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Abstract 

This paper surveys research work 
performed within the last five years in 
distributed deadlock detection. The last 
survey paper on this topic appeared in 
1980; since that time a large number of 
interesting algorithms have been discribed 
in the literature. A new, more efficient 
scheme is the probe-based deadlock 
detection strategy used by many of the new 
algorithms. This paper will concentrate 
on distributed deadlock detection 
algorithms. Only detection of resource 
deadlocks will be reviewed here, though 
other types of deadlock handling 
strategies and environments are briefly 
mentioned. 

1.0 INTRODUCTION 

In modern computer systems, several 
transactions may compete for a finite 
number of resources. Upon requesting a 
resource, a transaction enters a wait 
state if the request is not granted due to 
non-availability of the resource. A 
situation may arise wherein waiting 
processes may not ever get a chance to 
change their states. This can occur if the 
requested resources are held by other 
waiting processes. This situation is 
called deadlock. 

The deadlock problem has been 
extensively studied in database and 
operating systems. Numerous algorithms on 
centralized deadlock detection 
[ELMAGARMID85], [HO], [MAHMOUD76], 
[MAHMOUD77], distributed deadlock 
detection [BADAL], [BITTMAN], [BRACHA84], 
[BRACHA85], [CHANDY82], [ELMAGARMID85], 
[GOLDMAN], [HAAS81], [HAAS83], [HERMAN], 
[HO], [ISLOOR79a], [ISLOOR79b], 
[ISLOOR80], [JAGANNATHAN82], 
[JAGANNATHAN83], [KAWAZU], [MAHMOUD76], 
[MAHMOUD77], [MARSLAND], [MENASCE78], 
[MENASCE79], [MITCHELL], [MOSS], 
[OBERMACK80a], [OBERMACK80b], 
[OBERMACK82], [SINHA84], [SINHA85], 
[TSAI82a], [TSAI82b]; prevention or 
avoidance algorithms [ANDREWS], [JORDAN], 
[KORTH82], [LOMET78a], [LOMET78b], 
[LOMET80], [MINOURA], [ROSENKRANTZ]. 

Communication deadlocks have not, however, 
been studied as extensively. Few 
algorithms have been published to detect 
deadlocks among communicating entities 
[RAEUCHLE], [NATARAJAN] [CHANDY83]. Two 
annotated bibliographies can be found in 
the literature [NEWTON], [ZOBEL], and the 
last thorough survey paper is by Isloor 
and Marsland [ISLOOR80]. 

Deadlocks in a system can 
handled in three ways: 

i) Prevention: Guaranteeing that 
deadlocks can never occur in the 
first place. This requires no run 
time support. 
2) Avoidance: Detecting potential 
deadlocks in advance and taking 
action to insure that deadlock 
will not occur. This requires run 
time support. 
3) Detection: Allowing deadlocks 
to form and then finding and 
breaking them. As in the 
avoidance scheme, this requires 
run time support. 

be 

i.I Deadlock Prevention: 

In deadlock prevention all the 
resources which may be needed by a 
transaction must be predeclared. In this 
strategy, a request is granted only if all 
the resources it needs are available and 
the system can guarantee that none of 
these resources will be needed by any 
ongoing transaction. In other words, all 
resources needed are reserved in advance. 
However, they need not be allocated a 
priori. 

Deadlock prevention has two 
obvious disadvantages: First, 
preallocation of resources leads to 
reduced concurrency. Second, evaluation 
of the safety of the request results in 
additional overhead. A major advantage of 
this scheme is that it does not involve 
any transaction rollback or restart due to 
deadlocks. Prevention is the only 
feasible scheme for handling deadlock in 
systems that have no provision for 
restoring states. But since the ability to 
undo work is generally necessary in 
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systems that are tolerant to failures, the 
above-mentioned advantage may be 
irrelevant in many situations. Deadlock 
prevention is considered impractical 
except for systems which have a predefined 
structure. A large number of prevention 
algorithms have been given in the 
literature [COFFMAN], [ANDREWS] or see the 
annotated bibliography by Zobel [ZOBEL]. 

1.2 Deadlock Avoidance: 

In deadlock avoidance, transactions 
need not determine the resources they 
require a priori. Transactions are 
allowed to proceed unless a requested 
resource is unavailable. In case of a 
conflict, transactions may be allowed to 
wait for a fixed time interval with the 
expectation that the resource may become 
available during that interval. In case 
the resource does not become available, 
either the requesting transaction or the 
holding transaction may be aborted. The 
victim selection criteria for the abortion 
of a transaction vary depending on the 
avoidance scheme used. Two well 
referenced avoidance schemes that make use 
of priorities of transactions are Wound- 
Wait and Wait-Die [ROSENKRANTZ]. 

Though deadlock avoidance may abort 
transactions unnecessarily, it is 
considered more attractive than prevention 
in database systems since such systems 
already have the ability to abort 
transactions. 

1.3 Deadlock Detection 

In systems where deadlock 
detection strategies are used, conflicts 
resulting from requests for resources are 
handled by allowing the requesting 
transactions to wait freely. As a 
result, deadlocks may arise and therefore 
must be detected and resolved. The main 
task performed by a detection algorithm is 
to find cycles among transactions each 
waiting for a resource held by the other. 
In essence, deadlock detection consists 

of finding cycles in a directed graph. 
In the graph, transactions and resources 
are represented by vertices, and the 
requests and allocations by edges. 

Deadlock detection algorithms can be 
distributed, centralized or hierarchical. 
In distributed schemes, no single site has 
all the information relating to all 
transactions and resources involved in the 
graph. Therefore, to detect deadlocks, 
information must be passed between sites. 
A variant of this scheme, an edge chasing 
deadlock detection algorithm, involves 
sending information according to the 
structure of the graph [MOSS]. 

Centralized deadlock detection 

algorithms require that all information 
represented by the graph be kept at the 
acting controller, which is responsible 
for running the deadlock detection and 
resolution algorithms. Hierarchical 
deadlock schemes are based on providing 
several levels of hierarchy, namely, 
local, regional and global. The hierarchy 
should be established so that 
deadlocks can be detected by a site as 
close to the sites involved in the 
deadlock as possible [MENASCE]. 

The main disadvantage of detection 
schemes is the additional overhead 
incurred due to detection of cycles in the 
graph and abortion and restart of 
transactions upon detection of deadlocks. 
The distributed detection strategies may 
have dditional overhead due to the inter- 
site message transfers. Selection of the 
transaction to be aborted adds to the 
complexity of the scheme. In some 
algorithms based on this strategy, a 
situation may arise wherein more than one 
site detects the same deadlock [TSAI86]. 
This complicates the deadlock resolution 
phase, which must be performed once 
deadlock is detected. 

The correctness of a deadlock 
detection algorithm depends on two 
conditions. First, all deadlocks must be 
detected in a finite time. Second, if a 
deadlock is detected, it must indeed 
exist. More research must be performed in 
providing proof techniques suitable for 
proving the correctness of deadlock 
algortihms. Proofs provided in the 
literature to show the correctness of the 
algorithms are sketchy at best. The lack 
of suitable proof systems has led to a 
situation where an algorithm that has been 
"shown" to be correct by its designers has 
later been proved to be incorrect; see 
[GLIGOR] for example. An attempt to use a 
proof system that is based on axiomatic 
semantics [SOUNDARARAJAN] has been used to 
prove the correctness of a deadlock 
detection algorithm [ELMAGARMID86]. 

2.0 Survey of Distributed Deadlock 
Detection Algorithms: 

Numerous algorithms in 
distributed deadlock detection have been 
proposed in the literature, and they fall 
into two basic categories. Algorithms 
that belong to the first category pass 
information about transaction requests to 
maintain global wait-for-graph. In the 
algorithms in the second category, simpler 
messages are sent among transactions; no 
global wait-for-graph is explicitly 
constructed. However, a cycle in the 
graph will ultimately cause messages to 
return to the initiator of the deadlock 
detection message, signaling the existence 
of deadlock. 
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As mentioned in the 
previous section, the correctness of a 
deadlock detection algorithm depends on 
two conditions: namely, that all deadlocks 
must be detected in a finite time, and 
that if a deadlock is detected, it must 
indeed exist. Detecting a non-existent 
deadlock is referred to as a false 
(phantom) deadlock detection. Wuu and 
Bernstein [WUU] have shown that no phantom 
deadlocks will be detected if transactions 
follow a Two Phase Locking protocol (2PL). 
Transactions obeying 2PL acquire all 

locks first and release them one by one 
[ESWARAN]. 

In this section, a few algorithms for 
distributed deadlock detection are 
surveyed. Their ability to detect all 
deadlocks without detecting phantom ones 
is discussed. 

2.1 Menasce's Scheme [MENASCE79]: 

This algorithm was the first to use 
a condensed transaction-wait-for graph 
(TWF) in which the vertices represent 
transactions and edges indicate 
dependencies between transactions. I~ 
this graph, an ~dge (Ti,T 3) exists i~ T 1 
is blocked on T3 and must wait for T3 to 
release the resource. This resource need 
not be the one T 1 is waiting for. An 
edge in TWF represents condensation of 
dependencies between transactions. A 
vertex denoting a transaction does not 
have an outgoing edge if the transaction 
is not blocked. A blocking set(T) is 
defined as a set of all non-blocked 
transactions that can be reached by 
following a directed path from the node 
representing transaction T. For each 
transaction T 1 in the blocking set(T), the 
pair (T,T) is called the blocking pair, 
the site of origin of a transaction T is 
denoted by Sorig(T), and the graph at 
site K by TWF(K). The algorithm is 
described by the following rules: 

Rule i: 
Event: Transaction T requests 
for a resource r at site S k , 
and r is currently held by 
transactions Ti, T2, ...T n. 

Action: An edge is added from 
the node denoting T, to each of 
the transactions Ti...T n. If 
this action causes a cycle in 
TWF(K), then a deadlock exists. 
For each transaction T' in 
blocking set(T), a blocking pair 
(T,T') is sent to Sorig(T) if 
Sorig(T) = S k, and to Sorig(T') 
if Sorig(T') = Sk. 

Rule 2: 

Event: A blocking pair (T,T') is 
received at site S k. 
Action: An edge is added from T to T' 

in TWF(K). If a cycle results, 
then a deadlock is detected. If T' is 

blocked and Sorig(T) = Sk, then for 
each transaction T'' in the blocking 
set(T), send blocking pair (T,T'') to 
Sorig(T'') if Sorig(T'') =S k. 
The algorithm can fail to detect some 
deadlocks and may discover false 
deadlocks. Gligor and Shattuck [GLIGOR] 
proposed modification to the algorithm 
to fix the first problem. However, the 
modified algorithm is impractical. This 
scheme suffers from phantom deadlocks 
since blocking pairs, which are basically 
graph update messages, may arrive out of 
sequence. Consequently, a message 
requesting deletion of an edge due to 
release of a resource may be received 
before the blocking pair containing the 
request for the resource is received. If 
the deletion message is ignored, a 
transaction would become ostensibly 
blocked. This, in turn, could result in 
phantom deadlock detection. Because the 
scheme may incorrectly determine whether a 
transaction is blocked or not, some 
deadlocks may go undetected since the 
status of a transaction can not be 
determined unless the outcome of a 
request is known. However, when the 
outcome is indeed available, it is not 
used by the algorithm to detect deadlocks. 

2.2 Chandy's Scheme [CHANDY82]: 

The scheme described in [CHANDY] is 
specified using two sets of axioms which 
are also used to derive the correctness 
proofs. The alogrithm makes no 
assumptions other than that the messages 
are received correctly and in order. 

This algorithm uses TWF graphs to 
represent the status of transactions at 
the local sites and uses probes to detect 
global deadlocks. Basically, the scheme 
uses colored graphs whose edges are gray, 
black or white. An edge (Ti,T j) is 

Gray: If transaction T i has sent 
request to transaction Tj, and Tj 
is yet to receive it. 

Black: If transaction Tj has 
received the request but has not 
yet sent reply to T i. 

White: If transaction Tj has sent 
a reply to process Ti, but T i has 
not yet received it. 

The algorithm by which a 
transaction T i determines if it is 
deadlocked is called a probe computation. 
A probe is issued if a transaction begins 
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to wait on another transaction and gets 
propagated from one site to another based 
on the status of the transaction that 
received the probe. If the transaction 
that received the probe is active, the 
color of the incoming edge from other 
transactions will not be black. The 
coloring scheme allows update of the wait- 
for graph without inconsistencies. Only 
the transaction that receives the probe 
can determine if the color of the incoming 
edge from the transaction that sent the 
probe to itself is black. The existence 
of such an edge indicates that there is 
indeed a wait-for relation between the 
transactions. The probe is further 
propagated only if the edge is determined 
to be black and there is an outgoing edge 
that is not white. Although whether the 
edge is black or gray can not be 
determined, this clear distinction is 
indeed not required for probe propagation 
as the transaction that receives the probe 
next can distinguish it. In other words, 
a probe travels only along black edges of 
the wait-for graph. The probes are meant 
only for deadlock detection and are 
distinct from requests and replies. A 
transaction sends at most one probe in any 
probe computation. If the initiator of a 
probe computation gets back the probe, 
then it is involved in a deadlock. The 
scheme does not suffer from false deadlock 
detection even if the transactions do not 
obey the two-phase locking protocol. This 
could be achieved through the coloring 
scheme which helps in keeping the wait-for 
graphs up to date. 

2.30bermack's Algorithm [OBERMACK82]: 

This algorithm recreates the 
transaction-wait-for graph (TWFG) each 
time deadlock detection is performed as in 
the algorithm in [GOLDMAN]. 

The deadlock detection algorithm at 
each site builds and analyzes directed 
TWFG and uses a distinguished node at each 
site. This node is called "external" and 
is used to represent the portion of TWFG 
that is external (unknown) to the site. 
The status of each agent's direct 
communication links at the local site 
towards its cohorts at other sites 
determines whether the transaction is 
waiting for "external" or the "external" 
is waiting for the transaction's agent at 
the site. The detection algorithm at 
each site performs the following steps: 

i) Build TWFG. 

2) Obtain and add the TWFG information 
received as strings from other sites to 
the TWFG. 

3) Create wait-for edges from "external" 
to each node representing agent of 

transaction that is expected to send on 
communication link. 

4) Create Wait-for edges to "external" 
from the node representing of 
transaction that is waiting to receive 
from communication link. 

5) Analyze the TWFG listing all elementary 
cycles. 

6) Select a victim to break each cycle 
that does not contain the node 
"external." As each victim is chosen, 
remove all cycles that include the victim. 

7) For each cycle EX--> Ti--> T2...Tx-- 
>EX'containing the node "external," send 
a string EX, TI,T2...T x to the site T x is 
waiting for to recelve, if transaction 
id of T 1 is greater than that of T x. 

Though this algorithm is 
frequently referenced, it does not work 
correctly; it detects false deadlocks 
because the wait-for graphs constructed do 
not represent a snap-shot of the global 
TWFG at any instant. The comparison of 
transaction id's at step 7 reduces the 
number of messages sent by one half. The 
algorithms in [TSAI82a, SINHA84] adopt 
this strategy for reducing the number of 
messages required for deadlock detection. 

2.4 Bracha's Algorithm [BRACHA84]: 

In this paper two algorithms are 
given, one for dynamically changing 
systems and the other for a static system 
where transmission delays are ignored for 
simplification. The algorithms use a model 
similar to the AND/OR in which 
transactions can request any N available 
from a pool of M resources. An OR request 
corresponds to N = 1 while an AND request 
corresponds to N = M. 

The static algorithm consists of two 
phases: A notification phase, in which 
transactions are notified that a deadlock 
detection algorithm has started, and a 
granting phase, in which active 
transactions simulate granting of 
requests. Deadlocked nodes are the nodes 
that are not made active by the second 
phase. For static systems with messages 
in transit, the authors have used colored 
wait-for graph to take into account 
messages in transit in the communication 
channels, and to represent a static 
snapshot of the ongoing activities in the 
system. The dynamic algorithm is not 
summarized in this paper. 

2.5 Sinha's Scheme [SINHA84]: 

This algorithm , an extension to 
Chandy's [CHANDY82] scheme, is based on 
priorities of transactions. Using 
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priorities, the number of messages 
required for deadlock detection is reduced 
considerably. An advantage of the scheme 
is that the number of messages in the best 
and worst cases can be determined easily. 

The authors' model consists of 
transactions and data managers that are 
responsible for granting and releasing 
locks. A transaction's request for a lock 
on a data item is sent to the data manager 
of the item. If a request can not be 
granted, the data manager initiates 
deadlock computation by sending a probe to 
the transaction that holds a lock on the 
data item, if the priority of the holder 
is greater than that of the requestor. The 
transaction inserts this probe in a probe- 
q that it maintains, he probe is then sent 
to the data manager of the data item it is 
waiting for. At this stage of deadlock 
computation, priorities of transactions 
are used to decide whether to propagate 
the probe or not. The probe is propagated 
only if the priority of the holder of the 
data item it manages is greater than that 
of the initiator. When a transaction 
begins to wait for a lock, all the probes 
from its queue are propagated. When a data 
manager gets back the probe it initiated, 
deadlock is detected. Since the probe 
contains the priority of the youngest 
transaction in the cycle, the youngest 
transaction is aborted. 

2.6 Mitchell's Algorithm [MITCHELL] 

This is an edge chasing algorithm 
in which each transaction uses a public 
and private label for deadlock detection. 
Initially these labels for all 
transactions have the same value. The 
scheme is explained in the following four 
steps: 

i) Block Step: When a transaction becomes 
blocked waiting for a second transaction, 
both of its labels are incremented to a 
value greater than that of the blocking 
transaction. 

2) Active Step: A transaction becomes 
active when it gets a resource, times out 
or fails, or when the owner of a resource 
changes. 

3) Transmit Step: When a blocked 
transaction discovers that its public 
label is smaller than that of the blocking 
transaction, it changes its label to a 
value equal to that of the blocking 
transaction. 

4) Detect Step: When a transaction 
receives its own public label back, a 
deadlock is detected. 

When a transaction begins to wait 
for a resource held by another 

transaction, it executes the block step. 
When a transaction becomes active, it 
executes the active step. Periodically, 
the blocked transactions read the public 
label of the blocking transaction. Based 
on the ordering between this label and its 
own public label, the transmit step 
explained above is executed. 
Due to the transmit step, the largest 
public label migrates in the opposite 
direction along the edges of the wait-for 
graph. 

This algorithm is easily 
implemented and does not detect false 
deadlocks in the absence of process 
failures. It also can detect all existing 
deadlocks. 

2.7 Ho's Scheme [HO]: 

The authors have given three 
algorithms that use transaction and 
resource tables. While the first two are 
discussed here, the third one, the 
hierarchical algorithm is not discussed in 
this survey. The transaction table at 
each site maintains information regarding 
resources held and waited on by local 
transactions. The resource table at each 
of the sites maintains information 
regarding the transactions holding and 
waiting for local resources. 
Periodically, a site is chosen as a 
central controller responsible for 
performing deadlock detection. 

In the first algorithm, two-phases 
are used to determine whether a deadlock 
exists or not. Because deadlocks persist 
once they have occured, the second phase 
is basically used to verify the findings 
of the first phase. In the first phase, 
the central controller broadcasts a 
message to all sites, requesting them to 
send in their transaction tables. Upon 
receipt of these tables, the controller 
constructs a wait-for graph based on 
information obtained from the tables. If 
a cycle is detected, a message is again 
broadcast to all sites in the system 
requesting them to send in their tables 
again. The decision regarding the 
presence of any deadlocks is validated in 
the second phase by constructing a wait- 
for graph using only the transactions 
reported in both phases. This algorithm 
does not employ resource tables for 
deadlock detection. 

The drawback of this scheme is 
that it requires 4n messages, where n is 
the number of sites in the system. An 
obvious improvement to the algorithm can 
be achieved by sending messages in the 
second phase only to those sites involved 
in the deadlock cycle, thereby reducing 
the number of messages required to detect 
deadlocks. A counter example was given 
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by Jagannathan and Vasudevan 
[JAGANNATHAN82b] to show that the 
algorithm detects false deadlocks. The 
transactions in the counter example do not 
obey the two-phase locking protocol. 

In the one-phase algorithm, each 
site maintains resource and transaction 
tables. The central controller 
periodically calls for transaction and 
resource status tables. The wait-for 
graph is constructed using the 
transactions for which identical entries 
exist in both of these tables, ensuring 
that the information regarding these 
transactions is indeed the latest. 

2.8 Kawazu's Algorithm [KAWAZU]: 

The authors divide this algorithm 
into two phases. In the first phase local 
deadlocks are detected, and in the second 
phase global deadlocks are detected in the 
absence of local deadlocks. The local 
deadlock detection step is initiated when 
a transaction begins to wait for a 
resource. If no local deadlock is 
detected, the detection of possible global 
deadlocks begins. To detect global 
deadlock, the local wait-for graphs are 
gathered to construct a pseudo-wait-for 
graph. This graph does not necessarily 
represent the true status of transactions. 

This scheme suffers from phantom 
deadlocks, because each local wait-for 
graph is not collected at the same time 
due to communication delays. Also, in 
case a transaction simultaneously waits 
for more than one resource, some global 
deadlocks may go undetected since the 
global deadlock detection is initiated 
only if no local deadlock is detected. 
For a counter example to this algorithm 
see [JAGANNATHAN82b]. 

2.9 Haas's Scheme [HAAS83]: 

This scheme combines the approaches 
of [CHANDY82] and [OBERMACK82]. In this 
scheme, when a transaction T that is 
waited on by other transactions begins to 
wait for a remote resource, it triggers a 
deadlock computation by sending messages 
to the transactions it is waiting for. 
These messages convey information about 
potential deadlock cycles as in 
[OBERMACK82]. The message is initially a 
set R that contains T and the set of 
transactions waiting on T. 

When a site receives such a 
message, the controller at the site checks 

if the transaction for which the message 
has been received is active. The message 
is ignored if the transaction is found to 
be active. In the event of the 
transaction waiting for resources, the 
transaction name's presence is looked for 
in each member of R. If the above search 
is successful, a deadlock has been 
detected and the deadlocked sets are 
deleted from the set R. The transactions 
name is then appended to all remaining 
elements of R. The appended set is then 
propagated to the sites of resources the 
transaction has been waiting for, because 
a transaction may be involved in more than 
one deadlock at any time. The algorithm 
results in only one process detecting a 
deadlock cycle. 

3.0 CONCLUSION: 

The scheme of Menasce and Muntz 
[MENASCE79] requires at each site storage 
proportional to the size of local 
transaction wait-for graph. The edges of 
this graph are both direct and indirect 
(condensed). Though the condensed edges 
require extra memory, it may not be 
substantial in most cases. The number of 
messages required for deadlock detection 
may become to be exponential. As mentioned 
before, the scheme does not detect all 
deadlocks and detects false deadlocks. The 
scheme of [CHANDY82] does not suffer from 
these disadvantages and is well suited for 
proving correctness of the algorithm; the 
disadvantage in the scheme is that a 
process that detects a deadlock , as in 
[MENASCE79], is not aware of all the 
transactions involved in the cycle, 
information required for efficient 
deadlock resolution. The scheme of 
[SINHA84] alleviates this problem by 
providing a field for the victim to be 
chosen to break the deadlock. The scheme 
of [HAAS83] gives the deadlock detector 
information regarding transactions 
involved in the cycle and requires no 
message for detecting deadlocks involving 
only two transactions. Though the messages 
in the scheme of [HAAS83] are longer than 
that of [CHANDY82], they are not longer 
than the notification messages of 
[CHANDY82]. While the worst case 
complexity of [CHANDY82] is fourth power 
of n, that of [SINHA84] is second power of 
n but the latter algorithm requires that 
transactions obey the two-phase locking 
protocol. For deadlock cycles involving 
fewer than seven transactions, the scheme 
of [HASS83] outperforms the scheme of 
Chandy and Misra. As per [GRAY81], most 
deadlocks involve two to four 
transactions. Hence the scheme of 
[HAAS83] is preferable. The schemes of 
[BRACHA84] and [MITCHELL] also use short 
message probes as in [CHANDY82] and have 
the advantages and disadvantages of that 
scheme. The schemes of [OBERMACK82] , 
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[HAAS83] and [KAWAZU] have long deadlock 
messages because of the wait-for graph 
information sent as part of these 
messages. However, these messages are 
helpful during deadlock resolution phase. 
The scheme of [OBERMACK82], though 
implemented in system R*, suffers from 
false deadlock detection. The scheme of 
[KAWAZU] involves sending local sub-wait- 
for graphs for deadlock detection as in 
[OBERMACK82]; the deadlock resolution will 
become complicated since more than one 
site can detect the same deadlock. While 
the one-phase scheme of [HO] does not 
detect false deadlocks, it requires all 
sites to send in their wait-for graph 
information. This results in superfluous 
information sent to the central 
controller, resulting in extra inter-site 
message overhead; also, since the deadlock 
detection is performed periodically by the 
central controller, the time required for 
deadlock detection depends on the frequecy 
of such calls to the sites. 

While most of the work in this area 
has concentrated on the design of new 
algorithms. More research in the 
specification, verification and 
performance evaluation of deadlock 
detection algortihms is needed. The lack 
of unified means by which researchers may 
specify their algorithms resulted in most 
of these algorithms being shown incorrect. 
Almost no work exists in the area of 
evaluating the performance of these 
algortihms. 
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