

Version Periods

v-2
........................ I 1 I

. . . ‘s i:v-lf’p ?“...(”)? 9=8 ‘ -me

‘“”K;:?‘“””TT;i?l’
Figure 1: Version Periods and Association of Transactions to Version Periods

which are read only and which do not acquire locks, are
identified as such when they are started and that the Tu
transactions use locking to synchronize amongst them-
selves. We show that a maximum of only 3 versions of a
record need to exist at any point in time.

Three versions may exist because one record may be
needed to represent the stable state (for use by Tr trans-
actions), another one to represent the last committed value
that is not yet in the stable state, and a third one to repre-
sent the uncommitted state.

Assume that the data base system supports a direct access
path from a key to the associated data. Generally, the data
associated with a key is the record. This is the case with
systems in which the data is stored in the leaf pages of the
primary index, Every primary key’s value is required to be
unique. In DBMSS like System R, SQUDS and DB2, the
records are stored in separate areas of storage and each
record is identified by a record identifier (RID). In the in-
dexes of such systems, the data associated with a key is
the RID of the record containing the key value. If an index
is not a unique index, then multiple RIDs maybe associated
with a particular key value [Moha90a], For the following
discussion, the RID can be thought of as the primary key
since it is also unique. We discuss secondary indexes in the
section “2.2. Secondary Indexes”. When transactions are
started, they are assigned unique IDs. The IDs always in-
crease in value.

2.1. Data Structures and Operations

In the proposed transient versioning scheme, the data as-
sociated with a primary key is a structure as shown in Fig-
ure 2. The structure is a stack of three substructures. Each
substructure consists of 2 entries

TRN the ID of the transaction which created this version
PTR pointer to the data (record)

A PTR value of Oindicates that the corresponding TRN (> O)
had deleted the previous version of that record (i.e., the
record does not exist) or that that version never existed
(TRN -0), If there is only one version, then only substruc-
ture 1 has nonzero values. If a newer version is added,
then the contents of substructure 2 receive the data previ-
ously in substructure 1 and the information about the new
version goes into substructure 1, and so on. We assume
that initially there is a single version of each record and
that the TRN associated with that version is O.

In virtual storage, the DBMS maintains a list of uncommitted
Tu transactions (call the list UL - uncommitted list), and a
list of committed but not yet in stable state Tu transactions
(call the list NSL - non-stable list). In terms of the version
period diagram, NSL is a list of Tu transactions with version

v (assuming v is the current version), and UL is a list of
uncommitted Tu transactions which will have a version
greater than or equal to v (because they may commit during
version period v or later). Initially, both UL and NSL are
empty. A version of a record is defined to be the version
of the transaction (identified by TRN) that created that
record.

In the following, we describe the actions taken at various
stages of a transaction’s execution.

Start a Tu transaction: Insert the transaction number in UL

Read a record for a Tu transaction: Access the structure
corresponding to the submitted key and return the version
on the top of the stack (in substructure 1), This version
would have been created by the current transaction or by
a committed transaction (guaranteed by the normal locking
protocol).

Update a record (Tu transactions only): Locate the record
as in the Read operation above, and find TRN(l). If TRN(I)
is the same as the current transaction’s ID, then the update
can be made in place in the most recent version of the
record.

Otherwise (i.e., TRN(l) is not in UL), the version must have
been created through an insert of a new record or update
of a previously existing record by a committed transaction
and the current transaction must create a new version. Be-
fore the current transaction inserts its version into sub-
structure 1 and moves the other entries down the stack, it
examines the currently existing versions to see if any of
them should be discarded based on whether or not any Tr
transaction could be reading it now or may need it for read-
ing in the future. Note that locking ensures that the TRN(l)
transaction cannot be in UL unless it is the same as the
current transaction.

If TRN(l) is not in NSL also, then its version is the stable
version (i.e., it belongs to a Tu transaction with version
<- v-1) and all other (i.e., preceding) versions, if any, are
discarded. If TRN(l) is in NSLj then that version is kept as
it is the most recently committed value and it will be needed
for the future Tr transactions if the system were to switch
to the next version period (i.e., version period v + 1) before
the commit of the current transaction. Then, the next most
recent version is examined. If TRN(2) is in NS~ then that
version is removed since it is an old committed value that
is not used (and will not be used) in representing the stable
state and the TRN(3) version is retained since that must be
the stable version. If TRN(2) is not in NS~ then it must be
the stable version and is kept and the TRN(3) version, if it
exists, is discarded.

Note that it is enough if only the changed fields are recorded.
We call this feature Incremental veraionirtg. Removing an
old version might therefore mean combining two versions
together to get a full updated record. If incremental

125

Stack
Substructures

321

Key ----+

H

TRN - Creating
Transaction’s ID

PTR - Painter to
Data

Figure 2: Data Structure Providing Information About Dif.
ferent Versions of a Record

versioning is done, then multiple versions may have to be
consulted to get at the complete record in a given version
during a read operation.

Commit a Tu transaction: First, force write the commit
record to the log. Next, remove the transaction number
from UL and insert it into NSL Finally, release all the locks.
Releasing all the locks and removing the transaction num-
ber from UL are the only operations that need to be per-

formed for a transaction which did not modify the data base
in anyway (i.e., a read-only Tu transaction).

Abort a Tu transaction: Write an abort record to the log.
Remove the versions created by the transaction (i.e., pop
the stacks) during the undo of the transaction and then re-
move the transaction number from UL Release all the
locks.

Read a record for a Tr transaction: Find the most recent
version (substructure 1). If its TRN is in UL or in NSL con-
sider the next most recent version, until the stable one (i.e.,
the first one whose TRN is neither in NSL nor in UL) is
found. Note that the stable version might be the one in
which this record is to be considered a nonexistent one
(deleted or untreated). If both TRN(l) and TRN(2) are in UL
or NS~ then the version that is pointed to by PTR(3) is the
version that should be read since it must be the stable
version (i.e., there is no need to check if TRN(3) is in UL or
NSL).

Refresh stable version (Le., switch to a new version period):
Reset NSL to empty when no Tr transaction is active (in
the section “3. N Version Algorithm”, we describe a very
efficient method for determining when no Tr transaction is
active). It is this action that atomically makes all the most
recently committed versions of data become “visible” to
new read-only transactions.

If PTR(l) is zero, and TRN(l) is neither in UL nor in NS~
then the existing versions, if any, pointed to by PTR(2) and
PTR(3) can be garbage collected and the stack substruc-
tures can be freed by setting all entries to zeroes.

Note that the value of TRN(3) is never examined and hence
there is no need to store TRN(3). This way, we can reduce
the amount of storage consumed due to versioning. For
simplicity of presentation, we continue to show TRN(3) in
the following.

Figure 3 provides a self-explanatory example scenario to
understand the functioning of the algorithm. It illustrates
the reading and modification of a single record with key
1234 using several transactions. It should be clear from
this example that more than 3 versions are not needed.

2.2. Secondary Indexes

The method presented above is readily applicable to sec-
ondary index information. A secondary index is simply con-

Tran Type/ Primary Versions UL NSL
Tran#/ Key or (3) (2) (1)

ACTION Rec ID

(Stable state) 1234 004TRN () ()
009PTR

TW2 starts (2) ()
Tu/2 updates 1234 012 (2) ()

098

Tu/2 updates 1234 012 (2) ()
097

I I

Tr/1 starts I ... I (2) I ()

Tr/1 reads I 1234 I I
TRN(2) version

(Pointed to by 9)

Tu/2 commits ... () (2)

Tr/1 ends ...

Refresh 1234 012
097 () ()

Tu/3 starts ... (3) ii
Tut3 updates 1234 023 (3) ()

076

Tu/3 commits ... (3)

Tu/4 starts ,.. :) (3)

Tuf4 updates 1234 234 (4) (3)
765

J
T.12 ~t~ rts . . .

I r/2 reads 1234
TRN(3) version
[Pointed to by 7)

7./0 ends . . .

‘resh ,.. (4) ()

*9 ...

(

,,, -
Reff ---

Tr/3 staf.- , 1
,.+ I 12s4 I ITr/3 rea~=

TRN[2) version
, .-.

I II
(Poln~;d to by 6)

Tr/3 ends ...
TuJ4 ends ,.. (4)

Tu/5 starts ... & (4)

Tu/5 updates 1234 345 (5) (4)
654

Tu15 aborts 1234 034 () (4)
065

Tu16starts ... (6) (4)
Tu16deletes 1234 346 (6) (4)

650

I ... I ... I ... I ... I ... J

Figure 3: An Example Scenario

sidered as a unary relation where the only column contains
the concatenated key secondary key, prtmory key and
there is no other data (hence incremental versioning does
not make sense for secondary indexes). The only opera-
tions that need to be supported are insert and delete. Ad-
ditionally, the differences between versions of a key is only
the information about whether the key exists or not. There-
fore, the substructure becomes

(3) (2) (1)
911234 Q O 1 TRft

00 1 Flag - Information about
key’s existence

In the above example, 9 is the secondary key and 1234 is
the primary key (or RID). Since there is no other data as-
sociated with a secondary index entry, the existence flag
says whether in a particular version the index entry should

126

that it is not a member of UL This can be answered by

Tran Type/ I Index Versions UL NSL
Tran#l Entry (3) (2) (1)

ACTION

I (Stable state) I9112S4 IOOITRN () ()
OOIFlaa I

I Tu/2 starts I I I (2) I () I
TuJ2 updates 911234 012 (2) ()

(Secondary key 010
changes from 811234 002

9 to 8) 001

Figure 4 An Example Scenario for a Secondary Index

be considered to exist (Flag--1) or not (Flag-O). As before,
TRN(3) need not be stored since its value will not be exam-
ined. Assuming that there is a secondary index, Figure 4
illustrates the functioning of our algorithm for a portion of
the scenario illustrated in Figure 3.

This approach to dealing with index updates has the unex-
pected side benefit of avoiding the need for next key
locktng during key delete operations to handle the phantom
problem. Next key locking is discussed in great detail in
[Moha90a, MoLe92]. l%e approach of using logical key
deletions, rather than phystcat deletions, was proposed in
[Moha90b] aa a way to avoid next key locking during key
deletions. Applying the transient versioning approach to
indexes gives us that capability automatically since, for de-
leted keya, index entries exist at least until the deletion is
committed. The reader is referred to [Moha90b] for the
rationale on why, under these circumstances, there is no
need to do next key locking,

Note that the index entries do not directly refer to any par-
ticularversion of the referenced records and hence creation
or deletion of a version does not always require updating
the indexes. For example, if a new record version were to
be created due to an update operation, an index update
will not be needed if the update did not cause a secondary
key to change.

2.3. Implementation

UL must be implemented in a compact way to provide ef-
ficient support for the existence test. One such way is to
keep a bit map to indicate the status of transactions with
TRN > M. Over time, M’s value ia advanced. The bit vector
is made large enough to ensure that all transactions pre-
ceding M + 1 are neither in UL nor in NSL A similar tech-
nique ia used for representing NSL A third bit vector, called
NSUL, representing the set union of UL and NSL can be
maintained to make checking by Tu and Tr transactions
very eftlcient. The idea is to make the mapping between
the same bit position in all of the 3 vectors and a TRN num-
ber be the same. When NSL (the second vector) is set to
zero (i.e., when the version period is being switched), the
third vector is set to the first vector. When a transaction
starts. it sets the corresponding bits in the first and third
vectors. When a transaction commits, it resets the corre-
sponding bit in the first vector and acts the corresponding
bit in the second vector.

In fact, we do not need to use NSL at all! The only time we
use NSL in the algorithms is in the update record logic,
where we check if a transaction is a member of NSL, given

looking at NSUL Hence, we only need to keep UL and
NSUL. A latch (i.e., a semaphore) is associated with each
of these lists. Each of the latches ia acquired in the S or
the X mode depending on the kind of synchronization
needed for the operation being performed on the associated
list.

The proposed structure has a positive impact on logging
and locking:

● Tr transactions do not set Iocka and do not write log
records,

● If no intermediate save points (i.e., partial rollbacks) are
supported, old values (“before images’) of records them-
selves do not need to be logged by Tu transactions when
they modify the data base then, it is only necessary to log
the key or RID of a modified record, and the new values
(’after images”) of the modified fields. Even if intermediate
savepoints are supported, it is necessary to log the before
image of an updated record only when a transaction is up-
dating a record a second or a subsequent time (this should
be a rare event and in any case it is very easy to detect
when it is happening). After images are logged to support
media recovery and to avoid having to force modified data
to disk at commit time [M HLPS92].

● Tu transactions never get blocked by Tr transactions.

The method is amenable to on-line, asynchronous garbage
collection. When transaction activity is low, if a page is
modified, then all records on the page can be scanned for
superfluous versions, taking into account the UL and NSL
Iista (more precisely, the NSUL list), as in an update oper-
ation. When transaction activity is very low, a garbage col-
lection transaction can clean up a few pages at a time, This
will bring down the average number of versions in the data
base (this would be particularly appropriate for a dedicated
back-end data base machine [P MCLS90]). Since a secon-
dary index entry does not explicitly refer to versions of the
associated data record, secondary index entries can be
garbage collected independently of the corresponding data
records.

Physical clustering of data is preserved as long as each
page has enough free space for accommodating the up-
dated record. Additional page access is performed by
updaters only if the original page does not have enough
space for the new version of the record. When such an
overflow exists and incremental versioning ia being done,
garbage collection of the overflow record cannot be done
independently. It must be done by going through the pri-
mary page (i.e., the page that containa the pointer to the
overflowed record).

in this two version algorithm, when the version period is
switched, no Tr transaction is allowed to be active. Either
all the executing Tr transactions should be aborted or we
have to wait until they are completed before the switching
is done, While this is going on, new Tr transactions can
either wait or be converted to Tu transactions. After the
switching, Tr transactions are allowed to execute as usual.
If some Tr transactions are very long, then it is desirable
to allow gradual phasing out of these transactions when
the version period is switched. This requires the sydem to
allow Tr transactions of both the new version and the old
versions to be active simultaneously. In fact, in general,
we want many versions of Tr transaction to be active, so
that we can switch the version period while the system is
phasing out other version periods. The N version algorithm
described in the next section allows this.

127

3. N Version Algorithm

The N version algorithm allows Tr transactions of the cur-
rent version, the current version minus one, minus two, ...
minus (N-2) and Tu transactions to be concurrently active
in the system. Hence, the phasing out period for Tr trans-
actions, after switching version periods, can be nested N-2
times. The two version algorithm allows no phasing out
period, the three version algorithm allows one level of nest-
ing of phasing out periods, and so on. The stack size for
each record can range from 3 to N + 1 with the N version
algorithm, However, stack sizes less than N + 1 may cause
some Tu transactions to wait because there is no room in
the stacks for them to create newer versions. For a given
N, the higher the stack size, the lower is the probability of
waiting.

The algorithm uses a data structure, called versioddock

versi onbl ock
cur_v /* current version number “/
oldest-v /* version number of the 01dest

active Tr transaction *1
N /* max number of versions */

initially, cur_v and oldest_v are set to 1. The ID of the first
transaction must be greater than TRN of any record in the
data base. If all the records in the data base are initialized
to contain TRN 50, then the ID of the first transaction can
be 1. The latch future=v is used to serialize refresh opera-
tions and assigning bwth versions of Tr transactions. The
NSUL list, as before, contains the committed Tu transac-
tions of version v and the uncommitted transactions, We
call this list NSUL(V). We add a new list, called NSUL(V-IJ
which contains the committed transactions of versions v-1,
and v, and the uncommitted transactions. So, a Tr trans-
action of version v needs to check only NSUL(V), and a Tr
transaction of version v-1 needs to check only NSUL(V-I).
More generally, we need NSUL(V), NSUL(V-I),
NSUL(V-(N-2)). The bits in all the NSULS are initialized to
contain zeroes assuming that all the records are initialized
to contain TRN -O,

In the following, we describe the actions taken at various
stages of a transaction’s execution.

Start a Tr transaction: The current version is assigned as
the birth version of this transaction. The birth version is
used for reading the record with the appropriate version.
Also, the version period associated with the birth version
is latched in share (S) mode. This allows us to phase out
this version period later by latching this version period in
exclusive (X) mode, The X latch will be granted only when
all Tr transactions of this version are completed.

if N = 2 then latch (future_v, S);
/Wait if version period is changing & N=2*/
latch (versionblock, S);
i f N = 2 then unlatch future_v;
birthversion = cur v;

/* remember the hi rth version */
latch (birthversion, S);
unlatch versionblock;

Note that while a version switch is in progress and N -2,
starting of new Tr transactions will be delayed due to the
latch acquired on future_v.

Read a record for a Tr transaction: Read the most recently
created version of the record whose version is Zess than
the birth version of the Tr transaction That is, we need to
find the version whose TRN is not in NSUL(birthversion).

This lookup of NSUL must be done while holding an S latch
on it.

Commit or abort a Tr transaction: Release the S latch on
the birth version.

Start a Tu transaction: Add this transaction to UL and all
NSULS (i.e., set the bit associated with this transaction in
all these lists while holding an S latch on UL).

Read a racord for a Tu transaction: Same as the one for the
2 version algorithm.

Update a record (Tu transactions only): The logic for updat-
ing a record is specified in the following pseudo code. The
logic for delete and insert is similar, and ia not shown below.
The first update of a record within a transaction requires
that a new record be pushed onto the stack. First, the stack
is garbage collected, and then, if there is room, the updated
record is pushed. Otherwise, the stack is full, which happens
only if the stack size is less than N + 1, and the transaction
has to wait until the element at the bottom of the stack is
not needed anymore. This happens when all the Tr trans-
actions with versions up to and including the version of the
element before the bottom of the stack (i.e., the last but
one element) are finished,

Update transactions try to get rid of extra elements in the
stack to keep the data base compact. This is done in two
ways. l%e oldest_v pointer is moved to the oldest version
period with active Tr transactions so that the unneeded
elements can be deleted from the stack. Also, if there is
more than one element in the stack belonging to the same
version period, then only the latest one is kept.

if TRN(top) = my_transid then
update the record on the top of the stack

else
Push_careful;
insert the updated record on the top of the

stack with TRN = my_transi d;
endi f

Push csreful I
/* T~is routine does a garbage collection of the

stack, and if the stack is full , it waits
until a slot becomes available. Note that
this routine is always called for the first
update of each transacti on. */

garbage_col lect_stack;
if the stack is full then

/* This happens only if stack size is cN+l.
For N = 3 and a stack size of 3, at this
point, the stack would look as follows:

top: a record with version v
middle: a record with version v-1
bottom; a record with version < (v-1)

bottom of the stack (version <(v-l)) is
needed for Tr transactions of version
v-1. We have to wait until those
transactions terminate. *I

tmpvbu = version of the element just above
the bottom of the stack;

latch (versionblock, X);
tmp_ol dest_v = 01dest_v;
unlatch versionblock;
k ❑ tmp_ol dest_v;
repeat

if k > tmpvbu then exit;

128

/%ait for completion of k version period*/
latch (version period k,X);
latch (versionblock,X);
if k c oldest_v then

last_v = oldest_v;
unlatch versionblock;
unlatch version period k;
k = 1ast_v;

else /* kmust equal oldest_v */
oldest-v = k + 1;
unlatch versionblock;
unlatch version period k;
k = k+l;

endi f
endrepeat;

garbage_collect_stack;
/* now stack is guaranteed not to be ful 1 */

endi f
push the stack;

Garbage_collect-stack I
latch (versionblock,X);
call move oldest_v;
tmp ❑ ver=ionblock;
unlatch versionblock;
remove all elements of the stack except

the latest record of version tmp.cur_v,
the latest record of version tmp.cur_v-1,

. . . .
the latest record of version tmp.oldest_v, and
the latest record of version c tmp.oldest v;
/* note that these are done after unl atch~ng

the versionblock to prevent a hot spot on
versionblock, particularly because an 1/0
may be involved to remove an overflow
record */

Move-oldest-v!
/* move oldest_v ahead if possible */
for k = oldest_v to cur v

/* check if the versi;n k is not needed */
i f k c cur_v then

conditional latch (version period k,X);
if latch granted then

01dest_v = k+l;
unlatch version period k;

else exit;
endi f

else /* k = cur_v */
oldest-v = cur_v;
exit;

endi f
endfor

CommitaTutransaction. Sameastheone forthe2version
aigorithm (since NSL is not being maintained, oniy UL
needs to be changed and this is done while hoiding an S
latch on UL).

Abort alutransaction: Same astheone forthe2 version
algorithm.

Switchtheversrion period(Refresh): Thisoperationis used
to increment the vaiue of cur_v (current version number)
itby 1. if the oidestacttve version period is N-2 versions
behind the current version (i.e., oldest_v - cur_v - (N-2)),
then itwaitsuntii ail theTrtransactions oftheoldestver-
sion period are compieted before starting a new version.
After switching the version, itmoves the oldest_v pointer

to the oldest active version period, thus ailowing the data
in the stack to be garbage collected. Note that attempts
aremadeto advance oldest_vduring updatesbyTutrans-
actions also. However, it is necessary todo it here too
because notall Tu transactions are guaranteed to update
the data base and thereby cause oldest_v tobe moved
ahead.

latch (versionblock,X);
if (cur_v - oldest_v) = (N-2) then

/* 01dest version period must be
phased out; all Tr transactions
of the oldest version tmst end; */

unlatch versionblock;
latch (future_v,X);
/*queue behind other refreshers */
latch (versionblock,X);
tmp = versionblock;
unlatch versionblock;
/* wait for Tr transactions with

version = tmp.cur_v - (N-2) to finish */
latch ((tmp.cur_v - (N-2)),X);
latch (versionblock,X);
unlatch version period (tmp.cur_v - (N-2))
unlatch future_v;

endi f
latch(UL,X);
NSUL(cur_v+l) = UL;
unlatch UL;
cur-v = cur_v + 1;
/* set oldest_v to oldest active version */
call move_oldest v;
/* see the routi~e under update record */
optionally, garbage collect unneeded bits

in all the lists while holding X latches
on all of them;

unlatch versionblock;

Anextremecase ofthisalgorithmis tohavealarge N, and
tryto switch the version atthe end ofevery update trans-
action. Under these conditions, Trtransactions will always
get the most up-to-date data as of the start of such trans-
actions. Note that, as N becomes iarger, the number of
NSUL lists will also become larger, Also, the width of NSULS
will become larger because there must beonebit for each
transaction from theoldestversion topresent,even ifthey
are nonactive. As aresult, the NSULs’ memory consump-
tionwill grownortlinearly (poweroftwo). Also, commit pro-
cessing will become more expensive, because allof these
lists would have to be updated. However, theresourcere-
quirementsdo not change much for low valuesofN.

4. Distributed NVersion Algorithm

The distributed N version algorithm is very similar to the
nondistributed N version aigorithm presented in the previ-
oussection. Here, alltransactions preassigned globalver-
sion numbers. However, this does not force the current
version numbers of ail the nodes to be synchronously
changed. Different nodes can have different current ver-
sionsata given time. In fact, each node candecideindi-
viduallywhatthe valueofNshouId beforthatnode. Switch-
ing the current version is autonomously decided by each
node. However, tominimizetransaction deiays and aborts,
the current versions of different nodes must becioseto
one another.

The version of aTu transaction is decided byitsortgtn
nodejuat before that node initiates the two phase commit

129

protocol (for details about the current industry standard
Presumed Abort variant of thetwophase commit protocol
thereader isreferred to[MBCS91, MoLo86]). All theother
nodes where the transaction executed (i.e., the participant
nodes) are informed of this value and those nodes use the
same value for this transaction. If the version assigned is
found to be less than the current version of a participant,
then the participant votes for the abort of the transaction.
The originator can try to assign a proper version to a Tu
transaction to minimize this. This can be done by keeping
track of the approximate versions of the participants during
the course of interactions with other nodes, and assigning
the maximum version number of the participant (or slightly
higher) to minimize abort due to version number obsoles-
cence. Note that a future version can be assigned to a Tu
transaction. This is particularly necessary if the maximum
version number of the other nodes is greater than the cur-
rent version of a node. After commit of a future transaction,
its locks are held until the current version is moved ahead
to catch up with it.l Note that if the locks are released ear-
lier, Tu transactions of current version may read the un-
locked record whose values should be visible in future only.
During recovery, the locks of the future committed trans-
actions must be reacquired, the same way as for prepared
transactions [M HLPS92].

The version of a Tr transaction is decided by its origin node
at its start time. All the participants use this version (birth
version) to read the correct record version for this trans-
action. A read transaction may come too early or too late
to a node with respect to the current (cur_v) and last
(oldest V) version periods of the node. In this case, the Tr
transac~on is aborted. This can be given as a hint to the
process that decides on version period switching at the
involved nodes to bring their versions closer to each other.
The timing of version switching (refresh) is the user’s re-
sponsibility (although it can be made periodic with the sys-
tem’s assistance) and that aspect is not discussed here.

The nondistributed case is a special case of the distributed
case. There is no significant overhead if the more gener-
alized distributed algorithms are used for the
nondistributed case also.

Each node has its own set of UL and NSUL lists which it
maintains autonomously. It is possible for a node to commit
a Tu transaction which has started in another node and has
a version > cur v. This transaction has a version in the
future. The defin~tion of the UL list is enhanced to include
all the transactions that belong to the future and uncom-
mitted transactions (which may also belong to the future).
Also, a new list, called H. (Prepare List), is added. PL con-
tains the list of transactions that are in the prepared state
of two-phase commit or that have committed but have been
assigned future version numbers. The format of this list is
the same as that of the other lists.

In the following, we describe the actions taken at various
stages of a transaction’s execution.

Start a Tu transaction: Same as the one for the
nondistributed case, both at the origin and the participant
nodes.

Read a record for a Tu transaction: Same as the one for the
nondistributed case.

Update a record (Tu transactions only): Same as the one
for the nondistributed case.

During two phase commit of a Tu transaction:

. Start of commit protocol at the origin node of a Tu trans-
action: Assign a version >- cur_v to this transaction.
Send the assigned number in the prepare messages to
the participants.

. Unilateral abort at a participant node of a Tu transaction:
Same as the one for the abort of a Tu transaction in the
nondistributed case,

● Processing of a prepare message at a participant node
of a Tu transaction when participant is voting read.only
Release locks. Remove the transaction number from UL
while holding an S latch on UL

● Processing of a prepare message at a participant node
of a Tu transaction when participant 1sconsidering voting
yes (i.e., willing to commit): -

latch (versionblock, S);
i f transaction version < cur_v
then

unlatch versionblock;
fol 1ow abort 1ogi c and vote no;

else
i f transaction version ❑ cur_v then

remove i t from UL
else /* transaction version > cur v */

remember its version i n its transaction
control block;

endi f
set the correspond ng bit i n PL;
unlatch versionblock;
do any required 2PC logic (e. g., forcing

prepare 1og record), remembering the
version number as part of prepare
record and vote yes;

endi f

● Processing during commit (phase two of commit protocol)
at a participant node of a Tu transaction:

do any required 2PC logic (including logging
of comnit record with version number),
but do not rel ease 1ocks or delete the
trans control block

latch versionblock;
i f transaction version <= cur v

then
remove the transaction
unlatch versionblock;
release 1ocks;
delete the transaction

else
unlatch versionblock;
remember the transaction

number i n 1og records;
go to sleep;

/* this process will be

from PL;

control block;

1ocks and version

woken up by the
version switching process when the
version of this transaction is equal
to the current version of the node.

1 Note that the read (S) locks of Tu transactions can be relessed during the prepare phaaeand hencethe locks that would have to continue to be held for a future
Tu transaction wiff be only the write (X) locks.

130

The locks will be released then. *I
/* after wake up ‘/
latch(PL,S)
remove the transaction from PL;
unlatch PL;
release 1ocks;
delete the trans control block;

endi f

. Processing during abort(phase two ofcommit protocol)
ataparticlpant node ofaTu transaction:

do any required 2PC logic;
remove transaction from PL and UL while

holding S latches on them;
delete the transaction control block;
release 1ocks;

Start aTrtransaction:

. At the origin node: Assign the birth version the same
wayasfor the nondistributed case.

● Atapartlcipant node (thisis done at the firstvisitofaTr
transaction to a participant node):

latch (versionblock,S);
if birthversion c oldest_v or

birthversion > cur_v then
abort; /* out of range version */

else
/* check to see if the oldest version

period is being phased out */
conditional latch (birthversion,S);
if latch not granted then abort;

endi f
unlatch versionblock;

Read a record for aTrtransactlon:

Find the first element in the stack with
version < birthversion;

latch(PL,S);
check if transaction of version is
unlatch PL;
If transaction is in PL

then abort
/* An alternative is to wait unti

DreIIared transaction ends, but

n PL;

the
this

may” take a long time, and-we prefer
that the read transactions not wait. *I

else read this version;
endif

Commit or abort aTr transaction: Release the Siatch on
thebirthversion ataiithenodes visited bythetransaction.

Switch theversion perlod(Rafresh):

do the same as in the nondistributed case
except unlatching versionblock at the end;

for each transaction in PL
if the transaction version = the new current

version then
/* i.e., this was a future transaction

and now it is current */
remove from UL;
if transaction is cotnnitted then

wake up its process;
/* itwill release its locks &return */

endi f

endi f
endfor

take a checkpoint and log NSULSand PL
unlatch versionblock;

Restart Recovery: In the nondistributed case, thelogicfoi-
Iowed during recovery isquitesimple. The NSULsand UL
areinitiaiized tozeroes, the transaction number counteris
assigned the highest value seen in the log, andcur_v and
oldest-v are initialized to 1. In the distributed case, we
need to checkpoint Cur_v, NSULs and PLduring aversion
switch operation. During the analysis pass of recovery,
these checkpointed NSULand PLlists are brought upto
dateasoftheend ofthelog (see [MHLPS92] foradetailed
description how this is done for bringing a similar data
structure up to date). At the end of restart recovery, UL is
made to have a 1 for each transaction in PLwhich hasa
future version and a Ofor the other transactions. Oldest_v
andCur_v are initialized tothe vaiueofCur_v found in the
Iastcheckpoint record before systemfai iure. Thetransac-
tionnumbercounter needs to reinitialized carefully since,
with Presumed Abort, [MBCS91, MoL086] even though re-
mote nodes know about a transaction the origin nodeof
thetransactionmay nothaveanylog records. Under those
conditions, itwould beincorrectto initialize thetransaction
numbercounter tobejustonehigher thanthehighest vaiue
found in the log records oftransactionsof thenode’s log.
In R*, we made sure that we addeda constant Ktothe
highest value found in the log and initialized the counter
withthatsum.At checkpoint time, thevalueofthe counter
waslogged and acheckpointwas taken ifcloseto Ktrans-
actionshave begun since the last checkpoint.

5. Related Work

Other approaches for supporting transient versioning are
presented in[AgSe89, BaHR80, BoCa92,CFLN82, ChGr85,
Reed78,StRo81,Weih87] .Noneofthesemethods dealwith
versioning index data. [BaHR80] uses acomplexmecha-
nism.lt requires thecontinuous andcostly maintenance of
agraphwhichtracks thedependencies amongtransactions
to avoid nonseriaiizable executions of transactions (of
course,thisgraph turnsouttobeusefui fordetectingdead-
Iocks also). Even read-only transactions are required to
incur the overhead of acquiring Iockson the objects that
they read (of course, readers will be granted those locks
without waiting) andthecostof analyzing thedependency
graph to determine which versionof an object shouldbe
read. Sometimes non-read-only transactions might be
rolled back to preserve consistency of data. Read-oniy
transactions are never rolledback. Since only atthe most
2versionsofany data item aremaintained, sometimesan
updater will bedeiayed from committing by a read-only
transaction that is reading the prior version ofa record
updatedbythe former. This approach aisoincurs additional
iockreiated overhead for update transactions, compared
to singie version schemes. [BaHR80] does not discuss
space management, the structures used to keep trackof
Iocationsofdifferent versionsofanobject, partialrollbacks,
incremental versioning, etc.

[Reed78] uses timestamps to do synchronization. It re-
quires even read-oniy transactions to perform updating of
control information (timestamp) associated with data items.
It allows any number of versions of an object to be created,
thereby potentially causing space management probiems.
Thegarbage collection problem is not addressed. Reads
may bedeiayed and update transactions maybe aborted
to avoid serializability violations.

131

[StRo81] may block or abort readers under some circum-
stances and may delay update transactions from commit-
ting until readers of previous versions of objects terminate.

[CFLN82] allows any number of versions of an object to be
created, thereby potentially causing space management
problems. It does versioning at the page level, thus neces-
sitating copying of an entire page (to a slot in the “version
pool”) even if only a small part of it got changed. In addition
to the pathlength overhead, this results in unnecessary
wastage of buffer and disk space also. Furthermore, this
guarantees that if a read-only transaction does a read of a
logical page which has an uncommitted version then that
transaction would have to look at at least one additional
page before it can find the version of the page that it should
read (this could cause an extra 1/0). This happens because
the different versions of a page are chained and each ver-
sion is identified by the ID of the transaction which created
it, and the read-only transaction is required to read the
most recent version of the page that was created by a trans-
action that had committed by the time the read-only trans-
action had started its execution. For this reason, every
time a read-only transaction starts a committed transaction
list (CTL) is associated with it. The page level versioning
using a “version pool” also guarantees that clustered ac-
cess to physically contiguous pages for read-only transac-
tions, especially long ones, is not possible. The way garbage
collection is performed may cause wastage of space in the
“version pool”. Every update transaction is required to
keep track of the slots that it has used in the %ersion pool’,

As it should be clear, the method of [CFLN82] supports
only page level locking. Page level locking even for index
data would lead to an intolerable level of concurrency
[MoLe92]. That method requires all modifications made
by a transaction to be forced to disk at commit time. Since
versioning is being done at the page level and since before
images of modified records are not logged, before a mod-
ified version of a page with uncommitted changes is put on
disk (due to a buffer ‘steal”) the previous version of that
page, which will be in the “version pool”, must be forced to
disk. This is a costly operation. Recently, major improve-
ments to the above scheme were presented in [BoCa92].

[ChGr85] extends the scheme of [CFLN82] to the case of
distributed read-only transactions. This algorithm causes
the CTL of a given site to be transmitted in all the prepare
and commit messages sent by that site. l%is means that
read votes cannot be used to avoid the second phase of
commit processing as in the efficient commit protocols of
[M BCS92, MoL086]. Sites that receive CTLS from other
sites merge them with their own to create new versions of
their CTLS. If one does not want a read-only transaction to
be aborted due to the premature garbage collection of the
data it needs at a remote site, the set of sites that the
read-only transaction will visit needs to be known in ad-
vance and each of those sites needs to be queried first to
get its CTL before the read-only transaction starts. The
union of the received CTLS is transmitted to all the retrieval
sites and is used by the transaction to determine the ver-
sions of data it should read. Once the retrieval sites com-
municate their CTLS they are prevented from garbage col-
lecting the snapshot of the data defined by the CTLS. The
algorithm has the overhead of CTLs having to be maintained
on stable storage. CTLS could be pretty big, The paper
does not say how premature garbage collection can even
be detected.

The methods proposed by Weihl in [Weih87] are quite com-
plex and they make read-only transactions become

updaters since some information about those transactions
is remembered at the objects that they read. They are ex-
pensive also because they require that update transactions
revisit at commit time all the objects that they accessed in
order to assign them the timestamps of the modifying trans-
actions or to store some information about read-only trans-
actions. For distributed transactions, this requirement rules
out the important read-only optimization of commit proto-
cols like Presumed Abort and the releasing of read locks
during the prepare phase (phase 1). Even as a read-only
transaction begins its execution, one of the methods re-
quires that the list of all the objects that the transaction
might access be known. These objects must be visited at
the beginning, during the execution and again at the end
of the read-only transaction!

The method that probably comes closest to ours is the one
described in [AgSe89]. An update transaction is assigned
as its version number (and the transaction number) a
unique number which represents its position in the serial-
ization order. A read-only transaction is assigned, as its
version number, a number such that al Z update transac-
tions with version numbers less thanthat number have
terminated. When it reads, it reads that version of an object
which has the highest version number that is less than the
query’s version number. There are some significant differ-
ences between that method and our method. That method
requires deferred updating since all versions created by a
transaction are identified with the transaction’s version
number and the transaction does not get its number (for
the locking approach) until it terminates. It does not provide
user control over the degree of versioning. Nor does it
have the concept of version periods and user control over
the switching of version periods. No descriptions have been
given about the unit of locking, the chaining of versions of
an object, and garbage collection of unwanted versions.

Prime and Oracle are reported to have implemented, in
their commercially available products, support for transient
versioning. The details of the employed methods have not
been published to our knowledge. A very brief description
of a record-level transient versioning scheme employed by
DEC is presented in [RaRe91].

6. Summary and Conclusions

Our method for transient versioning is characterized by
its flexibility and its efficiency. The following items amplify
these characteristics.

1.

2.

3.

4.

5.

6.

Read-only transactions that do not mind reading an
old version of data do not acquire any locks, thereby
not encountering any waits caused by concurrent
updaters.
Distributed data access without locking is also sup-
ported efficiently.
Read-only transactions do not update any control in-
formation (e.g., timestamps) associated with data
items read by them, unlike in some other multiversion
schemes.
Read-only transactions are never forcibly rolled back
by the system, except possibly in the distributed case
in order to avoid long delays or because a read-only
transaction’s version is too old.
Record level locking by update transactions is sup-
ported.
Recovery can be performed by using shadow pages
and logs, as in System R [GM BL81], or write-ahead
logging, as in ARIES [MHLPS92].

132

7.

8.

9.

10,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

In-place updating of data in the buffer pool and on disk
is possible even before the end of a transaction. That
is, there is no need for deferred updating or the use of
the no-steal buffer management policy.
There is no need to force to disk all modified pages at
commit time,
Partial rollbacks (i.e., intermediate savepoints) are also
supported.
No transaction is required to predeclare the set of data
items that it will read or write.
[fat all non-read-only transactions are forcibly roiled
back in the nondistributed case it will only be due to
deadlocks and not due to the support of multiversions
by the system. In the distributed case, a rollback could
happen if the origin node were to assign aversion num-
ber that is less than the current version in a participant
node.
The maximum number of versions maintained by the
system can be configured autonomously by the differ-
ent nodes. In fact, the value for a given node could be
changed even dynamically (for space reasons, we did
not describe here how this is done).
Version switching can happen even when update trans-
actions are in execution.
Incremental versioning can be performed to reduce
increases in storage used due to versioning.
Support for record level and incremental versioning,
and the tunability of the maximum number of versions
should enable our method to better preserve intra- and
inter-page clustering amongst related records com-
pared to the other methods, especially the ones that
support only page level versioning.
Reduction in log volume is possible since before image
of updated fields (or of complete record during a dele-
tion) need not be logged, except when the same record
is being updated more than once by a transaction.
Asynchronous garbage collection can be performed by
one or more background processes.
There is no need to assign timestamps to update trans-
actions when they begin. The serialization order
amongst conflicting such transactions is determined
dynamically.
Transient versioning is supported for indexes also.
This, in turn, allows next key locking to be avoided dur-
ing key delete operations,
For Tu transactions, high concurrency approaches like
cursor stability (degree 2 consistency of System R) and
locking overhead reducing techniques like
Commit_LSN [Moha90b] are still applicable.

Since a transaction ID is associated with each version of a
record, the method does not permit a single record to con-
tain the uncommitted updates of multiple transactions. Sit-
uations like the latter would arise if semantically-rich modes
of locking (e.g., increment/decrement type locks) were to
be used in the DBMS to increase concurrency even further
by taking advantage of the commutativity properties of
transactions’ operations. This is a topic for future research.

7. References

AgSsB9 Agrawal, D., Sengupta, S. Modular Synchronization in
Multi version Databases: Versfon Control and Concur-
rency Contro 2, Proc. SIG MOD International Conference
on Management of Data, Portland, May 1989.

BaHR60

BoCa92

ChGrS6

CFLN62

GMBL61

MBCS91

MHLPS62

Moha90a

Moha90b

MoLe02

MoLOB6

PMCLS60

RaRe91

Reed78

StRc61

WeihB7

Bayer, R., Heller, H., and Relser, A, Puru2 lel ism and
Recovery in Data base Systems, Transactions on Data-
base Systems, Vol. 5, No. 2, June 1980.
Bober, P,, Carey, M. On Mtxing Queries and
Transact ions Via Multi vers tan Lacking, Proc. 8th ln-
tematlonal Conference on Data Engineering, Tempe,
February 1992.
Chan, A., Gray, R.Implementing Distributed Read-Only
Transact ions, IEEE Transactions on Software Engineer-
ing, Vol. SE-11, No. 2, February 1985.
Chan, A., FOX S., Un, W-T., Norl, A., and Rles, D. The
Implementation of An Integrated Concurrency Control
and Recovery Scheme,Proc. SIGMOD International Con-
ference on Management of Data, Orlando, June 1982.
Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorle,
R.,Price, T., Putzolu, F.,Tralger, 1.The Recovery Manager
of the System R Database Manager, ACM Computing
Surveys, Vol. 13, No. 2, June 1981.
Mohan, C., Britton, K., Citron, A., Samarss, G.
General tzed Presumed Abort: Marrying Presumed Abort
and SNA’s LU 6. Z Consnit Protocols, IBM Research
Report, IBM Almaden Research Centerj November
1991.
Mohan, C., Haderle, D., Lindsay, B., Plrahesh, H.,
Schwarz, P. ARIES: A Transact ian Recovery Method
Support ing Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging, ACM Transac-
tions on Database Systems, Vol. 17, No. 1, March 1992.
Also available as IBM Research Report RJSS49,IBM
Almaden Research Center, Janusry 1989.
Mohan, C.ARIES/KVL: A Key-Value Locking t4ethod for
Concurrency Control of hlt tact tan Transactions
Operating an B-Tree Indexes, Proc. 16th International
Conference on Very Large Data Bases, Brisbane, Au-
gust 1990. A different version of this paper is available
as IBM Research Report RJ7006, IBM Almaden Re-
search Center, September 1989.
Mohan, C. Conmnit-LSN: A Novel and Simple Method for
Reducing Locking and Latch ing in Transaction
Processing Systems, Proc. 16th International Confer-
ence on Very Large Data Bases, Brisbane, August
1990. Also available as IBM Research Report RJ7344,
IBM Almaden Research Center, February 1990.
Mohan, C., Levine, F. ARIES/IM: An Efficient and High
Concurrency Index Ilanagement Method Using
Write-Ahead Logging, Proc. SIGMOD International Con-
ference on Management of Data, San Diego, June 1992.
A longer version Is available as IBM Research Report
RJS646, IBM Almaden Research Center, August 1989.
Mohan, C., Lindsay, B., Obermarck, R. Transacttan
Management in the R* Distributed Oata Base Management
System, ACM Transactions on Database Systems, De-
cember 1986,
Plrahesh, H., Mohan, C., Cheng, J,, Uu, T. S., Sellnger,
P. Parallelism in Relational Data Base Systems:
Architectural Issues and Destgn Approaches, Prcc. 2nd
International Symposium on Databases in Parallel and
Distributed Systems, Dublin, July 1990. A longer ver-
sion is available as IBM Research Report RJ7724, IBM
Almaden Research Center, October 1990.
Raghavan, A., Rengarajan, T.K. Database Avai Zabi 2ity
for Transact tan Processing, Digital Technical Journal,
Vol. 3, No. 1, Winter 1991.
Reed, D. Naming and Synchronization in a
Decentralized Computer System, PhD Thesis, Technical
Report MITJLCSITR-205, MIT, September 1978.
Stearns, R.E., Rosenkrantz, D.J. Distributed Datobase
Concurrency Controls Using Before- Values, Proc.
SIGMOD International Conference on Management of
Data, Ann Arbor, April 1981.
Weihl, W. Distributed Version Management for
Read-Only Act ions, IEEE Transactions on Software En-
gineering, Vol. SE-13, No. 1,January 1987.

133

