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Abstract 

Current data managers support secondary 
and/or primary indexes on columns of relations. In 
this paper we suggest the advantages that result 
from indexes which contain only some of the pos- 
sible values in a column of a relation. 

1. INTRODUCTION 

Most commercial data managers support 
indexes on columns of data base objects. For rela- 
tional systems, such indexes are on columns of 
relations and may be primary (or clustered) as well 
as secondary (unclustered). In addition, both 
hashed and B-tree indexes are available on various 
commercial offerings. In older systems, such as 
IMS, indexes on fields in segments are provided as 
weU as indexes which contain an entry for each 
segment giving the value of a field in a parent or 
dependent segment [DATE83]. Such indexes, 
which contain information relevant to more than 
one type of object are somewhat analogous to the 
join indexes proposed by [VALD87] and to the 
links in System R [ASTR76]. 

However, it appears that few people have 
suggested indexes on less than a complete column. 
In this paper we indicate the characteristics of such 
indexes and the uses to which they can be put. 
Section 2 discusses the composition of partial 
indexes, and then Section 3 turns to uses for them 
in normal data processing. We discuss the idea in 
the context of a relational data base system, though 
it appears to be equally useful in a DBMS for any 
data model. 

2. PARTIAL INDEXES 

2.1. Specification 

We propose that a data manager accept an 
indexing command of the form: 

create index-type INDEX on relname 
(column-name) where qualification 

This stylized syntax omits details (such as the fill 
factor and whether one or more compression 

techniques is to be used). For example: 

create B-tree INDEX on EMP (salary) 
where salary < 500 

create hash INDEX on EMP (salary) 
where age = 50 

create B-tree INDEX on EMP (salary) 
where age = 50 and salary < 500 

The first example suggests a salary index only for 
those employees with salaries under $500. The 
second example would build a hashed salary index 
for employees with ages equal to 50 while the third 
would build a B-tree index for employees satisfy- 
ing both conditions. 

We will assume that the qualification does 
not contain join terms or aggregates. Moreover, it 
is assumed to be a conjunct of simple terms, i.e: 

i-clause-1 and i-clause-2 and ... 
and i-clause-m 

where each clause is of the form 

field operator constant 

Hence, the qualification can be evaluated for each 
tuple in the indicated relation without consulting 
additional tuples. 

Each index is assumed to use a collection of 
fields, F1,. .... Fn as the organizing keys. Hence, 
the DBMS is expected to build the index structure 
using these keys. Each field Fi may or may not be 
mentioned in the qualification associated with the 
index. The second example above is an index 
where the organizing field is not mentioned in the 
qualification. 

We will also assume that B-trees and hash- 
ing are the access methods that are of interest. 
However the ideas all generalize to other access 
methods using techniques along the lines of 
[STON86a]. 

2.2. Query Optimization and Execution 

A query optimizer can use such indexes with 
only modest extensions. We first assume that the 
user query is processed into disjunctive normal 
form and that each disjunct is treated as a separate 
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query. Hence, each query to be processed has a 
qualification of the form 

clause-1 and clause-2 and ... 
and clanse-n 

We will also ignot~ the presence of aggregates in 
user commands.  

For each man of a relation which the optim- 
izer investigates performing, it must first ascertain 
which indexes can be used. Two tests must be run, 
one on index usability and one on predicate inclu- 
sion. The usability test is the same as the one 
required in [SELI79]. Specifically, a hash index is 
usable if every organizing key is mentioned in the 
predicate of the user's query in a clause of the 
form: 

field = constant 

A B-tree index is usable if there exists a K such 
that all organizing keys to the left of the Kth key 
have the property that they appear in a clause in 
the user query of the form: 

field comparison-operator constant 

The predicate inclusion . must ascertain 
for those usable indexes which ones have a predi- 
cate that includes the predicate in the user query. 
In particular, an index with qualification, IQUAL 
includes a user query with a qualification, QUAL 
if: 

IQUAL contains QUAL 

For example, if a user performs the query: 

retrieve (EMP.name) 
where EMP.salary < 400 

then the first index includes this query while the 
other two do not. 

A fast test for this inclusion property is the 
following. Consider all the fields mentioned in all 
clauses of the user query. An index is non 
inclusive for the query if its qualification contains 
any field not mentioned in the user query. For the 
remainder of the usable indexes, we must perform 
a further check to ascertain which ones have the 
inclusion property. Specifically, an index includes 
a user query if for each clause in the index, i- 
clause-j, there exists a clause in the user query, 
clause-u, such that 

i-clause-j contains clause-u 

This test can be run in a straight forward w:ly for 
the comparison operators which acccler:~tc B-tree 
and hashing access. 

If several indexes are usable and have the 
inclusion property, the optimizer must now choose 
the most profitable one to use. It can use 

straightforward generalizations of the computa- 
tions in [SELI79]. Consider a hash partial index on 
organizing keys, F1 .. . . .  Fn. Because the index is 
usable, there exist clauses in the user query, Q(F1), 
.... Q(Fn), each with the property noted above. 
Also, some of the organizing keys may be included 
in a clause in the predicate for the partial index. 
Let these clauses be IQ-1 ..... IQ-j and let: 

user-clause-selectivity = selectivity 
[Q(F1)] * ... * selectivity[Q(Fn)] 

partial-selectivity = selectivity 
[IQ-1] * ... * selectivity[IQ-j] 

The estimated number of data records examined by 
using this index is therefore: 

E = index-cardinality * user-clause- 
selectivity / partial-selectivity 

E can be used in the normal way by a conventional 
optimizer when making access path decisions. For 
B-gee indexes the computation is similar and is 
omitted for brevity. 

For example, suppose there are 10,000 
records in the index for salaries under 500, the 
selectivity of the clause 

salary < 500 

is 0.2 and the selectivity of the clause 

salary < 400 

is 0.15. In this case 

E : (10,000) * (0.15) / (0.2) : 7,500,. 

i.e. 7500 index records and corresponding data 
records will be examined in solving the query 
through the partial index. 

Some DBMSs can make use of multiple 
indexes when processing a single query. For 
example, if a user issues the query: 

retrieve (EMP.name) where 
EMP.age > 40 and EMP.salary < 2000 

then it is possible to access an age index to obtain 
a list of record identifiers for older employees fol- 
lowed by an access to a salary index to obtain low 
paid employees. These two lists can be subse- 
quendy intersected to find the actually qualifying 
employees who are then fetched from disk. When 
partial indexes are present this strategy must be 
more carefully considered. Consider two partial 
indexes: 

create B-tree index on EMP (age) 
where salary < 2100 

create B-tree index on EMP (salary) 
where salar3' < 2100 

Both indexes are usable and include the above user 
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query. However, the conditional probability of a 
record appearing in the second index given that it 
appeared in the first index is 1.0. Consequendy, 
the second index gives no additional discrimina- 
tion and its use should be avoided. 

Regular indexes are often heavily correlated. 
For example, an age index and salary index are 
positively correlated because older employees tend 
to earn larger salaries. However, partial indexes 
are even more likely to be correlated than normal 
indexes. Consequently, the typical assumption 
made by query optimizers that indexes are 
independent is untenable in a partial index 
environment. An estimate of index correlation can 
be readily obtained because each index is only par- 
tial. Namely, have the statistics module obtain a 
random sample of N tuples from the relation being 
indexed. For each tuple, evaluate the two index 
qualifications and record whether the tuple satisfies 
neither, one, the other, or both qualifications. An 
estimate of the correlation C(I I, I2) of the indexes 
I 1 and I2 is then: 

tuples satisfying both indexes / 
(tuples satisfying I1 * tuples satisfying I2) 

After obtaining an estimate for the correlation, the 
expected number of records examined in the data 
relation for a given query if both indexes are used 
is: 

E(I1) * E(I2) * C(I1,I2) 

where E(I1) and E(I2) are the number of data 
records fetched if either index was used in isola- 
tion. 

With regard to updates, it is evident that the 
run-time system must update a partial secondary 
index only if it inserts or deletes a tuple which 
satisfies IQUAL. In addition, crash recovery must 
handle partial indexes using the same techniques 
that are used for current conventional indexes. If 
index records are physically logged as in DB2, 
then this practice can be trivially extended to par- 
tial indexes. If index modifications are not logged, 
then the code which runs at recovery time must 
ascertain which indexes are affected by the change 
encoded in any log record and undo or redo the 
appropriate index operations. 

3. USES FOR PARTIAL INDEXES 

Partial indexes such as described above are 
clearly useful in normal query processing as will 
be discussed in Section 3.1. However, they have 
several other uses that are less self-evident. Con- 
sequently, we discuss the use of partial indexes in 
incremental indexing techniques in Section 3.2 
through 3.4. Then in Sections 3.5 through 3.8 we 

discuss other uses of partial indexes not related to 
incremental indexing. 

3.1. User Indexes 

Often a user application has the characteris- 
tic that portions of a range of key values are unin- 
teresting. In this case one wants to index only the 
part of the range that users ask queries about. For 
ex,: ,ple,  if a large fraction of the tuples have 
default or null values for a particular key, one 
might want to access only the non-default values. 
Specifically, if 80 percent of the employees have 
not been given a salary and have a value of zero, 
then it would be prudent to index only the positive 
salaries. In this way, no system resources are 
spent indexing the uninteresting values. 

Another example concerns purchase orders 
(POs). Suppose a financial officer is only 
interested in POs over $100,000, since small POs 
r~'ely make a large financial impact. Partial 
indexes allow only the POs that will actually be 
queried to appear in the index. Again no resources 
are spent indexing data that will not be examined 
later. 

A final example is the use of partial indexes 
for exceptions. Consider a sex field with normal 
values, male and female. Since the discrimination 
of the index is too low, a query optimizer would 
never choose to use a full index on the sex field. 
However, there may be a few employees who have 
a sex of unknown and it might be useful to have an 
index solely on the exceptional values, i.e: 

create hash INDEX on EMP(sex) 
where sex = "unknown" 

In this way, a data administrator trying to clean up 
the EMP data would have an index into the 
employees who required values. 

The following simple model quantifies what 
subranges of a value range are desirable to index. 
Assume that the value range is an interval [A,B] 
using the operator < to order the values. Further- 
more assume that equality is defined and that 
queries that involve the field F are of the form: 

retrieve (Target-List) where F = constant 

Assume the cumulative distribution function for 
the constant in the qualification is G I(X), i.e.: 

GI(X) = probability (constant < X ) 

Furthermore assume inserts (or updates) specify a 
new value for the field F and that the distribution 
function for new values is: 

G2(X) = probability (newvalue < X ) 

Assume the cost of a sequential scan is S, the cost 
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of an indexed access is A, and the cost of an 
indexed update is I. Lastly, for each retrieval 
assume there are an average of U updates. 

In this case an interval [a,b] should he 
included in a partial index only if: 

[Gl(b) - Gl(a)] I [G2(b) - G2(a)] 
>U*I/(S-A) 

Besides restricting the index to contain only 
values of interest to the user community, a partial 
index has an added benefit. Suppose the data 
manager only uses the maximum value, the 
minimum value and the tuple count to obtain 
needed selectivity estimates. If the data is uni- 
formly distribute, d, then such estimates are accu- 
rate for full indexes. On the other hand, if skew is 
present in the data, then selectivity estimates can 
been exceedingly inaccurate. Although the impor- 
lance of accurate selectivities can be questioned 
for complex queries [KUMA87], they are clearly 
essential in processing complex boolean 
qualifications on a single relation [LYNC88]. 
Hence, a partial index which leaves out a region of 
high skew, will result in more accurate selectivity 
estimates for queries that can use the partial index. 

3.2. Incremental Index Building 

In many DBMSs a batch run must be used to 
build a secondary index. Generally this will 
require that the relation being indexed become 
unavailable for the duration of the build process, 
often hours of elapsed time. Such environments 
do not make data highly available. Obviously, one 
can build indexes without locking the relation by 
using a variation on techniques for fuzzy dumps. 
The basic idea would be to process the relation in a 
single sequential scan, making known in a shared 
global variable (MARKER) the tuple identifier 
currently being examined. A concurrent user who 
makes an update in advance of the MARKER need 
make no modification to the index being built. 
However, if the update is behind the MARKER, 
then the run-time system must update the index 
being constructed if the key is changed. In addi- 
tion, suitable footprints must be left in the log to 
allow both the index update and the data update to 
be undone in case of a transaction abort or other 
failure. We now present an easier technique using 
partial indexes. 

Consider the data relation to be a collection 
of pages, P1 . . . . .  Pn. Divide this collection into 
intervals of size I > 0 pages. Lock the first interval, 
and then build the index for the data tuplcs in this 
interval. At the end of this process mark the index 
as having the qualification: 

tuple-identifier < X 

where X is the first tuple identifier on the next page 
to be examined. This index can remain in place for 
any period of time and updates will be automati- 
cally propagated to the index as necessary. At 
some later time the next interval can be processed, 
and over time a complete index built. Like tech. 
niques based on fuzzy dumps, this approach has 
the advantage relative to building indexes via a 
batch run that the relation is not made unavailable 
during the index build and commitment of system 
resources to build the index can be deferred to 
period of light system load. 

3.3. Incremental Modification 

Often a user wishes to convert an index from 
one access method to another, say from hashing to 
B-tree or vica-versa. In addition, one often wants 
to rebuild an existing B-tree index which has 
become physically declustered after a large 
number of page splits and regroups. Partial 
indexes are well suited to this task. 

To convert from a B-tree index on a key to 
either a rebuilt B-tree index or a hash index on the 
same key, one can proceed as follows. Divide the 
key range of the index into N intervals of either 
fixed or varying size. Begin with the first interval. 
Lock the interval and construct a new index entry 
for each tuple in the interval. When the process is 
complete, unlock the interval. The new index is 
now valid for the interval 

key < VALUE-1 

where VALUE-1 is the low key on the next index 
page to be examined. The old index can be con- 
sidered valid for the whole key range or it can be 
restricted to: 

key >= VALUE- 1 

In this latter case, the space occupied by the index 
records of the first interval can be reclaimed. If the 
intervals are chosen to be the key ranges present in 
the root level of the old B-tree, then this space rec- 
lamation can occur without destroying the B-tree 
property for the old index. 

The query optimizer need only be extended 
to realize that the two indexes together cover the 
key range. Hence, if a query must be processed 
with a qualification of the form: 

where VALUE-3 < key < VALUE-4 

it may be necessary to begin the scan in the new 
index and then continue it in the old index when 
new index records are exhausted. There is little 
complexity to this optimizer extension. 
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At one's leisure, the remaining N-1 intervals 
can be processed to generate the complete index. 

To convert from a hash index to another 
hashed index ~ a B-farce index, the procedure is 
similar. One simply divides the hash buckets into 
N groups and processes the groups one-by-one as 
above. After the first interval has been finished, 
the new index has a qualification: 

hash (key) in range-of-buckets 

The old index can be changed to: 

hash (key) not-in range-of-buckets 

During the time that both indexes are in existence, 
each can be used for a portion of the queries with 
qualifications of the fQcm: 

where key = value 

Unfortunately, ff the new index is a B-tree, then 
queries which involve ranges of values on the key 
in question cannot be solved using the new index 
until it is completely constructed. Of course, this 
procedure requires that the qualifications discussed 
in Section 2 be slightly generalized to allow a 
function of a key to appear. 

3.4. Building Indexes as a Side-effect of Query 
Processing 

Suppose one wishes to have a partial index 
built on a field F of a relation R with index 
qualification IQUAL. Further suppose as a result 
of preceding queries, part of the index has been 
constructed, namely those records satisfying 
PART-QUAL. The remainder of the index, i.e. 
those records such that: 

IQUAL and not PART-QUAL 

remain to be constructed. Further suppose the 
DBMS processes a user query which involves the 
relation R. Specifically, suppose that the sub- 
query which entails R is of the form: 

retrieve TL(R) where USER-QUAL 

If so, then the execution of this query presents an 
opportunity for partially or completely satisfying 
the indexing goal. If 

USER-QUAL contains (IQUAL and 
not PART-QUAL) 

then the index can be fully built as a side effect of 
query processing. Whenever one finds a tuple 
which satisfies USER-QUAL, one must insert an 
additional check for 

IQUAL and not PART-QUAL 

If the check is successful, then an insertion should 
be made in the index. The only change which 
must be made to the query plan is that the fields 

present in the qualification, IQUAL and not 
PART-QUAL, must not be projected out during 
earlier processing so the needed check can be per- 
formed. At the conclusion of the user query, the 
index has been fully extended to the qualification, 
IQUAL. 

On the other hand, if 

USER-QUAL and (IQUAL and not 
PART-QUAL) is non-empty 

then the check must be included as above. At the 
conclusion of the user query, the index will have 
the qualification. Q: 

Q = PART-QUAL or [IQUAL and 
not USER-QUAL] 

Over time the desired index can be built up 
as a side effect of query normal processing. This 
technique has the advantage that it does not require 
locking any records that are not already locked by 
the user query. Hence, the index can be con- 
structed with no extra unavailability of the relation. 
Moreover, building the index is accomplished 
without reading any records that were not already 
required by some user query. Lastly, the writes 
required to build the index are spread over several 
user commands, so the disk load of index creation 
is dispersed over several commands. 

The disadvantage of the above technique is 
that after a few applications, the partial 
qualification, Q, becomes an exceeding complex 
boolean expression. Excessive CPU time may be 
consumed inthe required check built into the tech- 
nique. To avoid this problem, the following spe- 
cial case is probably a better practical idea. 

Suppose one wants to build a hash or B-tree 
index with qualification IQUAL on a particular 
key, K2, and one has available a second B-tree 
index on a key, K1. Suppose further that the 
desired index qualification, IQUAL, for the index 
being constructed is of the form: 

LOWER < K2 and K2 < UPPER 

Now suppose a user query is processed that con- 
tains a qualification of the form 

where K1 > VALUE-1 and 
K1 < VALUE-2 

and suppose the query optimizer has decided to 
solve the query using the index on K1. For each 
qualifying tuple, an insert can be made in the K2 
index being constructed for those records with 
suitable values. At the end of the operation, the 
qualification for the K2 index is: 

LOWER < K2 and K2 < UPPER and 
VALUE-1 < K1 and K1 < VALUE-2 
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Over time, VALUE-1 and VALUE-2 can be 
extended to covet the whole K1 range and the par- 
tial index fully constructed. 

During the intervening steps the partial 
qualification, Q, remains much simpler than in the 
general case and therefore has the possibility of 
being useful during normal query processing. 

3.5. Corrupted Indexes 

If a page or a collection of pages in a secon. 
dary index is corrupted through a software or 
hardware failure, the system can isolate the key 
range or collection of hash buckets which 
corresponds to the corrupted area. Then the sys- 
tem can refine the index definition to exclude the 
keys range(s) or hash buckets involved. At one's 
leisure, the index can be re-extended to the com- 
plete range. Again a partial index is appropriate 
for this task. 

3.6. Result of User Queries 

In certain application areas, such as informa- 
tion retrieval (IR), a user often asks a query and 
then later on decides to add qualification to a pre- 
vious query to refine the search. In IR this usually 
happens when the first query produces a response 
that contains too many citations. Current IR sys- 
tems often keep a list of pointers to qualifying 
records of previous queries, and in this way the 
search can be refined without redoing all the origi- 
nal work. 

Since IR systems are typically read-only, 
there is no need to worry about the consistency of 
this list of pointers. However, in a situation where 
updates are present, this list-of-pointers technique 
will become inaccurate. For example, an accounts 
receivable officer might want to find all unpaid 
purchase orders over $100,000. Finding a large 
set, he might want to refine the search using addi- 
tional criteria. During this session additional qual- 
ifying purchase orders might be put into the data 
base. The list of pointers would not get extended 
with references to these new tuples. 

If the list of pointers is constructed as a par- 
tial index, then this problem is avoided. Moreover, 
the partial index could conceivably be used to help 
solve the queries of other concurrent users. 
Although this is unlikely in IR applications, it is 
possible to think of situations where this would be 
a helpful tactic. 

3.7. Precomputation of Procedures 

Some systems advocate storing procedures 
as objects in the data base, e.g. POSTGRES 

[STON86b], Sybase, and the Britton-Lee IDM 
[EPST80]. In addition, POSTGRES is exploring 
precomputing the value of a procedure before the 
user requests that it be evaluated. Corisider, for 
example the procedure: 

retrieve (EMP.name) where 
EMP.salary > 1000 and 
EMP.age < 40 

Precomputing this procedure produces a list of 
names which are cached by the run-time system. 
Unfortunately, if someone receives a salary adjust- 
ment or his age changes, the cached answer may 
become invalid. Either the cached procedure must 
be invalidated and then reconstructed, which will 
be VERY time-consuming and wasteful of 
resources, or a way must be found to update the 
cached procedure value. The algorithm to update 
the cache is the same one used to update a materi- 
alized view [BLAK86, HANS87] and is not partic- 
ularly easy to implement. 

Alternately, the above query corresponds to 
a partial index on employee names with a 
qualification: 

salary > 1000 and age < 40 

Hence, the algorithm sketched earlier can be used 
to easily update the index. Consequently, precom- 
puted procedures can sometimes be represented by 
partial indexes. 

Of course, if the query to be precomputed 
involves joins or aggregates, then this technique no 
longer works, However, an important class of 
computations can be efficiently supported. 

3.8. Substitute for List Processing Techniques 

It is often argued that queries such as 

retrieve (EMP.name) where 
EMP.salary > 1000 
and EMP.age < 40 

should be processed by consulting a salary index 
for a list of records which satisfy the first clause 
followed by investigation of an age index for lists 
of records which satisfy the second clause. The 
next step is to intersect the two lists of record 
identifiers to produce the actual qualifying ones. 
The last step is to access the data records which 
qualify to obtain employee names. 

The presence of partial indexes allows a pos- 
sibly competitive alternate strategy. In particular, 
suppose one constructs a partial index on salaries 
as follows: 

create B-tree INDEX on EMP(salary) 
where EMP.age < VALUE 
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If VALUE > 40, then the index is usable in solving 
the above query. One: need only inspect salary 
records in the partial index for ones over 1000. 
Then, the data records will be examined to find 
employees who agnmlly satisfy the qualification. 
Notice that there will be a collection of "false 
drops", i.e. employees with ages between 40 and 
VALUE. These records will be accessed even 
though they don't qualify and represent wasted 
effort. On the other hand, sorting two lists of 
record identifiers and then merging them has been 
removed. The performance of partial indexes 
depend on whether one of the indexes is clustered. 
Hence, the analysis will now be done for the cases: 

partial index is clustered 
partial index is not clustered 

As a simplifying assumption, we will only count 
I/Os and will make the traditional assumption that 
only limited main memory is available for buffer- 
ing. 

Suppose there are: 

N records in a relation R 
B block size of disk blocks 
K key width of indexed fields 
E number of records accessed 

thi'ough the partial index 
P1 selectivity of the first clause in 

the user query 
P2 selectivity of the second clause 

in the user query 
P3 E / N  

Define: 

XI 
X2 

= (N* PI*  K) /B  
= (N* P2* K) /B  

When using multiple single indexes, the DBMS 
must retrieve and perform a disk sort of the 
relevant portions of the two indexes which 
requires: 

# I/Os = X1 * log X1 + X2 * log X2 

Next the two lists must be merged and then the 
relevant records fetched. Ignoring the cost of the 
data fetch (which must be done anyway), the total 
cost for the list intersection approach is: 

List #I/Os = XI ( 1 + log X1) 
+ X2 ( 1 + log X2) 

This cost is independent of whether or not the 
indexes are clustered. 

When the partial index is not clustered, the 
cost is calculated as follows. First the relevant 
portion of the partial index must be fetched at a 
cost: 

P3 * X l /P1  

Then, the potentially qualifying records must be 
fetched. Since the number of actual qualifying 
records must be fetched anyway~ we count only the 
wasted effort to fetch the false drops which, 
assuming that they are not clustered, is: 

N* (P3 - P1 *P2) 

Hence, the total cost of the partial index approach 
is: 

Partial #UOs = P3 * X1/P1 
+ N* (P3- PI * P2) 

On the other hand, if the partial index is a clustered 
index, then the false drops will be intermixed with 
qualifying data records and will not require any 
extra disk UO. Hence, only the cost corresponding 
to the first term in the above equation must be paid. 

If P1 = I>2 = 0.1, P3 = 0.02, N = 1,000,000, 
B = 4096 bytes, and K = 20 bytes, then log X1 = 
log X2 " 4 for reasonable bases for the logarithm. 
Hence, 

Partial # I/Os (clustered) 100 
Partial # I/Os (unclustered) 10,100 
List # I/Os "5000 

Hence, the partial index approach is quite competi- 
tive with the list intersection technique. It outper- 
forms the list intersection technique if the partial 
index is clustered. Moreover, an unclustered index 
will have similar performance to list intersection as 
long as P3 is not far from P1 * P2. Of course, it 
deteriorates to the conventional approach as P3 
approaches P1. 

4. CONCLUSIONS 

Th. : paper has suggested including partial 
indexes in data base management systems. They 
entail only marginal extra complexity and can help 
solve a collection of problems that any DBMS 
faces. These include indexing only intervals of 
interest to users, incremental build and 
modification of indexes, indexes on results of user 
queries and alternatives to list processing code 
applied to multiple indexes. 
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