A Performance Analysis of the Gamma Database Machine

David J. DeWitt
Shahram Ghandeharizadeh
Donovan Schneider

Computer Sciences Department
University of Wisconsin

Abstract

This paper presents the results of an initial performance evaluation of the Gamma database machine. In our experiments we measured the effect of relation size and indices on response time for selection, join, and aggregation queries, and single-tuple updates. A Teradata DBC/1012 database machine of similar size is used as a basis for interpreting the results obtained. We also analyze the performance of Gamma relative to the number of processors employed and study the impact of varying the memory size and disk page size on the execution time of a variety of selection and join queries. We analyze and interpret the results of these experiments based on our understanding of the system hardware and software, and conclude with an assessment of the strengths and weaknesses of Gamma.

1. Introduction

This report presents the results of a single-user performance evaluation of the Gamma database machine [DEWI86, GERB86]. This evaluation is based on two principal metrics: the absolute performance achieved by Gamma and the performance relative to the number of processors used. As a basis for determining the absolute performance of Gamma, we have used results obtained from a similar study [DEWI87] of the Teradata DBC/1012 database machine [TERA83]. When determining the performance of Gamma relative to the number of processors used, simply increasing the number of processors has the side effect of increasing the amount of buffer space available for processing join operations. Thus, a join that does not cause a join hash table overflow with 8 processors may result in 7 overflows when the query is executed using a single processor. While one could change the size of the test relations to avoid this problem, we decided instead to keep the total (summed across all processors) amount of buffer space constant when varying the number of processors. Then, in a separate set of tests, we kept the number of processors constant while varying the total amount of buffer space available. In the final suite of tests, we kept the number of buffer pages and processors constant while varying the disk page size.

In Sections 2 and 3, respectively, we describe the Gamma and Teradata configurations that were evaluated. Section 4 presents an overview of database used for the experiments. While four types of tests were conducted: selections, joins, aggregates, and updates, space precludes us from presenting the results from the aggregate tests. The interested reader is referred to [DEWI88]. A description of the exact queries used and the results obtained for each query are contained in Sections 5 through 7. Our conclusions are presented in Section 8.

2. Overview of the Gamma Database Machine

In this section we present an overview of the Gamma database machine including a description of the current hardware configuration and the software techniques used in the implementation. For a complete description of Gamma see [DEWI86, GERB86].

Gamma consists of 17 VAX 11/750 processors, each with two megabytes of memory. An 80 megabit/second token ring [PROT85] is used to connect the processors to each other and to another VAX 11/750 running Berkeley UNIX. This processor acts as the host machine for Gamma. Attached to eight of the processors are 333 megabyte Fujitsu disk drives (8") which are used for database storage. One of the diskless processors is currently reserved for query scheduling and global deadlock detection. The remaining diskless processors are used to execute join, projection, and aggregate operations. Selection and update operations are executed only on the processors with disk drives attached.

In Gamma, all relations are horizontally partitioned [RIES78] across all disk drives in the system. Four alternative ways of distributing the tuples of a relation are provided: round-robin, hashed, range partitioned with user-specified placement by key value, and range partitioned with uniform distribution. As implied by its name, in the first strategy when tuples are loaded into a relation, they are distributed in a round-robin fashion among all disk drives. This is the default strategy in Gamma for relations created as the result of a query. If the hashed strategy is selected, a randomizing function is applied to the key attribute of each tuple to select a storage unit. In the third strategy the user specifies a range of key values for each site. In the last partitioning strategy the user specifies the partitioning attribute and the system distributes the tuples uniformly across all sites.

Gamma uses traditional relational techniques for query parsing, optimization [SEL79], and code generation. Queries are compiled into a tree of operators with predicates compiled into machine language. After being parsed, optimized, and compiled, the query is sent by the host software to an idle scheduler process through a dispatcher process. The dispatcher process, by controlling the number of active schedulers, implements a simple load control mechanism based on information about the degree of CPU and

1 Several processors have more than 2 megabytes of memory so that the join query speedup tests could be conducted without causing hash table overflow to occur when only 1 or 2 processors are used.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

memory utilization at each processor. The scheduler process, in turn, activates operator processes at each query processor selected to execute the operator. The task of assigning operators to processors is performed in part by the optimizer and in part by the scheduler assigned to control the execution of the query. For example, the operators at the leaves of a query tree reference only permanent relations. Using the query and schema information, the optimizer is able to determine the best way of assigning these operators to processors.

In Gamma, the algorithms for all operators are written as if they were to be run on a single processor. The input to an Operator Process is a stream of tuples and the output is a stream of tuples that is demultiplexed through a structure we term a split table. After being initiated, a query process waits for a control message to arrive on a global, well-known control port. Upon receiving an operator control packet, the process replies with a message that identifies itself to the scheduler. Once the process begins execution, it continuously reads tuples from its input stream, operates on each tuple, and uses a split table to route the resulting tuple to the process indicated in the split table. Consider, for example, the case of a selection operation that is producing tuples for use in a subsequent join operation. If the join is being executed by N processes, the split table of the selection process will contain N entries. For each tuple satisfying the selection predicate, the selection process will apply a hash function to the join attribute to produce a value between 1 and N. This value is then used as an index into the split table to obtain the address (e.g. machine_id, port #) of the join process that should receive the tuple. When the process detects the end of its input stream, it first closes the output streams and then sends a control message to its scheduler indicating that it has completed execution. Closing the output streams has the side effect of sending end of stream messages to each of the destination processes. With the exception of these three control messages, execution of an operator is completely self-scheduling. Data flows among the processes executing a query tree in a dataflow fashion. If the result of a query is a new relation, the operators at the root of the query tree distribute the result tuples on a round-robin basis to store operators at each disk site which assume the responsibility for writing the result tuples to disk. To enhance the performance of join operations an array of bit vector filters [BABB79] can be inserted into the split table by the optimizer.

Gamma is built on top of an operating system developed specifically for supporting database management systems. This operating system provides lightweight processes with shared memory and reliable, datagram communication services using a multiple bit, sliding window protocol. Messages between two processes on the same processor are short-circuited by the communications software. File services in NOSE are based on the Wisconsin Storage System (WiSS) [CHOUS5]. WiSS provides structured sequential files, clustered and unclustered B+-tree indices, and sort and scan utilities.

3. Teradata Hardware and Software Configuration

The Teradata machine tested has 4 Interface Processors (IFPs), 20 Access Module Processors (AMPs), and 40 Disk Storage Units (DSUs). The IFPs communicate with the host, and parse, optimize, and direct the execution of user requests. Queries are executed on the AMPs. IFPs and AMPs are interconnected by a dual redundant, tree-shaped interconnect called the Y-forest [TERA83] which has an aggregate bandwidth of 12 megabytes/second. Intel 80286 processors with 2 megabytes of memory are used on all IFPs and AMPs. Each AMP has 8.8", 525 megabyte Hitachi disk drives. The host processor was an AMDAHL V570 running the MVS operating system. Software release 2.3 was used for the tests conducted.

All relations on the Teradata machine were also horizontally partitioned across all AMPs. Whenever a tuple is to be inserted into a relation, a hash function is applied to the primary key of the relation to select an AMP for storage. Once a tuple arrives at a site, that AMP applies a hash function to the key attribute in order to place the tuple in its "fragment" (several tuples may hash to the same value) of the appropriate relation. The hash value and a sequence number are concatenated to form a unique tuple_id. Once an entire relation has been loaded, the tuples in each horizontal fragment are in what is termed "hash-key order." Thus, given a value for the key attribute, it is possible to locate the tuple in a single disk access (assuming no buffer pool hits). This is the only physical file organization supported at the present time. It is important to note that with this organization, the only kind of indices one can construct are dense, secondary indices. The index is termed "dense" as it must contain one entry for each tuple in the indexed relation. It is termed "secondary" as the index order is different than the key order of the file. Furthermore, the rows in the index are themselves hashed on the key field and are NOT sorted in key order. Consequently, whenever a range query over an indexed attribute is performed, the entire index must be scanned.

4. Description of Benchmark Relations

The relations used for the benchmarks are based on the standard Wisconsin Benchmark relations [BITT83]. Each relation consists of thirteen 4-byte integer attributes and three 52-byte string attributes. In order to more meaningfully stress both database machines, 100,000 and 1,000,000 tuple versions of the standard 1,000 and 10,000 tuple relations were also constructed. The unique1 and unique2 attributes of each relation were generated in such a way as to guarantee that each tuple has a unique value for each attribute and that there is no correlation between the values of unique1 and unique2 within a single tuple. Two copies of each relation were created and loaded using Unique1 as the key (partitioning) attribute in all cases. The total database size is approximately 464 megabytes (not including indices). For the Teradata machine all test relations were loaded in the NO FALLBACK mode. Except where otherwise noted, the results of all queries were stored in the database.

Storing the result of a query in a relation incurs two costs not incurred if the resulting tuples are returned to the host processor. First, the tuples of each result relation must be distributed across all processors with disks. In the case of the Teradata database machine, unique1 was used as the primary key of both the source and result relations. While we had expected that no communications overhead would be incurred in storing the result tuples, since the low-level communications software does not recognize this situation, the execution times presented below include the cost of redistributing the result tuples. Since, the current version of Gamma redistributes result tuples in a round-robin fashion, both machines incur the same redistribution overhead while storing the result of a query in a relation.

The second cost associated with storing the result of a query in a relation is the impact of the recovery software on the rate at which tuples are inserted in a relation. In this case, there are substantial differences between the two systems; due, primarily, to a difference in the semantics between QUEL and SQL. Gamma, which provides an extended version of the query language QUEL [STON76], uses the construct "retrieve into result relation ..." to specify that the result of a query is to be stored in a relation. If, for some reason the transaction running the query is aborted, the only action that the recovery manager must take is to delete all files associated with the result relation.

The query language for the Teradata database machine is based on an extended version of SQL. In SQL, one uses insert into to store the results of a query in a relation. Since it is possible for the target relation to already contain tuples, the code for insert into must log all inserted tuples carefully. Since the Teradata insert code is currently optimized for single tuple and not bulk updates, at least
3 I/Os are incurred for each tuple inserted (see [DEWI87] for a more complete description of the problem). A straightforward optimization would be for the "insert into" code to recognize when it was operating on an empty relation. This would enable the code to process bulk updates much more efficiently.

5. Selection

In this section, we first explore Gamma's performance for a variety of selection queries as the size of the input relations is increased. The results obtained are compared with the results of running the same set of queries on the Teradata database machine. For a subset of these queries, we then varied the number of processors and the disk page size to determine how these factors affect performance.

5.1. Performance Relative to Relation Size

The selection queries were designed with two objectives in mind. First, we wanted to know how the Teradata and Gamma machines would respond as the size of the source relations was increased. Ideally, given constant machine configurations, the response time should grow as a linear function of the size of input and result relations. Second, we were interested in exploring the effect of indices on the execution time of a selection on each machine while holding the selectivity factor constant.

Our tests used two sets of selection queries: first with 1% selectivity and second with 10% selectivity. On Gamma, the two sets of queries were tested with three different storage organizations: a heap (no index), a clustered index on the key attribute (index order = key order), and a non-clustered index on a non-key attribute (index order ≠ key order). On the Teradata machine, since tuples in a relation are organized in hash-key order, it is not possible to construct a clustered index. Therefore, all indices, whether on the key or any other attribute, are dense, non-clustered indices.

In Table 1, we have tabulated the results of testing the different types of selection queries on three sizes of relations (10,000, 100,000, and 1,000,000 tuples). Two main conclusions can be drawn from this table. First, for both machines the execution time of each query scales in a linear fashion as the size of the input and output relations are increased. Second, as expected, the clustered B-tree organization provides a significant improvement in performance.

As discussed in [DEWI87], the results for the 1% and 10% selection using a non-clustered index (rows three and four of Table 1) for the Teradata machine look puzzling. Both of these queries selected tuples using a predicate on the unique2 attribute, an attribute on which we had constructed a non-clustered index. In the case of the 10% selection, the optimizer decided (correctly) not to use the index. In the 1% case, the observed execution time is almost identical to the result obtained for the nonindexed case. While these results seems to contradict the query plan produced by the optimizer, which states that the non-clustered index on unique2 is to be used to execute the query, the storage organization used for indices on the Teradata machine provides a partial explanation. Since the index entries are hash-based and not in sorted order, the entire index must be scanned sequentially instead of scanning only the portion corresponding to the range of the query. Thus, exactly the same number of attribute value comparisons is done for both index scans and sequential scans. However, it is expected that the number of I/Os required to scan the index is only a fraction of the number of I/Os required to scan the relation. Apparently, the response time is not reduced significantly because, while the index can be scanned sequentially, each access to the relation requires a random seek.

Gamma supports the notion of non-clustered indices through a B-tree structure on top of the actual data file. As can be seen from Table 1, in the case of the 10% selection, the Gamma optimizer also decides not to use the index. In the 1% case, the index is used. Consider, for example, a scan with a 1% selectivity factor on a 10,000 tuple relation: if the non-clustered index is used, in the worst case 100 times 4 I/Os will be required (assuming each tuple causes a page fault). On the other hand, if a segment scan is chosen to access the data, with 17 tuples per data page, all 589 pages of data would be read. The difference between the number of I/Os is significant and is confirmed by the difference in response time between the entries for Gamma in rows 3 and 4 of Table 1.

Gamma also provides clustered indices (the underlying relation is sorted according to the key attribute and a B-tree search structure is built on top of the data). The response time for the 1% and 10% selections through a clustered index are presented in rows five and six of Table 1. Since the tuples are sorted (key order = index order), only that portion of the relation corresponding to the range of the query is scanned. This results in a further reduction of the number of I/Os compared to the corresponding search through a file scan or a non-clustered index. This saving is confirmed by the lower response times shown in Table 1.

One important observation to be made from Table 1 is the relative consistency of the cost of selection using a clustered index in Gamma. Notice that the response time for both the 10% selection from the 10,000 tuple relation and the 1% selection from the 100,000 tuple relation using a clustered index is 1.25 seconds. The reason is that in both cases 1,000 tuples are retrieved and stored, resulting in the same I/O and CPU costs.

The selection results reveal an important limitation of the Teradata design. Since there are no clustered indices, and since non-clustered indices can only be used when a relatively small number of tuples are retrieved, the system must resort to scanning.

<table>
<thead>
<tr>
<th>Query Description</th>
<th>Number of Tuples in Source Relation</th>
<th>Teradata</th>
<th>Gamma</th>
<th>Teradata</th>
<th>Gamma</th>
<th>Teradata</th>
<th>Gamma</th>
<th>Teradata</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% nonindexed</td>
<td>10,000</td>
<td>6.86</td>
<td>1.63</td>
<td>28.22</td>
<td>13.83</td>
<td>213.13</td>
<td>134.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% nonindexed</td>
<td>10,000</td>
<td>15.97</td>
<td>2.11</td>
<td>110.96</td>
<td>17.44</td>
<td>1106.86</td>
<td>181.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% selection</td>
<td>10,000</td>
<td>7.81</td>
<td>1.03</td>
<td>29.94</td>
<td>5.32</td>
<td>222.65</td>
<td>53.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% selection</td>
<td>10,000</td>
<td>16.82</td>
<td>2.16</td>
<td>111.40</td>
<td>17.65</td>
<td>1107.59</td>
<td>182.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% selection</td>
<td>1,000,000</td>
<td>0.59</td>
<td>0.20</td>
<td>1.25</td>
<td>7.50</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% selection</td>
<td>1,000,000</td>
<td>1.26</td>
<td>7.27</td>
<td>69.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>single tuple</td>
<td>1,000,000</td>
<td>0.15</td>
<td>0.15</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Selection Queries
(All Execution Times in Seconds)
entire files for most range selections. While hash files are certainly the optimal file organization for exact-match queries, for certain types of applications, range queries are important. In such cases, it should be possible for the database administrator to specify the storage organization that is best suited for the application.

As discussed in Section 4, since the semantics of QUEL and SQL are different, the results presented in Table 1 (and Table 2 below) for the two database machines are not directly comparable. In particular, the Teradata times could be reduced significantly if a bulk update mechanism were implemented. The overhead imposed by the current recovery mechanism is estimated in [DEWI87] and [DEWI88].

5.2. An Analysis of Selection Performance in Gamma

In this section we study how the response time for both the nonindexed and indexed selection queries on the 100,000 tuple relations is affected by the number of processors used and the disk page size. Ideally one would like to see linear improvement in performance relative to the number of processors used.

5.2.1. Constant Page Size, Varying Configuration

In the first set of experiments, the disk page size was kept at 4 Kbytes while the number of processors with disks was increased from 1 to 8. Thus, as the number of processors is increased, the number of tuples stored at each site is reduced proportionally.

NonIndexed Selections

Without an index, all the data pages in the relation must be read from disk and processed. Increasing the number of processors used to process a non-indexed selection increases both the aggregate CPU power and I/O bandwidth available while reducing the number of tuples that must be processed at each processor.

In Figure 1, the average response time for 0%, 1%, and 10% selections on the 100,000 tuple relation is presented as a function of the number of processors used. As expected, the response time for each of the queries decreases as the number of sites is increased. The response time for the queries with 1% and 10% selectivity factors is worse than the 0% query due to the cost of transmitting and storing the result tuples. While for selection-only queries one might store all result tuples locally, by partitioning all result relations in a round-robin (or hashed) fashion one can ensure that each fragment of every result relation will contain approximately the same number of tuples.

The speedup curve corresponding to Figure 1 is presented in Figure 2. As shown in Figure 2, almost linear speedup is obtained for all three queries. The reason that the 0% selection query does not achieve perfect speedup is that the number of end of stream messages (see Section 2) each processor must send increases as processors are added to the system. The 10% selectivity speedup curve is not as close to linear as the 0% or 1% curves due to the effects of short-circuiting (again see Section 2). When a single processor is used, all result tuples are "short-circuited" by the low-level communications software. As more processors are used, the fraction of tuples short-circuited decreases (with n processors, 1/n th the result tuples will be short-circuited). While the actual network is never a bottleneck [GERB86, GERB87], the bandwidth from memory to the communications network is limited by the speed (4 megabits/second) of the Unibus on the VAX 11/750. As the selectivity factor of a query is increased the number of short-circuited tuples decreases, the path to the network becomes a bottleneck. This fact is illustrated by the differences among the curves in Figure 2.

Indexed Selections

For this suite of tests, we constructed, respectively, clustered and non-clustered indices on the Unique1 and Unique2 attributes of the 100,000 tuple relations. In Figure 3, the average response time is plotted as a function of the number of processors with disks for the following three queries: 1% selection using a clustered index, 10% selection using a clustered index, and 1% selection using a non-clustered index. The corresponding speedup curves are presented in Figure 4 along with the speedup curve obtained for a 0% selection through a non-clustered index. No results are presented for a 10% non-clustered index selection as our optimizer is smart enough to choose to use a segment scan for this query.

The speedup curves presented in Figure 4 reveal a number of interesting insights into the effects of increasing the amount of parallelism when indices are employed. First, in the case of the 0% selection query, the response time for the query actually increases (from 0.25 to 0.58 seconds) as the number of processors is increased. This happens because the cost of initiating a select and store operator at each processor appears to be slightly higher than the cost of performing 1-2 I/O operations to search the index before discovering that no tuples satisfy the predicate. Of the remaining queries, only the 1% selection through a non-clustered index comes
close to achieving linear speedup. Why is this, when, without an index, the same queries obtained nearly linear speedups? Consider first the 10% selection query. Without an index, each processor executing this query will produce one network packet (2 Kbytes) of result tuples for approximately every five 4 Kbyte pages it reads from disk. With 4 Kbyte disk pages the system is I/O bound. When the same query is executed using a clustered index, once the first page containing qualifying tuples is found, every subsequent page read from disk will be completely full of result tuples. Thus, for each data page read, two communication packets must be sent. As the number of processors is increased, the fraction of these packets that are short circuited decreases. Since the disk is producing packets faster than the communications interface can place them on the network, performance degrades. In the case of the 1% selection through a clustered index, the same effect occurs but, as the number of processors is increased, the time to initiate the query and process 2 levels of the index at 8 sites (0.58 seconds) becomes a significant fraction of the total execution time of the query (2 seconds). Finally, the reason that the 1% selection through a non-clustered index achieves very close to linear speedup is that each disk page read requires a random seek, thus significantly reducing the rate at which the disk produces pages.

5.2.2. Effect of Disk Page Size on Selection Performance

In this experiment, the configuration size was kept constant (8 processors with disks), while the disk page size was varied from 2 Kbytes to 32 Kbytes using both sequential and index scans on the 100,000 tuple relations.

NonIndexed Selections

Non-indexed selections with 0%, 1%, 10%, and 100% selectivity factors were executed with disk pages sizes ranging from 2 to 32 Kbytes. The response times for these queries are plotted in Figure 5 and the corresponding speedup curves are presented in Figure 6. These results (most particularly the 0% selection curve which does not generate any network traffic) clearly indicate that with a 2 Kbyte disk page the system is disk bound and that once the page size is increased to 16 Kbytes the system becomes CPU bound. For the VAX 11/750 CPU (0.6 MIP), any increase in the size of the disk page beyond 8K bytes has little or no effect on the response time of the query. Repeating these experiments with a faster CPU would be interesting.

The results presented in Figures 5 and 6 provide further evidence that the network interface can become a bottleneck. With a 2 Kbyte page size, the response time for the 10% selection is 19 percent slower than the response time for the 0% selection. With a 32 Kbyte page size, the 10% selection is 50 percent slower than the 0% selection. It is very clear that as one increases the rate at which result tuples are produced, either by increasing the size of the disk page or through the use of a clustered index, the network interface increasingly becomes a bottleneck.

Indexed Selections

We repeated the same set of experiments after constructing a clustered index on the Unique1 attribute and a non-clustered index on the Unique2 attribute. In these tests, however, increasing the size of the disk page also increases the fan out of the nodes of the B-tree index.
The average response time and corresponding speedup curves for the queries tested are presented in Figure 7 and 8. The most interesting results are those obtained for the 1% selection through a non-clustered index. As indicated in both figures, any increase in disk page size degrades the performance of this query. Since each tuple retrieved requires fetching two index pages plus one data page, the longer transfer time for the larger pages dominates any advantage provided in terms of fan-out. (For a 32 Kbyte disk page, the transfer time is 13 milliseconds - which is very close to the time required to perform a random disk seek. The disk used has a 40 Kbyte track size).

When a clustered index is employed, this degradation in performance does not occur because once the proper leaf page of the index is located all subsequent tuples on that page and all subsequent leaf pages will satisfy the query. While the 10% selection continues to show improvement with larger disk pages, the response time for the 1% selection actually increases slightly when the page size is increased from 16 to 32 Kbytes. The longer transfer time is again the source of the problem. With 8 processors, each site will produce approximately 125 tuples. With 32 Kbyte pages, each page will hold approximately 150 tuples. If the 125 tuples satisfying the query span two pages (the expected case), more than 50% of the tuples read will not satisfy the query.

6. Join Queries

In testing join performance in Gamma, we first wanted to explore how a "typical" Gamma configuration performs on a fixed set of join queries as the size of the input relations is increased. Second, we wanted to explore how Gamma's performance is affected as the number of processors with disks is increased, as the disk page size is increased, and as the amount of available memory is reduced.

Join Algorithms

The join algorithm used by the Teradata machine (for the queries tested) involves first redistributing the two source relations by hashing on the join attribute. As each AMP receives tuples, it stores them in temporary files sorted in hash-key order. After the redistribution phase completes, each AMP uses a conventional sort-merge join algorithm to complete the join.

Gamma also partitions its source relations by hashing on the join attributes but, instead of using sort-merge to effect the join, Gamma employs an algorithm based on hashing (see [KITS83, DEWI85, DEWI86, GERB86]). During the first phase of the algorithm, Gamma partitions the smaller source relation by hashing on the joining attribute and builds main-memory hash tables. During phase two, Gamma partitions the larger source relation and uses the corresponding tuples to immediately probe the hash tables built during phase one.

Of course, whenever main-memory hashing is used there is a danger of hash-table overflow. Gamma currently uses a distributed version of the Simple hash-partitioned join algorithm described in [DEWI85] to handle this phenomenon. Basically, whenever a processor detects hash-table overflow it spoools tuples to a temporary file based on a second hash function until the hash table is successfully built. The query scheduler then passes the function used to subpartition the hash table to the select operators producing the probing tuples. Probing tuples corresponding to tuples in the overflow partition are then spoooled to a corresponding temporary

355
file; all other tuples probe the hash table as normal. The overflow partitions are recursively joined using this same procedure until no more overflow partitions are created and the join has been fully computed.

Gamma can actually run joins in a variety of modes. The selection operators will, of course, run on all disk sites but the hash tables may be built on the processors with disks, the diskless processors, or both sets of processors. These three alternatives are referred to as Local, Remote, and Allnodes, respectively.

Queries

Three join queries formed the basis of our join tests. The first join query, joinABprime, is a simple join of two relations: A and Bprime. The A relation contains either 10,000, 100,000 or 1,000,000 tuples. The Bprime relation contains, respectively, 1,000, 10,000, or 100,000 tuples. The second query, joinAselB, performs one join and one selection. A and B have the same number of tuples and the selection on B reduces the size of B to the size of the Bprime relation in the corresponding joinABprime query. For example, if A has 100,000 tuples, then joinABprime joins A with a Bprime relation that contains 10,000 tuples, while in joinAselB the selection on B restricts it from 100,000 to 10,000 tuples and then joins the result with A.

The third join query, joinCselAselB contains two joins and two restricts. First, A and B are restricted to 10% of their original size (10,000, 100,000, or 1,000,000 tuples) and then joined with each other. Since each tuple joins with exactly one other tuple, this join yields an intermediate relation equal in size to the two input relations. This intermediate relation is then joined with relation C, which contains 1/10 the number of tuples in A. The result relation contains as many tuples as there are in C. For example, assume A and B contain 100,000 tuples. The relations resulting from selections on A and B will each contain 10,000 tuples. Their join results in an intermediate relation of 10,000 tuples. This relation will be joined with a C relation containing 10,000 tuples and the result of the query will contain 10,000 tuples.

6.1. Performance Relative to Relation Size

The first variation of the three queries tested involved no indices and used a non-key (non-partitioning, non-indexed) attribute (unique1D or unique1E) as both the join and selection attributes. Since all the source relations were distributed using the key attribute, the join algorithms of both machines required redistribution phases. The results from these tests are contained in the first 3 rows of Table 2. For this series of tests, Gamma used 4 Kbyte disk pages and all join queries were performed in the Remote mode in which the joins are done only on the diskless processors.

The second variation of the three join queries used the key attribute (unique1D or unique1E) as the join attribute. (Rows 4 through 6 of Table 2 contain these results.) Since, in this case, the relations are already distributed on the join attribute, the Teradata machine demonstrated substantial performance improvement (25-50%) because the redistribution step of the join algorithm could be skipped. In Gamma's case, however, both relations still had to be redistributed since only diskless processors were used for the joins.

From the results in Table 2, one can conclude that the execution time of each of the queries increases in a fairly linear fashion as the size of the input relations are increased. Gamma does not exhibit linearity in the million tuple queries because the size of the building relation (20 megabytes) far exceeds the total memory available for hash tables (4.8 megabytes) and the Simple hash-partition overflow algorithm deteriorates exponentially with multiple overflows. In fact, the computation of the million tuple join queries required six partition overflow resolutions on each of the diskless processors. In Section 6.2.2, we explore in more detail the impact of limited memory on the performance of join queries in Gamma.

The observant reader may have noticed that the Teradata can always do joinABprime faster than joinAselB but that just the opposite is true for Gamma. We will explain the difference by analyzing Table 2 with the 100,000 tuple joins. Selection propagation by the Gamma optimizer reduces joinAselB to joinAselB. This means that although both 100,000 tuple relations will be read in their entirety only 10% of each of the relations will be sent over the network and participate in the join. Although joinABprime only reads a 100,000 and a 10,000 tuple relation it must send all 100,000 tuples to the diskless processors to effect the join. Thus, the cost to distribute and probe the 100,000 tuples outweigh the difference in reading a 100,000 and a 10,000 tuple file. On the other hand, the Teradata database machine will compute joinABprime by reading and sorting a 10,000 tuple relation and a 100,000 tuple relation and then merging them. JoinAselB will read two 100,000 tuple relations and then sort and merge a 10,000 and a 100,000 tuple relation. Thus joinAselB will be slower by the difference in reading the 100,000 and 10,000 tuple relations.

6.2. An Analysis of Join Performance in Gamma

In this section, we explore the effects of changing the size of the disk page, reducing the amount of buffer space available for join hash tables, and the performance of join queries relative to the

<table>
<thead>
<tr>
<th>Query Description</th>
<th>10,000 Teradata</th>
<th>100,000 Teradata</th>
<th>1,000,000 Teradata</th>
<th>10,000 Gamma</th>
<th>100,000 Gamma</th>
<th>1,000,000 Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>joinABprime with non-key attributes of A and B used as join attribute</td>
<td>34.9</td>
<td>6.5</td>
<td>321.8</td>
<td>47.6</td>
<td>3,419.4</td>
<td>2,938.2</td>
</tr>
<tr>
<td>joinAselB with non-key attributes of A and B used as join attribute</td>
<td>35.6</td>
<td>5.1</td>
<td>331.7</td>
<td>34.9</td>
<td>3,534.5</td>
<td>703.1</td>
</tr>
<tr>
<td>joinCselAselB with non-key attributes of A and B used as join attribute</td>
<td>27.8</td>
<td>7.0</td>
<td>191.8</td>
<td>38.0</td>
<td>2,032.7</td>
<td>731.2</td>
</tr>
<tr>
<td>joinABprime with key attributes of A and B used as join attribute</td>
<td>22.2</td>
<td>5.7</td>
<td>131.3</td>
<td>45.6</td>
<td>1,265.1</td>
<td>2,926.7</td>
</tr>
<tr>
<td>joinAselB with key attributes of A and B used as join attribute</td>
<td>25.0</td>
<td>5.0</td>
<td>170.3</td>
<td>34.1</td>
<td>1,584.3</td>
<td>737.7</td>
</tr>
<tr>
<td>joinCselAselB with key attributes of A and B used as join attribute</td>
<td>23.8</td>
<td>7.2</td>
<td>156.7</td>
<td>37.4</td>
<td>1,509.6</td>
<td>712.8</td>
</tr>
</tbody>
</table>

Table 2: Join Queries (All Execution Times in Seconds)
number of processors available. While we would have preferred to use the million tuple relations for these experiments, we do not have enough aggregate memory to execute the million tuple join queries without experiencing partition overflow. Thus, since we did not want the cost of processing the overflows to impact every test conducted, we chose to run the experiments using the 100,000 tuple relations.

6.2.1. Constant Memory, Constant Page Size, Varying Configuration

In the first series of tests we wanted to explore how joins performed when we increased the number of processors with disks attached. In order to concentrate on the effects of changing Gamma's configuration we kept the disk page size constant at 4K bytes and kept the amount of memory available for join hash tables large enough to insure that no partition overflow would occur.

Figures 9 and 10 present, respectively, the response time for the joinABprime query when the joining attributes are also the key (partitioning) attributes and when they are not the partitioning attributes. From the shape of these graphs it is obvious that Gamma significantly reduces response time as additional processors are added. One, though, might expect Remote joins to be twice as fast as Local joins because Remote joins use twice as many processors. As was pointed out in [DEW86] this is not the case because the building and probing phases of the join operator are not overlapped and hence the response time of the query is bounded below by the sum of the elapsed time of these two phases. In a multiuser environment, though, it is expected that offloading the join operators to remote processors will allow the processors with disks to effectively support more concurrent selection and store operators. The validity of this expectation will be determined in future multiuser benchmarks of the Gamma database machine.

An interesting feature of Figures 9 and 10 is that, for larger configurations, the relative performance of Local and Allnodes joins is mirrored with respect to Remote joins (which remain constant). For joins on partitioning attributes, the Local configuration is fastest, followed by Allnodes and Remote joins. When an attribute other than the partitioning attribute is used as the joining attribute, the Remote configuration is the fastest followed by Allnodes and then finally Local. Both graphs are identical for the single processor configuration because the relations are stored entirely on the single disk and hence no "partitioning" of the data occurs.

This mirror-like performance function occurs because Gamma uses the same hash function to partition relations when they are being loaded and when they are being joined. Hence, when the joining and partitioning attributes are the same, Local joins will short-circuit all input tuples and gain a corresponding performance advantage. Conversely, when joins are performed on non-partitioning attributes, Local joins perform worst because short-circuiting provides no benefit and we have substantially increased contention for the CPUs with disks since the building/probing of the hash tables competes with the selection and store operators. The performance of the Allnodes configuration falls between the Remote and Local configurations as it shares the benefits and drawbacks of both.

The associated speedup curves for the joinABprime queries are shown in Figures 11 and 12. Notice that near linear speedups are obtained. Both speedup curves were plotted using the response time for two processors as a reference point in order to reduce skewing the curves due to short-circuiting. This can be best explained by the following example.

Consider a single-processor configuration with joins being done on their non-partitioning attributes. For Local joins, all tuples will short-circuit the network. With two processors, approximately half the tuples will be short-circuited. In general, as the number of processors is increased, the number of short-circuited packets is reduced proportionally. Because these intra-node packets are much less expensive than their corresponding inter-node packets, smaller configurations will benefit more from short-circuiting. Since one intent of plotting these speedup curves is to project Gamma's performance as additional processors are employed, using the response time obtained with a single processor as their basis will give artificially low expected performance estimates for larger configurations. A similar argument can be made for Allnodes joins although the degree of short-circuiting will be approximately half that of Local joins. Remote joins are basically unaffected by the change in reference point. Since the two processor configuration still short-circuits half its tuples, the speedup results still...
underestimate the scalability of Gamma. As an example, the speedup from four to eight processors for non-hash partitioned joins done locally is approximately 1.75.

While these experiments only tested Gamma when the source relations are hash partitioned, the joins performed using non-partitioning attributes (Figures 10 and 12) have the same performance as joins on equivalent size relations partitioned in a round-robin fashion. Additionally, recall that joins done on non-hash partitioned attributes can be performed faster remotely than locally. This shows that join operators can indeed be off-loaded to remote processors even for large relations. This substantiates results obtained in [DEWI86] for smaller relations.

6.2.2. Join Overflow

In this set of experiments, we kept both the configuration size (16 query processors) and disk page size (4 Kbytes) constant but varied the total amount of memory. Available memory was initially set to be sufficient to hold the total number of tuples required in the building phase of the 100,000 tuple join queries, i.e. sufficient to build 10,000 tuples across the available processors. The total amount of available memory was then incrementally lowered by evenly reducing memory from each of the processors.

From the shape of the curves in Figure 13 it is obvious that performance deteriorates rapidly as memory becomes more limited due to our use of a distributed version of the Simple Hash join algorithm to resolve hash-partition overflow (as predicted analytically in [DEWI85]). When viewing the graphs it should be kept in mind that the number of overflows represents the number of overflows detected at each of the eight joining sites. Thus, the total number of occurrences of partition overflow is the labeled number times eight.

A few very interesting points can be discovered by careful examination of the curves in Figure 13. First, why do the response times for the Local and Remote join curves crossover? Recall, from the previous subsection, that joins on partitioning attributes can be done faster locally than remotely, but that just the opposite is true for the same joins done on their non-partitioning attributes. The crossover can be explained because, after the initial overflow, Gamma switches hash functions. This has the effect of changing the joining attributes to non-partitioning attributes. This change in hash functions is necessary in order to ensure that all joining processors are used in the case when only a subset of sites overflow. If the same function was used to distribute both overflow tuples and the original tuples, the same sets of tuples would continuously re-map to the same processors. Thus, processors that do not experience overflow would not be used for subsequent overflow processing.

Also the relative flatness of the response time curves from zero to two overflows indicates that Simple hash-join is effective when only a small number of overflows occur. This result is important because it means that the optimizer can be off by a factor of two in estimating either the amount of memory available or the selectivity factor of an operator without significantly affecting the response time of the query.
6.2.3. Effect of Disk Page Size on Join Performance

In the next set of experiments we wanted to explore the effect of alternative disk page sizes on join execution time. A constant Gamma configuration consisting of 16 query processors (8 with disks) and a scheduling processor was used. Memory was also kept constant and large enough so that no hash-table overflows would occur.

Figure 14 shows the results of the joinAselB query as the disk page size is varied from 2 to 32 Kbytes. As can be seen, increasing the disk page size significantly reduces join response time although the performance improvement levels off at 16 Kbyte pages. The associated speedup curves are presented in Figure 15.

One may wonder why the speedup curves level off in the observed manner. Recall that, in Gamma, joins are bounded by the time to select tuples from the joining relations. Since Figure 15 presents the results obtained using the joinAselB query, 10% selections were performed on both source relations. Hence, the results obtained are similar to those presented for the 10% non-indexed selection in Figure 6.

One result we have not been able to explain to our satisfaction is the performance of the Allnodes configuration. Intuitively, one would expect Allnodes to always fall between Remote and Local because it shares the benefits and drawbacks of both. One possible explanation is the increased cost of scheduling Allnodes joins when the relations being joined are not large enough to fully exploit the additional processing power. Since Gamma requires four messages to schedule a query operator per node and since a join is logically composed of two operators (build and join) Allnodes will require 64 additional scheduling messages. Assuming seven milliseconds for a small inter-node message about a half of a second of additional scheduling overhead is incurred. This explanation appears to be a possibility because Allnodes joins do fall between Local and Remote joins when performing joinABprime queries.

7. Update Queries

The final set of tests included a mix of append, delete, and modify queries. The Teradata machine was executing with full concurrency control and recovery, whereas Gamma used full concurrency control and partial recovery for some of the operators. The results of these tests are presented in Table 3.

The first query appends a single tuple to a relation on which no indices exist. The second appends a tuple to a relation on which one index exists. The third query deletes a single tuple from a relation, using an index to locate the tuple to be deleted (in the case of Teradata, it is a hash-based index, whereas in the case of Gamma, it is a clustered B-tree index, for both the second and third queries). In the first query no indices exist and hence no indices need to be updated, whereas in the second and third queries, one index needs to be updated.

The fourth through sixth queries test the cost of modifying a tuple in three different ways. In all three tests, a non-clustered index exists on the unique2 attribute on both machines, and in addition, in the case of Gamma, a clustered index exists on the unique1 attribute. In the first case, the modified attribute is the key attribute, thus requiring that the tuple be relocated. Furthermore, since the tuple is relocated, the secondary index must also be updated. The fifth set of queries modify a non-key, nonindexed attribute. The final set of queries modify an attribute on which a non-clustered index has been constructed, using the index to locate the tuple to be modified.

As can be seen from Table 3, for the fourth and sixth queries, both machines use the index to locate the tuple to be modified. Since modifying the indexed attribute value will cause the tuple to move position within the index, some systems avoid using the index to locate the tuple(s) to be modified and instead do a file scan. While one must indeed handle this case carefully, a file scan is not a reasonable solution. Gamma uses deferred update files for indices to handle this problem. We do not know what solution the Teradata machine uses for this problem.

Although Gamma does not provide logging, it does provide deferred update files for updates using index structures. The deferred update file corresponds only to the index structure and not the data file. The overhead of maintaining this functionality is shown by the difference in response times between the first and second rows of Table 3.

5 This problem is known as the Halloween problem in DB folklore.
8. Conclusions

In this report we presented the results of an initial evaluation of the Gamma database machine both by comparing its performance to that of a Teradata DBC/1012 database machine of similar size and by examining the performance of Gamma relative to the number of processors used. Based on these results one can draw a number of conclusions. Gamma’s most glaring deficiencies are the lack of full recovery features and the extremely poor performance of the distributed Simple hash-join algorithm when a large number of overflow operations must be processed. The solution we are in the process of adopting is to replace the current algorithm with a parallel version of the Hybrid hash-join algorithm [DEWI84, DEWI85]. We also intend on implementing a recovery server that will collect log records from each processor.

Based on the experiments in which we varied the disk page size used by Gamma, one can conclude that we should increase the default page size from 4 to 8 Kbytes. While increasing the page size beyond 8 Kbytes provides slight improvement for some queries, the impact on queries that use indices (in particular, non-clustered indices) is very negative. While these results may not be generally applicable, they seem to indicate that adopting track-size pages (as a number of experimental systems are talking about doing) may not be a wise decision.

Finally, it is very clear that the network interfaces used in Gamma present a serious bottleneck. We have almost completed the implementation of a co-processor board that can transfer packets from memory onto the token ring at a rate of 40 megabits/second. We are also planning on porting the Gamma software to an Intel IPSC-32 multiprocessor.

9. Acknowledgements

A number of people helped make this paper possible. Bob Gerber deserves special recognition for his work on the design of Gamma plus his leadership on the implementation effort. M. Muralikrishna, Anoop Sharma, Rajiv Jauhari, Goetz Graefe and Joanna Chen were instrumental in turning Gamma into a working system.

This research was partially supported by the Defense Advanced Research Projects Agency under contract N00039-86- C-0578, by the National Science Foundation under grants DCR- 8512862, MCS82-01870, and MCS81-05904, and by a Digital Equipment Corporation External Research Grant. The funding for the Teradata study described in [DEWI87] was provided by MCC.

10. References

