
Influencing Database Language Standards

Leonard Gallagher
Information Systems Engineering Division

National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

LGallagher@nist.gov

In this first article of the regular column on data base
standardization activities, I give an overview of topic areas
under active development in the formal national and
international standardization bodies. I solicit contributions
on these active topics so that standardizers and
researchers can cooperate in the near term, before
irreversible decisions are made, to produce the most useful
and highest quality database standards.

1. Committee structure

Fist, for those who are interested, I give a short
introduction to the committee structure for producing
internationally approved standards. This structure is
important because many procurement agencies, like
governments, require that international standards adopted
by relevant standardization bodies be given fast priority in
the procurement process. Two important organizations in
international information technology standardization are
the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC).
These are private organizations that have built up prestige
and recognition over many years for developing standards
in widely dispersed technical areas. Other organizations,
like the International Telecommunication Union (ITU),
have a legal mandate, based on international treaties, for
developing standards in a specific area. Computer
language standardization has been conducted for many
years under the IS0 umbrella, and database
standardization first began as a programming language
standard, so there is nearly universal recognition of
database standards produced by ISO.

Several years ago, IS0 and IEC merged their
standardization efforts in the area of Information
Technology and formed a new Joint Technical Committee
(JTCl) under a common set of procedures. Standards
approved by JTCl are recognized by both IS0 and IEC as
if they had been formally adopted by each organization
separately. Voting within JTCl is done by member body

on a country basis with one vote per country and with
recognized domestic standardization bodies acting as the
member body for each country. For example, the United
States is represented by the American National Standards
Institute (ANSI). JTCl is divided into a number of
subcommittees, each administered by a member body
representative, with responsibility in a specific topic area.
Each subcommittee (SC) develops a Draft International
Standard (DIS) that is then approved or disapproved as an
International Standard (IS) by JTCl member body ballot.

The largest subcommittee in JTCl is SC21, administered
by ANSI and operating under the title “Open Systems
Interconnection, Data Management, and Open Distributed
Processing”. SC21 is divided into 5 active working groups;
database standardization is done in WG3, titled
“Database”, administered by the Standards Council of
Canada (SCC), with Bruce Catley of the Canadian
Government Telecommunications Agency as convener.
WG3 is itself informally divided into several rapporteur
groups, including Database Languages (DBL), Information
Resource Dictionary System (IRDS), Remote Database
Access (RDA), SQL Multimedia (SQL/MM), and
Reference Model of Data Management (RMDM). I chair
the DBL rapporteur group, the group responsible for
Database Language SQL. Kohji Shibano of Japan chairs
the SQL/MM rapporteur group, which is defining an SQL
class library for multimedia applications; it is based upon
the emerging abstract data type (ADT) facility in SQL.
Each rapporteur group meets two times per year for
approximately 3 to 7 days duration. The three groups
DBL, RDA, and SQL/MM often meet together, either in
parallel or contiguously, since they are closely related and
co-dependent. One of these twice yearly meetings is
always scheduled together with all of the other WGs in
SC21 in order to accommodate issues that cut across
working groups.

According to the procedures, a working group produces a

122 SIGMOD RECORD, Vol. 23, No. 1, March 1994

base document that is then processed by member body
ballot in its parent subcommittee. The steps in the
process are Base Document, Working Draft (WD),
Committee Draft (CD), and Draft International Standard
(DIS). The real work on a document is done at the Base
Document and Working Draft stages, and this is when
contributions have the greatest impact. When a
specification reaches Committee Draft stage it is
registered by JTCl and becomes a formal candidate for
standardization. Supposedly, a specification is both
complete and stable before it is registered as a Committee
Draft, so major modifications become more difficult at
each subsequent step in the process.

Contributions to the international process come from the
member bodies rather than from individuals. Individuals
are able to participate in their domestic organizations and
contributions approved domestically are then considered
internationally. Occasionally an international organization,
like X/Open or the Internet Society, is able to achieve
Liaison Organization status with JTCl, thereby allowing it
to make contributions directly to the Working Groups and
Subcommittees, but voting on document progression is
always conducted on a member body basis with a 2/3-rds
majority required for progression to the next step.

2. Active standardization topics

Assume that an active standardization topic is one
introduced in a Base Document that has not yet reached
the Draft International Standard (DIS) stage. Usually a
base document remains in this state for approximately two
to three years before progressing to DIS and IS. At the
present time SQL, RDA, and SQL/MM all have Base
Documents at or just preceding the Working Draft stage.
I report on the status of each and identify some active
topics that have technical issues to be resolved before
further progression.

2.1 Database language SQL

Since 1986, Database Language SQL has been enjoying
success as an effective International Standard for the
definition and management of relationally structured data.
The most recent SQL adoption in 1992 (see [3]) provides
new facilities for schema manipulation and data
administration, as well as substantial enhancements for
data definition and data manipulation. Recent textbooks
describing SQL-92 include [l], [2], and [5].

Early in 1991, technical committees for SQL
standardization committed to enhancing SQL into a
computationally complete language for the definition and
management of persistent, complex objects. This includes
the specification of abstract data types (ADT’s), object
identifiers, methods, inheritance, polymorphism,
encapsulation, and all of the other facilities normally

associated with object data management. Preliminary
specifications for these facilities are contained in the most
recent SQL3 Working Draft [8]. In the following
paragraphs, I list some of the topics and issues under
consideration for adoption.

Object identity

Object identity is that aspect of an object that never
changes and that distinguishes the object from all other
objects. It is a unique identification of an object that is
independent of the state of that object, and which persists
over time. An ADT definition allows several alternatives
for object identifier (OID) specification: WITH OID
VISIBLE, WITH OID NOT VISIBLE, or WITHOUT
OID. There is a continuing debate in the SQL
standardization committees as to whether SQL should
support all three of the above options, or if every new
ADT definition should be assumed to carry a unique
object identifier. The outcome of this debate will not
affect the functionality of the new language, but it may
infhrence its appearance and style. Other issues involved
with object identity include how OID’s are represented
externally or passed to programming languages. Another
issue in object identity is how to handle equality. Should
equality be based on object ID equality or can equality of
attributes imply equality of objects? If equality of
attributes is considered, then how are private attributes
kept encapsulated?

Encapsulation

Each attribute of an ADT has an encapsulation level
specified as either PUBLIC, PRIVATE, or
PROTECTED. Public components form the interface of
the ADT and are visible to all authorized users of the
ADT. Private components are totally encapsulated, and
are visible only within the definition of the ADT that
contains them. Protected components are partially
encapsulated, being visible both within their own ADT and
within the definitions of all subtypes of that ADT. Since
the SQL query language is value based, a continuing issue
is how to support traditional relational query processing
without violating encapsulation.

Object management

Since SQL is a “table-based” language, SQL designers have
to address issues concerning whether or not SQL object
instances may exist outside of table occurrences. If SQL
objects are allowed to exist outside of tables, then new
syntax to manipulate them and new structures to hold
collections of them must become part of the language.
Although these issues are still subject to debate and
modification, the current status is to require that object
manipulation be achieved through table operations and all
object instances are visible as column values in a table.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 123

Metbods and functions

An abstract data type includes not only a collection of
attributes but also the methods that define the behavior of
the ADT. A continuing issue is the “impedance mismatch
behveen SQL data types and programming language data
types. How does one pass an ADT instance to a standard
programming language, operate on it using methods
defined completely in that programming language, and
then return a modified instance to the database? The
actual mapping from the <formal parameter list > in the
external function declaration to the parameter lit of the
programming language routine can become quite complex,
so techniques for better management of cross-language
calls are under active consideration. More sophisticated
data type correspondence, especially to object
programming languages such as C+ + , will likely be the
subject of near-term considerations.

Subtypes

Specification of “UNDER ADT-name” in the subtype
clause of an ADT definition permits a new ADT to be
defined as a subtype of an existing ADT. A type can have
more than one subtype and more than one supertype. A
supertype shall not have itself as a proper subtype and a
subtype family shall have exactly one maximal supertype.
The SQL implementation of a type hierarchy requires that
an instance of a subtype is also an instance of all of its
supertypes. Every instance is associated with a “most
specific type” that corresponds to the lowest subtype
assigned to the instance. At any given time, an instance
must have exactly one most specific type. A continuing
issue is whether or not this restriction can be relaxed to
allow an instance to share multiple types simultaneously.

Multiple inheritance

Real world examples require that we have some method
for an object instance to maintain multiple types
simultaneously. To handle these situations, SQL provides
“multiple inheritance”, i.e. a subtype can have more than
one direct supertype. In thii way an instance will satisfy
the requirement to always have a “most specific type”.
Multiple inheritance could lead to ambiguous inheritance
of components from its supertypes, so SQL provides some
disambiity rules. The exact detail of these rules is the
subject of continuing debate. These rules, and other
related issues, are subject to improvement and evolution
as the SQL ADT facility stab&es over the next two or
three years.

Polymorphic functions

Polymorphism is the ability to invoke an operation on any
of several different objects and have that object determine

what to do at execution time. Support for polymorphism
involves technical decisions concerning early or late
binding among objects and the procedures that invoke
their methods. The algorithms for function resolution are
under continuing discussion and modiication as we discuss
the best way to support the above features while retaining,
as much as possible, compile time binding.

Control Structures

SQL computational completeness requires the introduction
of various “control” statements into the language. The first
of these, to support procedure calls, include
ASSIGNMENT, CALL, and RETURN. The obvious next
step was to consider if more control statements and other
“programming language” facilities should be added to SQL.
These include: a CASE statement to allow selection of an
execution path based on alternative choices, an IF
statement with THEN, ELSE, and ELSEIF alternatives to
allow selection of an execution path based on the truth
value of one or more conditions, a LOOP statement, with
a WHILE clause, to allow repeated execution of a block
of SQL statements based on the continued true result of a
search condition in the WHILE clause, and a LEAVE
statement to provide a graceful exit from a block or loop
statement. All of these facilities are currently included in
the SQL/PSM part of SQL3, which has already been
registered as a Committee Draft (CD).

Compound statement

A compound statement is a statement that allows a
collection of SQL statements to be grouped together into
a “block”. A compound statement may declare its own
local variables and specify exception handliig for an
exception that occurs during execution of any statement in
the group. Issues include consideration of restrictions on
where such statements may occur in the language.

Exception handling

An exception declaration establishes a one-to-one
correspondence between an SQLSTATE error condition
and a user-defined exception name. The exception
handling mechanism under consideration for SQL3 is
based very strongly on the mechanism defined in Ada.
Each compound statement is assumed to have an
exception handler; if one is not explicitly defmed, then a
default handler is provided by the system. When the
execution of a statement results in an active exception
condition, then the containing exception handler is
immediately given control. If an exception condition
occurs in the exception handler itself, then the compound
statement is terminated and that exception condition
becomes the “active” exception condition.

Parameterized Types

SIGMOD RECORD, Vol. 23, No. 1, March 1994

A parameterized type is really a “type family” with a new
data type generated for each value of an input parameter.
For example, an ADT definition for VECTOR(TYPE, N)
can be thought of as a family of data types, one for each
instance of a data type like Real or Complex, and one for
each positive integer value of N. The keyword TYPE
indicates that a parameter is a data type name rather than
a data type value. The rules for matching a parameter&d
type reference to a parameter&d type definition are the
same as the rules for matching polymorphic functions.

Cunstnlctor types

A constructor type is a special parameter&d type
supported in the SQL language itself, rather than defmed
by a user. Examples of constructor types are LIST, SET,
and ARRAY. At the present time SQL3 provides limited
support for LIST and SET, but no support yet for
ARRAY. Issues include the relationship between the
existing table construct and lit, set, and array instances.
Should table operations be used on liits and arrays?
Should some constructors be defined as subtypes of
others? Should there be a generic “collection” type?
Should there be implicit casting functions between and
among these data types?

Stored procedures

In the existing SQL-92 standard, a module is a persistent
object created by the module language. It is a named
package of procedures that can be called from an
application program, where each procedure consists of
exactly one SQL statement. However, there is no
requirement that an implementation be able to execute
module language (the alternative is embedded SQL) and
the resulting persistent module is not stored as part of the
SQL schema, is not reflected in the information schema
tables, and cannot be passed across an RDA connection to
a remote site. In the emerging SQL3 specification,
standardization committees have recognized the
requirement for some “standard” capability to define
persistent modules that “live” in the SQL schema and
whose procedures may be called from any SQL statement
in the same processing environment. In SQL3 the
CREATE MODULE statement has the same status as
any other schema definition statement. Module definitions
are reflected in the Information Schema just lie any other
schema object and they are subject to ownership and
access control declarations. A module definition consists
of collection of procedures. Each procedure consists of an
SQL parameter list and a single SQL statement, which
may be a compound statement (see above). An SQL
CALL statement can access any of the procedures, either
locally or remotely, and pass parameters to it. The
primary benefit of persistent, stored modules is that
implementations are able to optimize groups of statements
rather than just individual statements. Specifications for

persistent, stored modules are currently included in the
SQL/PSM part of SQLS, which has already been
registered as a Committee Draft (CD).

Miscellaneous features

The features discussed above are not the only SQL
enhancements specified in the SQL3 Working Draft.
Some of the following features offer desirable functional
extensions not directly related to object data management.
These features have “preliminary” syntax and semantics
specified in SQL3, however, all SQL3 specifications are
subject to substantial evolution or reconsideration before
adoption in any future SQL standard, so user
requirements and improved specifications are always
welcome.

Dvnamic assertions. Support for integrity constraints that
are triggered by specific database actions, such as after
update or before insertion. Assertions are “dynamic” in
that they may reference before and after images of the
database.

Dynamic triw. Support for triggering a sequence of
database actions based on a specific database action, such
as after delete. Assertions and Triggers make it possible
for object self-management to be fully specified in a
database schema.

Recursive exnressions. Support for SQL expressions of
indefinite, recursive depth, such as those arising out of
“bill-of-materials” part’s hierarchies.

Muhiole null states. A facility that allows user definitions
for an arbitrary number of application specific Null values,
such as “Unknown”, “Missing”, “Not Applicable”, “Pending”,
etc. Each such Null value would have a different
representation in the database so that they can be
distinguished by query expressions during retrieval or
update.

Roles and data security. An enhanced facility for database
security management that builds upon the existing Grant
and Revoke definitions. It extends the security model to
include named “roles” in addition to schema objects,
actions, and users.

Savepoints and subtransactions. A subtransaction is a
portion of a transaction that is marked for potential
rollback without affecting the other parts of the
transaction. By setting and releasing savepoints, an
application programmer is able to recover more easily
from failed subtransactions, thereby leading to more
efficient code.

22 Remote database access (RDA)

SIGMOD RECORD, Vol. 23, No. 1, March 1994 125

The SQL standard does not address communication
protocols for interoperation between heterogeneous
systems in an open systems environment. The just
published Remote Database Access (RDA) standard,
RDA-93 [4], meets this need and provides the basic
services and protocols for SQL interoperability in a
client/server architecture.

The RDA-93 standard was developed against the SQL-89
specilication and thus only supports the Entry SQL level
of the SQL-92 standard. A follow-on RDA standard, with
work just getting started [6], will address interoperability
issues for full SQL-92 functionality. Some of these issues
are identified below.

Client/Server harmonization

The SQL92 standard introduces the terms client and
server and specifies Connection management statements
for client connection to an SQL-Server; however, it does
not define conformance requirements to guarantee
interoperation of clients and servers from different
vendors. The RDA-93 standard defines an RDA-Client
and an RDA-Server and specifies protocols to form an
association between different open systems, open a data
resource, begin a transaction, and begin executing SQL
data statements; however, it does not link these protocols
to SQL Connection management statements. Since there
are alternative ways to map SQL Connection management
facilities to RDA protocols, further harmonization is
needed in this area is needed to ensure that all
SC21/WG3 standards will work smoothly together.

Dynamic SQL descriptor areas

The Dynamic SQL facility in SQL-92 allows SQL
implementations to process SQL statements that are
generated during program execution. The text string of a
statement can first be prepared, then a describe statement
will return information about the data types of columns or
parameters contained in the prepared statement. All such
information is maintained by the system in a descriptor
area. In a client/server environment the SQL standard
does not specify how this descriptor information is
returned from the server to the client. There are several
alternatives for doing this, e.g. all at once or piecewise,
and each has some advantages and disadvantages. This
issue will be discussed and resolved during processing of
the follow-on RDA specification.

Character set harmonization

The SQL-92 standard provides facilities for defining and
naming new character sets and choosing collations on
those character sets; however, it does not standardize any
specific character sets or collations. If hvo SQL
implementations are interoperating using RDA, then RDA

must provide some method for the client and the server to
communicate character set and collation information and
choose a common basis for subsequent processing.

2.3 SQL multimedia (SQL/MM)

A new ISO/IEC project for development of an SQL class
library for multimedia applications was approved in early
1993. This new standardization activity, named SQL/MM,
will specify packages of SQL abstract data type (ADT)
definitions using the facilities for ADT definition provided
in the emerging SQL3 specification.

It makes sense to standardize packages for science and
engineering, full-text and document processing, or methods
for the management of multimedia objects such as image,
sound, animation, music, and video. This SQL/MM
standard could provide an SQL language biding for
multimedia objects defined by other JTCl standardization
bodies (e.g. SC18 for documents, SC24 for images, and
SC29 for photographs and motion pictures).

The project plan for SQL/MM indicates that it will be a
multi-part standard consisting of an evolving number of
parts. Part 1 will be a framework that specifies how the
other parts should be constructed. The Framework will
require that all packages be specified using the ADT
definitional mechanisms of the emerging SQL3 standard.
The Framework may also specify General Purpose
Facilities such as numeric functions, complex numbers, or
data structures that are common to multiple other parts of
the SQL/MM standard.

Each of the other parts will be devoted to a specific SQL
application package. Even though this project is just
getting started, initial base documents exist for Part 2: Full
Text and Part 3: Spatial (see [q). Users and researchers
in these areas are encouraged to review the base
documents and submit requirements or proposals for
further development.

3. Availability of documents

Published international standards, as well as American
National Standards, are available from the American
National Standards Institute, 11 West 42nd Street, New
York, NY 10036, telephone 212-642-4900. Base
documents that reach the DIS stage are subject to
copyright and must also be obtained from ANSI.

The rapporteur groups within SC21/WG3 process
hundreds of proposals at each meeting. AU proposals are
subject to a 6-week rule and many are available
electronically at least 6 weeks prior to the next meeting.
To assist in the process of maintaining access to the
justification and detailed explanations contained in

126 SIGMOD RECORD, Vol. 23, No. 1, March 1994

previous proposals, and to give rapid and wide access to
current proposals, we maintain a database standardization
archive of documents at NIST. The archive is
implemented via an FTP Server on the Internet node
“speckle.ncsl.nist.goV in directory “isowg3”.

If you are a researcher or a user willing to help in the
standardization effort, then you are welcome to access the
archive. Please sign on as user FTP and give your return
e-mail address as the password. The “isowg3” directory
has a readme.txt tile that explains how to access
documents in the archive and describes our conventions
for determining file format. We maintain separate
subdirectories for several X3 technical committees and for
each of the WG3 rapporteur groups with documents
grouped by meeting location. The minutes, agenda, and
document register from each meeting are clearly identified
to help locate desired papers.

4. Influencing the process

In the United States, two X3 technical committees are
responsible for contributions and recommendations on
JTCl SC21/WG3 standardization projects. They are
X3H2 for SQL, RDA, SQL/MM, and RMDM, and X3H4
for IRDS. Both of these committees meet between 4 and
6 times per year for approximately 3-4 days. Membership
is individual, but only one individual from any single
company or organization may vote. Membership fees
range from $300 to $600 per year. Further information on
membership can be obtained from CBEMA, x3
Secretariat, 1250 Eye Street NW, Suite 200, Washington,
DC 2OfHl5-3922, telephone 202-737-8888.

Other countries have database committees similar to the
above. Each domestic group submits approved proposals
to JTCl/SC21/WG3 groups for further processing.
Enforcement of the 6-week rule means that each member
body can instruct its delegates to international meetings on
each paper that will be considered.

The purpose of this column is to provide an additional
forum, separate from the formal standardization
committees, for researchers and users to discuss active
database standardization issues and make contributions
that might influence the process.

References

PI Cannan, S.J. and G.A.M. Otten. SQL - The
Standard Handbook, McGraw-Hill Book Co,
Berkshire SM 2QL England, October 1992.

PI Date, C.J. with Hugh Darwen. A Guide to the
SQL Standard, Addison-Wesley Publishing,
Reading, MA 01867 USA, October 1992.

131

141

PI

PI

PI

ISO/IEC 9075. Database Language SQL,
International Standard ISO/IEC 90751992,
American National Standard X3.135-1992,
American National Standards Institute, New York,
NY 10036, November 1992.

ISO/IEC 9579. Open Systems Interconnection -
Remote Database Access (RDA), International
Standard ISO/IEC 9579:1993, Part 1: Generic
Model and Part 2: SQL Specialization, American
National Standards Institute, New York, NY
10036, December 1993.

Melton, Jim and Alan Simon. Understanding the
New SQL: A Complete Guide, Morgan Kauffman
Publishers, San Mateo, CA 94403, October 1992.

RDA Revision. Proposed Draft Amendment #l
for Remote Database Access - Part 2: SQL
Specialization, enhancements to support SQL92
features, document SC21/WG3 N1633, September
1993.

SQL/MM Base Documents. Partl: Framework,
Part2: Full Text, Part3: Spatial, documents
SC21/WG3 N1647, N16l.3, and N1614, September
1993.

SQL Revision. ISO-ANSI Working Draft
Database Language SQL (SQL3), Jim Melton -
Editor, document ISO/IEC JTCl/SC21 N6931,
American National Standards Institute, New York,
NY 10036, July 1992. Later versions available
electronically from the WG3 DBL document
archive.

Leonard Gallagher is a computer scientist in the
Information Systems Engineering Division at NIST. He is
responsible for data models, database standardization, and
integration of database technology with new approaches to
information management such as knowledge and object-
oriented systems, hypertext, and multimedia information
systems. He has been a member of the ANSI/X3
technical committee on Database, X3H2, since 1979 and
chairs the ISO/IEC JTCl/SCZ/WG3 rapporteur group
for follow-on enhancements to the IS0 SQL standard.
Dr. Gallagher received the B.A. degree in mathematics
from St. John’s University of Minnesota in 1%5 and the
Ph.D. in mathematics from the University of Colorado in
1972. He taught mathematics at the Catholic University of
America for 6 years and has been involved with database
research at NIST for the past 16 years.

Dr. Gallagher can be reached by telephone at + 1-301-975-
3251 or by electronic mail using the Internet address
LGallagher@nist.gov.

SIGMOD RECORD, Vol. 23, No. 1, March 1994

