
THE CASE FOR PARTIAL INDEXES

Michael Stonebraker

Department of Electrical Engineering
and Computer Sciences
University of California

Berkeley, CA 94720

Abstract

Current data managers support secondary
and/or primary indexes on columns of relations. In
this paper we suggest the advantages that result
from indexes which contain only some of the pos-
sible values in a column of a relation.

1. INTRODUCTION

Most commercial data managers support
indexes on columns of data base objects. For rela-
tional systems, such indexes are on columns of
relations and may be primary (or clustered) as well
as secondary (unclustered). In addition, both
hashed and B-tree indexes are available on various
commercial offerings. In older systems, such as
IMS, indexes on fields in segments are provided as
weU as indexes which contain an entry for each
segment giving the value of a field in a parent or
dependent segment [DATE83]. Such indexes,
which contain information relevant to more than
one type of object are somewhat analogous to the
join indexes proposed by [VALD87] and to the
links in System R [ASTR76].

However, it appears that few people have
suggested indexes on less than a complete column.
In this paper we indicate the characteristics of such
indexes and the uses to which they can be put.
Section 2 discusses the composition of partial
indexes, and then Section 3 turns to uses for them
in normal data processing. We discuss the idea in
the context of a relational data base system, though
it appears to be equally useful in a DBMS for any
data model.

2. PARTIAL INDEXES

2.1. Specification

We propose that a data manager accept an
indexing command of the form:

create index-type INDEX on relname
(column-name) where qualification

This stylized syntax omits details (such as the fill
factor and whether one or more compression

techniques is to be used). For example:

create B-tree INDEX on EMP (salary)
where salary < 500

create hash INDEX on EMP (salary)
where age = 50

create B-tree INDEX on EMP (salary)
where age = 50 and salary < 500

The first example suggests a salary index only for
those employees with salaries under $500. The
second example would build a hashed salary index
for employees with ages equal to 50 while the third
would build a B-tree index for employees satisfy-
ing both conditions.

We will assume that the qualification does
not contain join terms or aggregates. Moreover, it
is assumed to be a conjunct of simple terms, i.e:

i-clause-1 and i-clause-2 and ...
and i-clause-m

where each clause is of the form

field operator constant

Hence, the qualification can be evaluated for each
tuple in the indicated relation without consulting
additional tuples.

Each index is assumed to use a collection of
fields, F1,. Fn as the organizing keys. Hence,
the DBMS is expected to build the index structure
using these keys. Each field Fi may or may not be
mentioned in the qualification associated with the
index. The second example above is an index
where the organizing field is not mentioned in the
qualification.

We will also assume that B-trees and hash-
ing are the access methods that are of interest.
However the ideas all generalize to other access
methods using techniques along the lines of
[STON86a].

2.2. Query Optimization and Execution

A query optimizer can use such indexes with
only modest extensions. We first assume that the
user query is processed into disjunctive normal
form and that each disjunct is treated as a separate

4 S I G M O D R E C O R D , Vol . 18, No. 4, D e c e m b e r 1989

query. Hence, each query to be processed has a
qualification of the form

clause-1 and clause-2 and ...
and clanse-n

We will also ignot~ the presence of aggregates in
user commands.

For each man of a relation which the optim-
izer investigates performing, it must first ascertain
which indexes can be used. Two tests must be run,
one on index usability and one on predicate inclu-
sion. The usability test is the same as the one
required in [SELI79]. Specifically, a hash index is
usable if every organizing key is mentioned in the
predicate of the user's query in a clause of the
form:

field = constant

A B-tree index is usable if there exists a K such
that all organizing keys to the left of the Kth key
have the property that they appear in a clause in
the user query of the form:

field comparison-operator constant

The predicate inclusion . must ascertain
for those usable indexes which ones have a predi-
cate that includes the predicate in the user query.
In particular, an index with qualification, IQUAL
includes a user query with a qualification, QUAL
if:

IQUAL contains QUAL

For example, if a user performs the query:

retrieve (EMP.name)
where EMP.salary < 400

then the first index includes this query while the
other two do not.

A fast test for this inclusion property is the
following. Consider all the fields mentioned in all
clauses of the user query. An index is non
inclusive for the query if its qualification contains
any field not mentioned in the user query. For the
remainder of the usable indexes, we must perform
a further check to ascertain which ones have the
inclusion property. Specifically, an index includes
a user query if for each clause in the index, i-
clause-j, there exists a clause in the user query,
clause-u, such that

i-clause-j contains clause-u

This test can be run in a straight forward w:ly for
the comparison operators which acccler:~tc B-tree
and hashing access.

If several indexes are usable and have the
inclusion property, the optimizer must now choose
the most profitable one to use. It can use

straightforward generalizations of the computa-
tions in [SELI79]. Consider a hash partial index on
organizing keys, F1 Fn. Because the index is
usable, there exist clauses in the user query, Q(F1),
.... Q(Fn), each with the property noted above.
Also, some of the organizing keys may be included
in a clause in the predicate for the partial index.
Let these clauses be IQ-1 IQ-j and let:

user-clause-selectivity = selectivity
[Q(F1)] * ... * selectivity[Q(Fn)]

partial-selectivity = selectivity
[IQ-1] * ... * selectivity[IQ-j]

The estimated number of data records examined by
using this index is therefore:

E = index-cardinality * user-clause-
selectivity / partial-selectivity

E can be used in the normal way by a conventional
optimizer when making access path decisions. For
B-gee indexes the computation is similar and is
omitted for brevity.

For example, suppose there are 10,000
records in the index for salaries under 500, the
selectivity of the clause

salary < 500

is 0.2 and the selectivity of the clause

salary < 400

is 0.15. In this case

E : (10,000) * (0.15) / (0.2) : 7,500,.

i.e. 7500 index records and corresponding data
records will be examined in solving the query
through the partial index.

Some DBMSs can make use of multiple
indexes when processing a single query. For
example, if a user issues the query:

retrieve (EMP.name) where
EMP.age > 40 and EMP.salary < 2000

then it is possible to access an age index to obtain
a list of record identifiers for older employees fol-
lowed by an access to a salary index to obtain low
paid employees. These two lists can be subse-
quendy intersected to find the actually qualifying
employees who are then fetched from disk. When
partial indexes are present this strategy must be
more carefully considered. Consider two partial
indexes:

create B-tree index on EMP (age)
where salary < 2100

create B-tree index on EMP (salary)
where salar3' < 2100

Both indexes are usable and include the above user

S I G M O D R E C O R D , Vo l . 18, No . 4, D e c e m b e r 1989 5

query. However, the conditional probability of a
record appearing in the second index given that it
appeared in the first index is 1.0. Consequendy,
the second index gives no additional discrimina-
tion and its use should be avoided.

Regular indexes are often heavily correlated.
For example, an age index and salary index are
positively correlated because older employees tend
to earn larger salaries. However, partial indexes
are even more likely to be correlated than normal
indexes. Consequently, the typical assumption
made by query optimizers that indexes are
independent is untenable in a partial index
environment. An estimate of index correlation can
be readily obtained because each index is only par-
tial. Namely, have the statistics module obtain a
random sample of N tuples from the relation being
indexed. For each tuple, evaluate the two index
qualifications and record whether the tuple satisfies
neither, one, the other, or both qualifications. An
estimate of the correlation C(I I, I2) of the indexes
I 1 and I2 is then:

tuples satisfying both indexes /
(tuples satisfying I1 * tuples satisfying I2)

After obtaining an estimate for the correlation, the
expected number of records examined in the data
relation for a given query if both indexes are used
is:

E(I1) * E(I2) * C(I1,I2)

where E(I1) and E(I2) are the number of data
records fetched if either index was used in isola-
tion.

With regard to updates, it is evident that the
run-time system must update a partial secondary
index only if it inserts or deletes a tuple which
satisfies IQUAL. In addition, crash recovery must
handle partial indexes using the same techniques
that are used for current conventional indexes. If
index records are physically logged as in DB2,
then this practice can be trivially extended to par-
tial indexes. If index modifications are not logged,
then the code which runs at recovery time must
ascertain which indexes are affected by the change
encoded in any log record and undo or redo the
appropriate index operations.

3. USES FOR PARTIAL INDEXES

Partial indexes such as described above are
clearly useful in normal query processing as will
be discussed in Section 3.1. However, they have
several other uses that are less self-evident. Con-
sequently, we discuss the use of partial indexes in
incremental indexing techniques in Section 3.2
through 3.4. Then in Sections 3.5 through 3.8 we

discuss other uses of partial indexes not related to
incremental indexing.

3.1. User Indexes

Often a user application has the characteris-
tic that portions of a range of key values are unin-
teresting. In this case one wants to index only the
part of the range that users ask queries about. For
ex,: ,ple, if a large fraction of the tuples have
default or null values for a particular key, one
might want to access only the non-default values.
Specifically, if 80 percent of the employees have
not been given a salary and have a value of zero,
then it would be prudent to index only the positive
salaries. In this way, no system resources are
spent indexing the uninteresting values.

Another example concerns purchase orders
(POs). Suppose a financial officer is only
interested in POs over $100,000, since small POs
r~'ely make a large financial impact. Partial
indexes allow only the POs that will actually be
queried to appear in the index. Again no resources
are spent indexing data that will not be examined
later.

A final example is the use of partial indexes
for exceptions. Consider a sex field with normal
values, male and female. Since the discrimination
of the index is too low, a query optimizer would
never choose to use a full index on the sex field.
However, there may be a few employees who have
a sex of unknown and it might be useful to have an
index solely on the exceptional values, i.e:

create hash INDEX on EMP(sex)
where sex = "unknown"

In this way, a data administrator trying to clean up
the EMP data would have an index into the
employees who required values.

The following simple model quantifies what
subranges of a value range are desirable to index.
Assume that the value range is an interval [A,B]
using the operator < to order the values. Further-
more assume that equality is defined and that
queries that involve the field F are of the form:

retrieve (Target-List) where F = constant

Assume the cumulative distribution function for
the constant in the qualification is G I(X), i.e.:

GI(X) = probability (constant < X)

Furthermore assume inserts (or updates) specify a
new value for the field F and that the distribution
function for new values is:

G2(X) = probability (newvalue < X)

Assume the cost of a sequential scan is S, the cost

6 S I G M O D R E C O R D , Vol . 18, No . 4, D e c e m b e r 1989

of an indexed access is A, and the cost of an
indexed update is I. Lastly, for each retrieval
assume there are an average of U updates.

In this case an interval [a,b] should he
included in a partial index only if:

[Gl(b) - Gl(a)] I [G2(b) - G2(a)]
>U*I/(S-A)

Besides restricting the index to contain only
values of interest to the user community, a partial
index has an added benefit. Suppose the data
manager only uses the maximum value, the
minimum value and the tuple count to obtain
needed selectivity estimates. If the data is uni-
formly distribute, d, then such estimates are accu-
rate for full indexes. On the other hand, if skew is
present in the data, then selectivity estimates can
been exceedingly inaccurate. Although the impor-
lance of accurate selectivities can be questioned
for complex queries [KUMA87], they are clearly
essential in processing complex boolean
qualifications on a single relation [LYNC88].
Hence, a partial index which leaves out a region of
high skew, will result in more accurate selectivity
estimates for queries that can use the partial index.

3.2. Incremental Index Building

In many DBMSs a batch run must be used to
build a secondary index. Generally this will
require that the relation being indexed become
unavailable for the duration of the build process,
often hours of elapsed time. Such environments
do not make data highly available. Obviously, one
can build indexes without locking the relation by
using a variation on techniques for fuzzy dumps.
The basic idea would be to process the relation in a
single sequential scan, making known in a shared
global variable (MARKER) the tuple identifier
currently being examined. A concurrent user who
makes an update in advance of the MARKER need
make no modification to the index being built.
However, if the update is behind the MARKER,
then the run-time system must update the index
being constructed if the key is changed. In addi-
tion, suitable footprints must be left in the log to
allow both the index update and the data update to
be undone in case of a transaction abort or other
failure. We now present an easier technique using
partial indexes.

Consider the data relation to be a collection
of pages, P1 Pn. Divide this collection into
intervals of size I > 0 pages. Lock the first interval,
and then build the index for the data tuplcs in this
interval. At the end of this process mark the index
as having the qualification:

tuple-identifier < X

where X is the first tuple identifier on the next page
to be examined. This index can remain in place for
any period of time and updates will be automati-
cally propagated to the index as necessary. At
some later time the next interval can be processed,
and over time a complete index built. Like tech.
niques based on fuzzy dumps, this approach has
the advantage relative to building indexes via a
batch run that the relation is not made unavailable
during the index build and commitment of system
resources to build the index can be deferred to
period of light system load.

3.3. Incremental Modification

Often a user wishes to convert an index from
one access method to another, say from hashing to
B-tree or vica-versa. In addition, one often wants
to rebuild an existing B-tree index which has
become physically declustered after a large
number of page splits and regroups. Partial
indexes are well suited to this task.

To convert from a B-tree index on a key to
either a rebuilt B-tree index or a hash index on the
same key, one can proceed as follows. Divide the
key range of the index into N intervals of either
fixed or varying size. Begin with the first interval.
Lock the interval and construct a new index entry
for each tuple in the interval. When the process is
complete, unlock the interval. The new index is
now valid for the interval

key < VALUE-1

where VALUE-1 is the low key on the next index
page to be examined. The old index can be con-
sidered valid for the whole key range or it can be
restricted to:

key >= VALUE- 1

In this latter case, the space occupied by the index
records of the first interval can be reclaimed. If the
intervals are chosen to be the key ranges present in
the root level of the old B-tree, then this space rec-
lamation can occur without destroying the B-tree
property for the old index.

The query optimizer need only be extended
to realize that the two indexes together cover the
key range. Hence, if a query must be processed
with a qualification of the form:

where VALUE-3 < key < VALUE-4

it may be necessary to begin the scan in the new
index and then continue it in the old index when
new index records are exhausted. There is little
complexity to this optimizer extension.

S I G M O D R E C O R D , Vol . 18, No. 4, D e c e m b e r 1989

At one's leisure, the remaining N-1 intervals
can be processed to generate the complete index.

To convert from a hash index to another
hashed index ~ a B-farce index, the procedure is
similar. One simply divides the hash buckets into
N groups and processes the groups one-by-one as
above. After the first interval has been finished,
the new index has a qualification:

hash (key) in range-of-buckets

The old index can be changed to:

hash (key) not-in range-of-buckets

During the time that both indexes are in existence,
each can be used for a portion of the queries with
qualifications of the fQcm:

where key = value

Unfortunately, ff the new index is a B-tree, then
queries which involve ranges of values on the key
in question cannot be solved using the new index
until it is completely constructed. Of course, this
procedure requires that the qualifications discussed
in Section 2 be slightly generalized to allow a
function of a key to appear.

3.4. Building Indexes as a Side-effect of Query
Processing

Suppose one wishes to have a partial index
built on a field F of a relation R with index
qualification IQUAL. Further suppose as a result
of preceding queries, part of the index has been
constructed, namely those records satisfying
PART-QUAL. The remainder of the index, i.e.
those records such that:

IQUAL and not PART-QUAL

remain to be constructed. Further suppose the
DBMS processes a user query which involves the
relation R. Specifically, suppose that the sub-
query which entails R is of the form:

retrieve TL(R) where USER-QUAL

If so, then the execution of this query presents an
opportunity for partially or completely satisfying
the indexing goal. If

USER-QUAL contains (IQUAL and
not PART-QUAL)

then the index can be fully built as a side effect of
query processing. Whenever one finds a tuple
which satisfies USER-QUAL, one must insert an
additional check for

IQUAL and not PART-QUAL

If the check is successful, then an insertion should
be made in the index. The only change which
must be made to the query plan is that the fields

present in the qualification, IQUAL and not
PART-QUAL, must not be projected out during
earlier processing so the needed check can be per-
formed. At the conclusion of the user query, the
index has been fully extended to the qualification,
IQUAL.

On the other hand, if

USER-QUAL and (IQUAL and not
PART-QUAL) is non-empty

then the check must be included as above. At the
conclusion of the user query, the index will have
the qualification. Q:

Q = PART-QUAL or [IQUAL and
not USER-QUAL]

Over time the desired index can be built up
as a side effect of query normal processing. This
technique has the advantage that it does not require
locking any records that are not already locked by
the user query. Hence, the index can be con-
structed with no extra unavailability of the relation.
Moreover, building the index is accomplished
without reading any records that were not already
required by some user query. Lastly, the writes
required to build the index are spread over several
user commands, so the disk load of index creation
is dispersed over several commands.

The disadvantage of the above technique is
that after a few applications, the partial
qualification, Q, becomes an exceeding complex
boolean expression. Excessive CPU time may be
consumed inthe required check built into the tech-
nique. To avoid this problem, the following spe-
cial case is probably a better practical idea.

Suppose one wants to build a hash or B-tree
index with qualification IQUAL on a particular
key, K2, and one has available a second B-tree
index on a key, K1. Suppose further that the
desired index qualification, IQUAL, for the index
being constructed is of the form:

LOWER < K2 and K2 < UPPER

Now suppose a user query is processed that con-
tains a qualification of the form

where K1 > VALUE-1 and
K1 < VALUE-2

and suppose the query optimizer has decided to
solve the query using the index on K1. For each
qualifying tuple, an insert can be made in the K2
index being constructed for those records with
suitable values. At the end of the operation, the
qualification for the K2 index is:

LOWER < K2 and K2 < UPPER and
VALUE-1 < K1 and K1 < VALUE-2

S IGMOD RECORD, Vol. 18, No. 4, December 1989

Over time, VALUE-1 and VALUE-2 can be
extended to covet the whole K1 range and the par-
tial index fully constructed.

During the intervening steps the partial
qualification, Q, remains much simpler than in the
general case and therefore has the possibility of
being useful during normal query processing.

3.5. Corrupted Indexes

If a page or a collection of pages in a secon.
dary index is corrupted through a software or
hardware failure, the system can isolate the key
range or collection of hash buckets which
corresponds to the corrupted area. Then the sys-
tem can refine the index definition to exclude the
keys range(s) or hash buckets involved. At one's
leisure, the index can be re-extended to the com-
plete range. Again a partial index is appropriate
for this task.

3.6. Result of User Queries

In certain application areas, such as informa-
tion retrieval (IR), a user often asks a query and
then later on decides to add qualification to a pre-
vious query to refine the search. In IR this usually
happens when the first query produces a response
that contains too many citations. Current IR sys-
tems often keep a list of pointers to qualifying
records of previous queries, and in this way the
search can be refined without redoing all the origi-
nal work.

Since IR systems are typically read-only,
there is no need to worry about the consistency of
this list of pointers. However, in a situation where
updates are present, this list-of-pointers technique
will become inaccurate. For example, an accounts
receivable officer might want to find all unpaid
purchase orders over $100,000. Finding a large
set, he might want to refine the search using addi-
tional criteria. During this session additional qual-
ifying purchase orders might be put into the data
base. The list of pointers would not get extended
with references to these new tuples.

If the list of pointers is constructed as a par-
tial index, then this problem is avoided. Moreover,
the partial index could conceivably be used to help
solve the queries of other concurrent users.
Although this is unlikely in IR applications, it is
possible to think of situations where this would be
a helpful tactic.

3.7. Precomputation of Procedures

Some systems advocate storing procedures
as objects in the data base, e.g. POSTGRES

[STON86b], Sybase, and the Britton-Lee IDM
[EPST80]. In addition, POSTGRES is exploring
precomputing the value of a procedure before the
user requests that it be evaluated. Corisider, for
example the procedure:

retrieve (EMP.name) where
EMP.salary > 1000 and
EMP.age < 40

Precomputing this procedure produces a list of
names which are cached by the run-time system.
Unfortunately, if someone receives a salary adjust-
ment or his age changes, the cached answer may
become invalid. Either the cached procedure must
be invalidated and then reconstructed, which will
be VERY time-consuming and wasteful of
resources, or a way must be found to update the
cached procedure value. The algorithm to update
the cache is the same one used to update a materi-
alized view [BLAK86, HANS87] and is not partic-
ularly easy to implement.

Alternately, the above query corresponds to
a partial index on employee names with a
qualification:

salary > 1000 and age < 40

Hence, the algorithm sketched earlier can be used
to easily update the index. Consequently, precom-
puted procedures can sometimes be represented by
partial indexes.

Of course, if the query to be precomputed
involves joins or aggregates, then this technique no
longer works, However, an important class of
computations can be efficiently supported.

3.8. Substitute for List Processing Techniques

It is often argued that queries such as

retrieve (EMP.name) where
EMP.salary > 1000
and EMP.age < 40

should be processed by consulting a salary index
for a list of records which satisfy the first clause
followed by investigation of an age index for lists
of records which satisfy the second clause. The
next step is to intersect the two lists of record
identifiers to produce the actual qualifying ones.
The last step is to access the data records which
qualify to obtain employee names.

The presence of partial indexes allows a pos-
sibly competitive alternate strategy. In particular,
suppose one constructs a partial index on salaries
as follows:

create B-tree INDEX on EMP(salary)
where EMP.age < VALUE

S I G M O D R E C O R D , Vol. 18, No. 4, December 1989 9

If VALUE > 40, then the index is usable in solving
the above query. One: need only inspect salary
records in the partial index for ones over 1000.
Then, the data records will be examined to find
employees who agnmlly satisfy the qualification.
Notice that there will be a collection of "false
drops", i.e. employees with ages between 40 and
VALUE. These records will be accessed even
though they don't qualify and represent wasted
effort. On the other hand, sorting two lists of
record identifiers and then merging them has been
removed. The performance of partial indexes
depend on whether one of the indexes is clustered.
Hence, the analysis will now be done for the cases:

partial index is clustered
partial index is not clustered

As a simplifying assumption, we will only count
I/Os and will make the traditional assumption that
only limited main memory is available for buffer-
ing.

Suppose there are:

N records in a relation R
B block size of disk blocks
K key width of indexed fields
E number of records accessed

thi'ough the partial index
P1 selectivity of the first clause in

the user query
P2 selectivity of the second clause

in the user query
P3 E / N

Define:

XI
X2

= (N* PI* K) /B
= (N* P2* K) /B

When using multiple single indexes, the DBMS
must retrieve and perform a disk sort of the
relevant portions of the two indexes which
requires:

I/Os = X1 * log X1 + X2 * log X2

Next the two lists must be merged and then the
relevant records fetched. Ignoring the cost of the
data fetch (which must be done anyway), the total
cost for the list intersection approach is:

List #I/Os = XI (1 + log X1)
+ X2 (1 + log X2)

This cost is independent of whether or not the
indexes are clustered.

When the partial index is not clustered, the
cost is calculated as follows. First the relevant
portion of the partial index must be fetched at a
cost:

P3 * X l /P1

Then, the potentially qualifying records must be
fetched. Since the number of actual qualifying
records must be fetched anyway~ we count only the
wasted effort to fetch the false drops which,
assuming that they are not clustered, is:

N* (P3 - P1 *P2)

Hence, the total cost of the partial index approach
is:

Partial #UOs = P3 * X1/P1
+ N* (P3- PI * P2)

On the other hand, if the partial index is a clustered
index, then the false drops will be intermixed with
qualifying data records and will not require any
extra disk UO. Hence, only the cost corresponding
to the first term in the above equation must be paid.

If P1 = I>2 = 0.1, P3 = 0.02, N = 1,000,000,
B = 4096 bytes, and K = 20 bytes, then log X1 =
log X2 " 4 for reasonable bases for the logarithm.
Hence,

Partial # I/Os (clustered) 100
Partial # I/Os (unclustered) 10,100
List # I/Os "5000

Hence, the partial index approach is quite competi-
tive with the list intersection technique. It outper-
forms the list intersection technique if the partial
index is clustered. Moreover, an unclustered index
will have similar performance to list intersection as
long as P3 is not far from P1 * P2. Of course, it
deteriorates to the conventional approach as P3
approaches P1.

4. CONCLUSIONS

Th. : paper has suggested including partial
indexes in data base management systems. They
entail only marginal extra complexity and can help
solve a collection of problems that any DBMS
faces. These include indexing only intervals of
interest to users, incremental build and
modification of indexes, indexes on results of user
queries and alternatives to list processing code
applied to multiple indexes.

REFERENCES

[ASTR76] Astrahan, M. et. al., "System R: A
Relational Approach to Data,"
ACM-TODS, June 1976.

[BLAK86] Blakeley, J. et.al., "Efficiently Updat-
ing Materialized Views," Proc. 1986
ACM-SIGMOD Conference on
Management of Data, Washington,
D.C., May 1986.

10 S I G M O D RECORD, Vol. 18, No. 4, December 1989

[DATE83] Date, C., "An Introduction to Data-
base Systems," (3rd edition),
Addison-Wesley, Reading, Mass.,
1983.

t[EPSTS0] Epstein, R., and Hawthorn, P.,
"Design Decisions for the Intelligent
Data Base Machine," Proc. 1980
National Computer Conference,
Anaheim, CA, June 1980.

[I-IANS87] I-Iansen, E., "A Performance Analysis
of View Materialization Strategies,"
Proe. 1987 ACM-SIGMOD Confer-
en~ on Management of Data, San
Francisco, CA, May 1987.

[KUMA87] Kumar, A. and Stonebraker, M., "The
Effect of Join Selectivities on Optimal
Nesting Order," SIGMOD. Record,
March 1987.

[LYNC88] Lynch, C., "Selectivity Estimation
and Query Optimization in Large
Databases with Highly Skewed Distri-
butions of Column Values," Proc.
1988 VLDB Conference, Los
Angeles, CA, Oct. 1988.

[SELI79] Selinger, P. et. al., "Access Path
Selection in a Relational Data Base
System," Proc. 1979 ACM-SIGMOD
Conference on Management of Data,
Boston, Mass., June 1979.

[STON86a] Stonebraker, M., "Inclusion of New
Types in Relational Data Base Sys-
tems," Proc. Second International
Conference on Data Base Engineer-
ing, Los Angeles, CA, Feb. 1986.

[STON86b] Stonebraker, M. and Rowe, L., "The
Design of POSTGRES," Proc. 1986
ACM-SIGMOD Conference on
Management of Data, Washington,
D.C., May 1986.

[VALD87] Valduriez, P., "Join Indices," ACM-
TODS, June 1987.

S IGMOD RECORD, Vol. 18, No. 4, December 1989

