

Accelerator product, I beheve that, we concentrate on

DSS-only database architectures. new techniques will

develop and be proven m the mdnstry

The fundamental question is whether one database

approach can be everything to everyone The answer will

come, as lt should, from the market, which will decide if it

will accept database products that are focused exclusively

on DSS but offer better performance,

450

