
Database Research at AT&T Bell Laboratories
H. V. J a g a d i s h I

Bell Laboratories is the Research and Development
arm of AT&T. There is today tremendous support for
database research in Bell Labs and in AT&T. This is
expected to continue since database technology is
recognized as being central not just to Teradata, NCIL
and AT&T's computing business but to its core
communication business as well. What you see
described below is a survey of the current state of a
young and growing research effort in the clatahase
area. You should expect to see a stronger "resume" a
few years down the road.

Research at AT&T Bell Labs is never directed from
above, towards specific projects or objectives.
Individual rese~chers select their areas of research
based on a combination of factors that include
individual skill and interest, other on-going activity
and potential for collaboration, and the likelihood of
intellectual or monetary impact. While research
activity can range from the highly theoretical to the
completely applied, it is expected that most research
be performed within the framework of some larger
objective; and this framework is typically provided by
a prototype system.

In addition to the core set of people here full-time,
often there are visitors. You will see the names of
many of these in the publications listed. For instance,
most recently Oded Shmueli from the Technion spent
a year with us. Currently, Avi Silberschatz is visiting
from Austin.

1. Databa~se Theory (Inderpal Mumick, S.
Sudarshan, Mihalis Yannakakis)

A variety of areas have been covered in the past,
including concurrency control and locking, nested
transaction models, query optimization, acyclie
schemas, dependencies etc. In particular, recent
results have been obtained in efficient algorithms for
query processing problems; in understanding the
power and limitations of recursive query languages,

first as a means of expressing problems and second as
a means of expressing algorithms; and in defining
semantics for query languages with negation and
aggregation.

[I] M. Yannalc~M% "Graph Theoretic Methods in
Database Theory," (invited paper), Proc. 9th ACM
Symp. on Principles of Database Systems, 1990, pp.
230-242.

[2] J .D. Ullman, M. Yann,t-aki~, "The Input/Output
Complexity of Transitive Closure," Proc. ACM
SIGMOD lnt'L Conf. on Management of Data, 1990,
pp. 44-53.

[3] F. Afrati, S. Cosmadakis, M. Yannakakis, "On
Datalog vs. Polynomial Tune," Pra~ lOth ACM
Symp. on Principles of Database Systems, 1991, pp.
13-25.

[4] C.H. Papadimitriou, M. Yann~kaM% "Tie-Breaklng
Semantics and Structural Totality," Proc. l l th ACM
Syrup. on Principles of Database Systems, 1992, pp.
16-22.

[5] I.S. Mumiek and O. ShmuelL "Finiteness Properties
of Database Queries," Proceedings of the Fourth
Australian Database Conference, Brisbane, Australia,
February 1993.

[6] A. Levy, I. S. Mumick, Y. Sagiv, and O. Shmueli,
"Equivalence, Query-Reachability, and Satisfiability
in Datalog," Proceedings of the Workshop on
Deductive Databases, Joint International Conference
and Symposium on Logic Programming, Washington
DC, November 1992.

[7] I. S. Mumick and O. Shmueli, "Aggregation,
Computability, and Complete Query Languages,"
Proceedings of the Workshop on Structural
Complexity and Recursion-theoretic Methods in Logic
Programming, Joint International Conference and
Symposium on Logic Programming, Washington DC,
November 1992.

[8] S. Sudarshan and Raghu Ramakrishnan,
"Optimizations of Bottom-Up Evaluation with Non-
Ground Terms," Proceedings of the Workshop on
Deductive Databases, Joint International Conference

1. Portions of this article were written by N. Gehani, R. Greet, T. Griffin, B. Hillyer, D. Lieuwen, and A. Skarra.
The author also acknowledges assistance from R. Brachman, D. McGuinness, L. Terveen, and M. Yannakakis.

82 S I G M O D R E C O R D , Vol . 22, No . 1, M a r c h 1993

[9]

and Symposium on Logic Programming, Washington
DC. November 1992.

S. Sndarshan, Divesh Srivastava, and Raghu
Ramakrishnan, "Extending the Valid and Well-
Founded Semantics for Aggregation," submitted for
publication.

2. Ode (Alex Biliris, Narain Gehani, H. V.
Jagadish, Dan Lieuwen, Bill Roome, Ted
Roycraft, with conlributions by several others,
including most importantly Rakesh Agrawal,
Steve Buroff, Shaul Dar, and Oded Shmuefi.)

Ode is a database system and environment based on
the C++ object paradigm. Ode provides facilities for
creating persistent and versioned objects, defining sets,
iterating over sets and clusters of persistent objects,
and for associating constraints and triggers with
objects. Currently there are over 150 installations of
Ode. An initial release of Ode can be licensed at no
charge to academic institutions. Please send mail to
nhg@researeh.att.com ff interested.

[I] R. Agrawal and N.H. Gehani, "Ode (Object Database
and Environment): The Language and the Data
Model," Proc. ACM-SIGMOD 1989 Int'l Conf.
Management of Data, Poff.land, Oregon, May-June
1989, pp, 36-45.

[2] S. Dar, R. Agrawal, and N. H. Gehani, "The O++
Database Programming Language: Implementation
and Experience," Proc. IEEE 9th lnt'l Conf. Data
Engineering, Vienna, Austria, 1993.

2.1 User Interface

ode provides a variety of interfaces: O++ (a
programming language), odeView (graphical), OdeFS
(file system), CQL++ (SQL-like), and Noodle
(declarative language). The primary interface is the
database programming language O++, which is based
on C++. It offers one integrated data model for beth
database and general purpose manipulation.

OdeView is an X-windows based graphical interface.
As a browser, it offers a consistent display model
including "synchronized browsing", in which
changes in one window cause the contents of other
related windows to change in synchrony. In addition
to browsing capabilities, OdeView also permits
manipulation of the database by invoking methods and
entering values, all in a point-and-click and fill-in-the-
blank environment.

OdeFS is a UNIX-like file system interface to Ode.
Users can access and manipulate objects as if they
were files, using popular shell commands like l s ,

c a t , and v i . OdeFS is an NFS server that intercepts
NFS requests and passes them on, with appropriate
modifications, either to the regular file system or to the
Ode database.

c q l + + is an SQL-like language designed to define,
access and manipulate an object oriented database.
Noodle is another declarative language, with the
advantage that it is much more expressive, though it is
not SQL-like in syntax.

All the different interfaces for Ode are object
compatible in that objects created through one
interface can be accessed and manipulated by any of
the others.

[3] R. Agrawal and N.H. Gehani, "Rationale for the
Design of Persistence and Query Processing Facilities
in the Database Programming Language O++," 2rid
lnt'l Workshop on Database Programming
Languages, Portland, OR, June 1989.

[4] R. Agrawal, N. H. Gehani, and J. Srirdvasan,
"OdeView: The Graphical Interface to Ode," Proc.
ACM-SIGMOD 1990 lnt'l Conf. on Management of
Data, 1990, pp. 34-43.

[5] N.H. Gehani, H. V. Jagadish, and W. D. Roome,
"OdeFS: A File System Interface to an Object-
Oriented Database," AT&T Bell Labs Technical
Memorandum, 1992.

[6] S. Dar, N. H. Gehani, and H. V. Jagadish, "CQL++:
An SQL for a C++ Based Object-Oriented DBMS,"
Proc. of lnt'l Conf.. on Extending Database
Technology, Vienna, Austria, Mar. 1992.

[7] I. S. Mumiek and IC A. Ross, "SWORD: A
Declarative Object-oriented Database Architecture,"
submitted for publication.

2.2 Query Optimization

The goal is to take a program in an imperative DBPL,
such as O++, and optimize its execution using
knowledge of database statistics, with substantial
rewriting, as in traditional database query
optimization. For instance, we use programming
language analysis to determine whether or not the
loops in O++ can be executed in a set oriented fashion
instead of using tuple- (object-) iteration-semantics. If
a loop can execute in a set-oriented fashion without
violating programming language semantics, then
database optimization techniques can be used to
choose an efficient method of executing, it in a set-
oriented fashion. The technique has been used to
produce improved sequential code and to parallelize
code.

S I G M O D R E C O R D , Vol . 22, No. 1, M a r c h 1993 83

[8] Daniel IAeuwen and David DeWitt, "A
Transformation-based Approach to OptiwiTlng Loops
in Database Programming Languages," Proc. ACM-
SIGMOD Int'l Conf. on the Mgmt. of Data, June
1992.

[9] Daniel Lieuwen, David DeWitt, and Manish Mehta,
"Parallel Pointer-based Join Techniques for Object-
Oriented Databases," Prec. 2rid International
Conference on Parallel and Distributed Information
Systems, San Diego, CA. Jan. 1993.

2.3 Large Objects

Ode provides support for " large" objects. An object
larger than a page is classified as large. The default
page size is 4K bytes. Three interfaces are supporte~

1. Transparent access.. A large object can be
accessed and manipulated possible just like a
small obj~

2. File like l/O:

a. Portions of a large object can be
and manipulated without having to bring
the whole object into memory.

b. It is possible to do large object I/O
without bringing the whole object into
memory a/l at once.

3. Asynchronous Reads: Portions of large objects
can be "prefetched" from disk to memory
without blocking. Thus when this large object is
accessed later, the Iransaction does not have to
block for the object (portion) to be read from
disk; instead, it will find the object (portion) in
memory and immediately accessible.

[1o] A. Biliris, "An Efficient Database Storage Structure
for Large Dynamic Objects," Proc. IEEE Data
Engineering Conference, Phoenix, Arizona, February
1992, pp. 301-308.

[11] A. Biliris, "The performance of Three Database
Storage Structures for Managing Large Objects,"
Proc. ACM-SIGMOD Conference, San Diego,
California, June 1992, pp. 276-285.

2.4 Transactions

Object-oriented databases are often used for non-
traditional database applications where long-running
transactions are often necessary, but cooperation is
possible. We have developed a model for cooveration
in which individual U'anr, aCUOn~ can c h ~ whether tO
ccoperate, and the database system can actually
manage this cooperation. We have also developed a
set of primitives that can be used to provide a flexible
transaction facility, thereby making it possible to use

any Ode installation with a choice of extended
transaction models.

More recently, we have staaed looking at
implementation issues, first for traditional locks in an
object-oriented environment, and subsequently for the
advanced transaction models discussed above.

[12] H.V. Jagadish and O. Shmueli, "A Proclamation-
Based Model for Cooperating Transactions," Proc. of
the 18th Int'l Conf. on Very Large Databases,
Vancouver, B.C., Canada, August 1992.

[13] A. Biliris, S. Dar, N. H. Gehaai, H. V. Jagadish, and
IC Ramamritham, "A Flexible Transaction Facility
for an Object-oriented Database," submitted for
publication.

[14] H. V. Jagadish and D. Lieuwen, "Multi-granularlty
Locks in an Object-Oriented Database," submitted for
publication.

2.5 Compose .- Active Facilities

Ode permits the specification of integrity constraints
and triggers. These are associated with class
definitions. An integrity constraint in a class
definition applies to all instances of the class, and all
derived classes. A trigger in a class definition is
considered a definition, and must be activated
explicitly at specific object instances. In both eases,
the action to be taken can be the execution of an
arbitrary procedure.

Trigger and constraint conditions are intra-object in
that the specified condition is evaluated with respect to
a particular object only when the object is modified (or
has some other event occur at i0. Inter-object
conditions can be specified deelaratively, but are then
compiled into one or more corresponding in~ra-object
conditions associated with all the relevant classes.

While an integrity constraint represents an invariant
that must be checked upon each update to an object, a
trigger condition may be checked upon the occmTence
of an arbitrary event, or event pattern. Besides the
creation, modification, and deletion of an object, an
event may be an object access, the execution of a
method, the begin, abort or commit of a transaction, or
even the ticking of a system clock. A pattern of events
of interest, such as "fifth large withdrawal" or "abort of
transaction following an invocation of a sub-
transaction" can be specified declaratively using event
expressions. An event in an event expression may
have attributes, derived from the event itself, such as
parameters of the method for a method execution
event, or obtained from the state of the database at the
time of event occurrence. The attributes of a

84 S I G M O D R E C O R D , Vol . 22, No. 1, M a r c h 1993

composite event expression are derived from the
attributes of its constituent events.

[15] N.H. Gehani and H. V. Jagadish, "Ode as an Active
Database: Constraints and Triggers," Prec. 17th lnt'l
Conf. Very large Data Bases, Barcelona, Spain, 1991,
pp. 327-336.

[16] H.V. Jagadish and X. Qian, "Integrity Maintenance
in an Object-Oriented Database," Pro~ of the ISth
Int'l Conf. on Very Large Databases, Vancouver, BC,
Canada, August 1992.

[17] N. H. Gehani, H. V. Jagadish, and O. ShmuelL
"Event Specification in an Active Object-Oriented
Database." Prec. ACM-SIGMOD 1992 lnt'l Conf. on
Management of Data, San Diego, CA, 1992.

[18] N. H. Gehani, H. V. Jagadish, and O. ShmuelL
"Composite Event Specification in Active Databases:
Model & Implementation," Prot~ of the 18th Int'l
Conf.. on Very Large Databases, Vancouver, BC,
Canada, Aug 1992.

[19] H. V. Jagadish and O. Shmueli, "Synchronizing
Trigger Events in a Distributed Object-Oriented
Database," Pro~ lnt'l Workshop on Distributed
Object Management, Edmonton, Alberta, Canada,
August 1992.

2.6 Versions

Object versioning in Ode is orthogonal to type, that is,
versioning is an object property and not a type
property. Versions of an object can be created without
requiring any change in the corresponding object type
definition, all objects can be versioned, and different
objects of the same type can have a different number
of versions. Both dynamic and smile bindings to
version references are supported. Temporal as well as
derived-from relationships between versions are
maintained automatically.

[20] R. Agrawal, S.J. Buroff, N. H. Gehani, and D. Shasha,
"Object Versioning in Ode," Proc IEEE 7th lnt'l
Conf.. Data Engineering, Tokyo, Japan, Feb. 1991.

3. Datashare(Rick Greet, Naser Barghouti, John
Mocenigo, Andrea Skarra, John Snively)

DataShare offers a full spectrum of data management
and programming language services. DataShare's
multi-paradigm language Cymbal synthesizes
procedural commands with the declarative constructs
of symbolic logic, set theory, and SQL. It supports:

• using the full SQL DML (i.e., selects plus
transaction-based updates) to query UNIX flat file
databases

• using a procedural language that has the power of
awk

• embedding SQL in this procedural language to
create a 4GL more expressive and easier-to-use
th~n C-embedded SQL

• using SUCh logic and set thco W contributions to
Cymbal as generalized transitive closure, set-
formers, fully general quantification, complete
mi~ing value control, conditional definitions of
new variables, additional and fully general
aggregate functions, and data buffer reuse.

• combining freely any of the above language
constructs.

Furtlmrmore, both SQL and C~mbal data management
may make use of set-valued fields, horizontal table
partitioning, in-core databases, update transactions
with concurrency and recovery, and us~.provided C-
extensions. And, of course, standard UNIX tools such
as awk and grep can operate directly on the same data
that DataShare operates on.

DataShare translates Cymbal to C (which is also
compatible with C++). DataShare users frequently use
DataShare to generate a high-level data management
library which they call from their application code and
which in mm may call user application code.

The DataShare architecture is not client-server.
DataSharc relies on the operating system to provide
services typically provided by traditional database
servers.

[1] R. Greer, "Datashare and the Fourth Generation
Language Cymbal," Prec. AT&T Database Day, Sep.
1992.

3.1 SLEVE

SLEVE is a software package that takes as input a
semantic lock specification from an application, and as
output produces a functional interface to the operating
system locking facility. The functions in the interface
request locks from the OS in a way that simulates the
concurrency behavior defined by the semantic
specification. The operating system provides a fixed
set of lock types, namely Read and Write with the
usual conflict semantics. With SLEVE, the systems
can define and implement arbitrary semantic locks for
more concurrency; they are not limited to the
operating system's lock types.

[2] A.H. Skarra, "SLEVE: Semantic Locking for EVEnt
synchronization," Proceedings of Ninth International
IEEE Conference on Data Engineering, 1993.

S I G M O D R E C O R D , Vol. 22, No. 1, M a r c h 1993 85

4. Persi(Naser Barghouti, Andrea Skarra;
originally Alex Wolf)

Persi is a C++ library that provides a persistence
mechanism to developers of C and C~- applications.
It implemeuts persistence through the native
abstraction capabilities of the language, particularly
classes, inheritance, and virtual functions, and it
requires no modifications to either the C++ language
processor or the van-time system. In this approach,
persistence is simply another bit of compatible
functionality that is placed at the disposal of
application developers in the same way that other
general-purpose abslraetions are provided and
supported.

In addition, Persi provides a basis for associative
retrieval. It provides a way to create and maintain
indices on collections of objects and a way to iterate
over those indices. C u n ~ t work on Persi involves the
design o f a concurrency control algorithm that focuses
on heavily shared objects such as collections and
indices. The goal of the algorithm is to optimize
concurrent access to these objects by exploiting their
semantics, while producing histories that satisfy
semantic serialiT~bility. The algorithm USeS several
techniques to achieve its goal, including a strategy for
delaying the execution of operations (and the
acquisition of locks) and a protocol based on a set of
semantic lock types, implemented using SLEVE.

[I] A. L. Wolf, "An Initial Ix-ok at Abslraztion
Mechanisms and Persistence," in Implementing
Persistent Object Bases: Principles and Practice.
The Fourth International Workshop on Persistent
Object Systems, A. Dearie, G. M. Shaw, and S. B.
Zdonik (eds.), Morgan Kanfmann Publishing Inc., San
Mateo, CA, 1991.

[2] A.H. Skarra, "Localized Correctness Specifications
for Cooperating Transactions in an Object-Oriented
Database," Offure Knowledge Engineering, VoL 4,
no. 1, Feb. 1991.

5. DDB(A. Singhal, R. Arlein, C-Y Lo, N. Parikh)

DDB is an object-oriented design database for
VLSI/CAD. By exploiting knowledge of the CAD
domain, the database is able to provide performanee
an order of magnitude better than is possible using
general-purpose commercial object-oriented databases.
DDB has been used in a diverse set of CAD
applications and has improved productivity by
rendering the architecture of CAD systems more
moduLar.

[1] A. Singhal, R. Arlein, and C-Y Lo, "DDB: An
Object-oriented Design Database for VLSI/CAD,"
Proc. AT&T Database Day, Sep. 1992.

[2] N. Parilda, C-Y Lo, A. Singhal, IC W. Wu, "HS: A
Hierarchical Search Package for CAD data," Proc.
ICCAD Conf., Nov. 1989.

6. Classic(Ron Brachman, Alex Borgida, Deb
McGuinness, Peter PateI-Schneider, Lori
Alperln Resnick, and T o m Kirk)

CLASSIC is a data model that encotwages the
description of objects not only in terms of their
relations to other known objects, but in terms of a
level of intensional slruetare as well. The CLASSIC
language of structured descriptions permits i) partial
descriptions of individuals, under an 'open world'
assumption, ii) answers to queries either as extensional
lists of values or as descriptions that necessarily hold
of all possible answers, and iii) an easily extensible
schema, which can be accessed uniformly with the
data. One of the strengths of the approach is that the
same language plays multiple roles in the processes
of defining and popul~tjr~g the DB, as well as querying
and answering.

The CLASSIC database can actively discover new
information about objects from several sources: it can
recognize new classes under which an object falls
based on a description of the object, it can propagate
some deductive consequences of DB updates, it has
simple procedural recognizers, and it supports a
limited form of forward-chaining rules to derive new
conclusions about known objects.

[I] A. Borgida, R. J. Braehman, D. L. MeGuinness, and
L. A. Resnick, "CLASSIC: A Structural Data Model
for Objects," Proc. ACM-SIGMOD 1989 Int'l Conf.
on Management af Data, Portland, OR, 1989.

[2] Ronald J. Braehman, Deborah L. MeGninness, Peter
F. Patel-Schneider, Lori Alperin Resnick, and Alex
Borgida, "Living with CLASSIC: When and How to
Use a KL-ONE Like Language," in Principles of
Semantic Networks: Explorations in the
representation of knowledge, John Sowa (ed.),
Morgan-Kanfmann, San Mateo, CA, 1991.

7. RightPages(G. A. Story, L. O'Gorman, J. Q.
Arnold, H. V. Jagadish, E. Szurkowski, with
contributions f rom C. Faloutsos, D. Fox, L. L.
Schaper)

RightPages is a multi-disciplinary research project to
create a system that provides on-line library services.
The intention is to retain the "look-and-feel" of the

86 S I G M O D R E C O R D , Vol . 22, No. 1, M a r c h 1993

original journals while enhancing their utility through
image analysis and processing. Three versions are
maintained for each journal page: a bit-map of the
image, for display purposes; a text version, obtained
through optical character recognition, for text indexing
and retrieval; and a skeleton strucane version, that can
be used to interpret mouse cricks in particular regions
of the page, and also for retrieval by iroage content
(eventually). An initial prototype of the RightPages
system has now been moved outside the laboratory
and is undergoing field trials as a product.

Some of the database issues associated with
RightPages are standard information retrieval issues
for text. However, there are potentially sophisticated
image analysis, indexing, and retrieval problems
involved.

[1] G.A. Story, L. O'Oorman, D. Fox, L. L. Sehaper, and
H. V. Jagadish, "The RightPages Image-Based
Electronic Library for Alerting and Browsing" IEEE
Computer, Vol. 25, no 9, Sep 1992, pp. 17-27.

[2] C. Faloutsos and H. V. Jagadish, "Hybrid Index
Organizations for Text Databases," Proceedings of
EDBT, Vienna, Austria, 1992.

[3] H. V. Jagadish, "On Indexing Line Segments,"
Proceedings of the 16th International Conference on
Very Large Databases, Brisbane, Australia, Aug.
1990.

[4] H.V. Jagadish and A. M. Bruekstein, "On Sequential
Shape Descriptions," Pattern Recognition, 25(2),
1992, pp. 165-172.

[5] H.V. Jagadish, "A Retrieval Technique for Similar
Shapes," Proc. ACM-SIGMOD Int'l Conf. on the
Management of Data, Denver, CO, May 1991.

8. IMACSORJ. Brachman, P.G. Selfridge, L.G.
Terveen, B. Aitman, A. Borgida, F. Halper, T.
Kirk, A. Lazar, D.L. McGuinness, and L.A.
Resnick)

Organizations have begun to view databases as
potentially rich sources of new and useful knowledge.
Various approaches to "discovering" such knowledge
have been proposed. Our work identifies an important
and previously ignored discovery task that we call
"data archaeology". Data archaeology is a skilled
human task, in which the knowledge sought depends
on the goals of the analyst, cannot be pre-specified,
and emerges only through an iterative process of data
segmentation and analysis. We have built a system
called IMACS that supports this task with a natural,
object-oriented representation of an application

domain; semi-automatic population of the
representation from multiple, large databases,
including periodic updates; and a powerful and
flexible user interface that supports interactive
exploration.

[I] R.J. Brachman, P.G. Selfridge, L.G. Terveen, B.
ARman, A. Borgida, F. Halper, T. Kirk, A. Lazar,
D.L. McGuinness, and L.A. Resnick, "Knowledge
Representation Support for Data Archaeology,"
Proceedings of the First International Conference o n

Information and Knowledge Management, Baltimore,
MD, 1992.

9. Integrity Maintenance(T. Griffin, H. Trlckey, C.
Tuckey; early work by X. Qian)

AT&T's telecoromunications switch, the 5F_.SS,
contains a relatioaal database subsystem used for
controlling all aspects of the switch's operation. One
research project has designed and fit~:~plemented a
declarative language for expressing datahase
constraints. These constraints are automatically
compiled to checking code. In addition, update
constraints are generated from transaction
specifications to ensure that transactions do not leave
the database in a state violating the global integrity
constraint. This represents a tremendous improvement
over the former practice of expressing constraints in
English and manually translating them into checking
code.

[I] X. Qian, "An Effective Method for Integrity
Constraint Simplification," Proc. IEEE 4th lnt'l Conf.
Data Engineering, 1988.

[2] T. Griffin, H. Trickey, and C. Tuckey, "Update
Constraints for Relational Databases," submitted for
publication.

10. BBFS--Broadband Filesystem (Bruce K.
Hillyer, Bethany S. Robinson)

BBFS is a filesystem research effort to satisfy the
storage needs of communication- and computation-
intensive applications. The key idea is to adapt to the
performance and semantic requirements of new
applications via extensibility in the filesystem
application interface and behavior set. Conventional
filesystem calls (open, close, read, write, seek) accept
an additional argument containing a list of attribute-
value pairs. This provides interface extensibility and a
means for applications to offer performance hints. A
typed-file notion supports flexibility in the behavior
and properties of files.

S I G M O D R E C O R D , Vol. 22, No. 1, M a r c h 1993 87

[1] B. IC Hillyer, B. Robinson, "Aspects of the BBFS
broadband file.system", PDIS-91, Parallel and
Distributed Information Systems, Miami, December
4-6, 1991, p. 138.

[2] B.K. Hillyer, B. Robinson, "Issues in BBFS, a
Broadband Filesystem", USENIX File Systems
Workshop, Ann Arbor, May 21-22, 1992, pp. 129-
130.

11. SWOOP (A. Asthana, A. Biliris, H. V.
Jagadish, P. Krzyzanowsld, and Jon Solworth)

SWOOP (Store With Object-Orientation and
Parallelism) is a high performance, extensible storage
system. High performance is achieved through a small
carefully optimized kernel, which includes features of
parallelism and adaptive logical page size.
Exteamibility and encapsulation are achieved using
event and object-oriented programming. Files (or
storage containers) in the storage system are typed,
and this typing is distinct from and complementary to
any typing that may be present in the stored objects.
Object-oriented programming allows the structure to
be both hidden and exploited. Event programming
permits functions to declare interesting events as they
happen, and thus provide "hooks" for extensions
without compromising modularity.

[1] A. Asthana, A. Biliris. H. V. Jagadish, P.
IC,-zyzanowski, and J. Solworth, "SWOOP: An
Extensible High-Performance Storage System,"
submitted for publication.

12. SWIM (A. Asthana, M. Cravatts, H. V.
Jagadish, P. Krzyzanowski, V. Schumakoff,
with contributions from, among others, J. A.
Chandross, W. C. Fischer, and S. C. Knauer)

SWIM (Structured Wafer-Scale Intelligent Memory) is
a high bandwidth, multi-ported, storage system
capable of storing, maintaining, and manipulating data
within it, independent of any external processing units.
Up to hundreds of active storage elements, each
element having some storage and some associated
processing logic, function independently or in groups
to implement user-defiued objects and data structures.
Hundreds of transactions can concurrently be
processed by mutually exclusive sets of elements. A
fast response time is obtained due to the proximity of
the processing with the memory, a speci:~]iTed micro-
architecture, and parallelism. We currently have
working two prototype systems, each with sixteen
active storage elements.

One interesting consequence of the SWIM architecture
is that it becomes feasible to use transaction
concurrency control paradigms to perform dynamic
dependency ~n~lysis of a sequential program, in order
to execute the program in parallel. The sequential
program code is divided into small portions, and these
portions are concurrently executed as separate
"Wansactions". By using low-overhead concurrency
control mechanisms, we ensure that the conanrent
execution of the portions is logically equivalent tO the
sequential execution of the original program. Close to
linear speed-up has been demonsWated in some cases.

[1] A. Asthana, H. V. Jagadish, and S. C. Knauer, "'An
Intelligent Memory Transaction Engine,"
International Workshop on Database Machines,
Deanville, France, 1989.

[2] A~ Asthana, H. V. Jagadish, P. Krzyzanowski, and N.
Soparkar, "Using Concurrency Control to Parallelize
Programs," submitted for publication.

88 S I G M O D R E C O R D , Vol. 22, No. 1, March 1993

