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CIBSTRCICT: This paper presents a methodo- 

1 WY for the stepwise specification of 
dynamic database behaviour. CI conceptual 
schema 15 de5cr1bed 1n three levels: data, 
oblects and transactions. To determ1 ne 
which sequences of database states are 
“adm1551ble”, integrity constraints on 
obJect5 are given 1n temporal logrc. 
Traneactions are speczfied by pre/post- 
conditions to produce “executable” state 
sequences. In order to guarantee that exe- 
cutable state sequences already become 
admissible, integrity constraints are com- 
pletely transformed into addrtional pre/ 
postconditlons. We introduce general rules 
for these transformations. Thus, schema 
specifications can be refined and simple- 
f red systematically. 
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1. INTRODUCTION 

Conceptual database design aims at de- 

fining a global information structure in- 

dependent1 y of any implementation CTFGZ, 

CeG3 I ; its result 1s the so-called concep- 

tual schema. This phase corresponds to the 

Dynam1 c database behav1 our results from a 

sequence of database states. Whereas 

“static” integrity constraints def 1ne 

“cons1 stency” of a single state, “dynamic” 

integrity constraints are concerned with 

“admi 551 bill ty" of a state sequence. To 

specify adm1551ble state sequences formal- 

ly, temporal logic 15 an appropriate lan- 
guage. State5 within a sequence can con- 

veniently be related by means of temporal 

formulas which provide special quantifiers 

like "alwayr . . . until” or “sometime . . . 

before” CCCFGZ, KuG4, ELGG4/LEG853. 

During runtime of a dataoase, transitions 
specification phase 1 n general software between states are caused by user transac- 
design meant to bridge the rap between re- tions. To exclude undesirable database 
quirements analysis and implementation. If manipulations which lead to inconsistent 
conceptual design 15 SupDOrted by formal states, a 5et of basic transactions should 

be agreed upon during design. Then, all 
appllcatlons have to be composed of them. 

In the implementation, transactions are 

realized by programs that access the data- 
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Thus, possible trans- 

act1on requences 15 restricted to “exe- 
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specification techniques, it may form a 

basis of rapid prototyp1ng. too CFuG43. 

U5ually, the conceptual schema character- 

izes the structure, of the database con- 

tents at any single instant, i.e., it de- 

fines the common structure of all database 

states. If a databale, however, 15 consi- 

dered together with 1t5 usage, the beha- 

v1our over the course of time also has to 

be descr 1 bed. 
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cutabl e” sequences 1n which each state 

between two transactions must satiofy the 

respectrve post- and precondition. 

This specif icatIon of transactions com- 

pletes the orrgrnal specification of dyna- 

m1c database behavrour: Only those state 

sequences are allowed whrch are induced by 

executable transactron sequences and which 

are admissible with respect to the 1nte- 

grity constraints. 

In order to ensure correct database beha- 

vi our, 1t becomes necessary to monitor the 

constraints durrng runtime. In contrast to 
expensive universal monrtor1ng mechanisms, 

transact 1 ons offer a possib111ty of con- 

trol 1 i ng databare usage "locally" and 

therefore eff lciently: Checks may be lr- 
m1ted to the data actually affected and 

may be suited to the respective operation. 

The same princrple 1s persued 1n EN1821 to 

slmplrfy static constraints for standard 

relational updates. 

To rncorporate this kind of monztor1ng, 

the specification of transactions should 

be ref 1 ned 1n subsequent design steps: 

Integrity constraints have to be converted 

into more restrrctlve pre/postcondrt1ons 

so that executable transaction sequences 

already guarantee admrssrble state sequen- 

ces. CI s1m1 lar procedure 1s recommended 

by CVF853, but only for static and tran- 

sitlonal constraints (1 .e. cond1 t1 ons on 

single state transitions). 

This paper presents a methodology for such 

a stepwlse specif1catlon of dynamic data- 

base behavi our. Unlike the related lltera- 
ture, we concentrate on dynamzc integrity 

constraints which refer to arb1 trary 1n- 

tervals of state sequences and we give 

rules how to transform constraints into 

pre/postconditlons systematically. In par- 

ticular, verrflcatron of adm1ss1brl1ty be- 

comes unnecessary when appl y1 ng general 

transformation rules. 

The followlng sectlon introduces concep- 

tual schema specrflcatlons and especially 
explains integrity constraints and trans- 

action speclfrcatlons. SectIon 3 describes 

our method of refining schema speclflca- 

t1ons by means of transformations. Frnal- 
ly, related work and some conclusions will 

be d1 scussed. 

2. CONCEPTUAL SCHElvI SPECIFICATION 

The original specification of a conceptual 

database schema consrsts of three levels, 
each bull t upon the prevrous one: 

(1) data types 

(2) ObJeCt types 

with rntegrrty constrarnts 

(3) transactions 

In the following, we only give a short rn- 

troduction to schema specifications, but 

emphasize those aspects which are relevant 

to the main subJect of this paper. Hore 

detarled work on levels (1) and (2) can be 

found 1n CLEG853. 

2.1 DATA AND OBJECT8 

Data types are a fixed reservoire of val- 
ues for the database, e.g., boo1 -, int, "9 
text, year; they may be defined by, for 

instance, algebrarc equatronal 5pecifica- 

trans. ObJectS are things about which 

information 1s to be stored 1n the data- 

base. They are partrtloned into sorts, and 

rnformat1on about them 1s carried by func- 

t1ons between ObJeCtS and data. Predicates 

on obJects are represented as bool-valued 

functions. For example, 1n a schema for an 

“Automobile Registration Authority” simi- 

lar to that of CISO823, the following ob- 
Ject sorts and functions appear: 

sorts CAR, MODEL, CAR-OWNER, . . . 

subsorts CCIR-OWNER = 

MANUFACTURER+GARAGE+PERSON 
..I 

f unctrons regno: CAR -> no - 
model -of : CCIR -> MODEL 

produced: CCIR - -> boo1 

reg1 stered: CAR -> boo1 

approved: MODEL -> boo1 

name: CAR-OWNER -> text 

owner: CCIR -> CAR-OWNER 

th1syear: -> x 
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Later examples wall refer to this syntac- 

tic structure. 

We assume the reader to be f am1 liar with 

the construction of predr cate calculus 

formulas from obJect functions. general 
temporal formulas can be built from those 

formulas using 

logical connectives (~,v,t,=>,...l 

quantification over possible obJects 

(!t,3_) 
temporal quantzflcatlon by 

al ways, next somet i me, 

bounded temporal quantification by 

always/sometime . . . before/until 

In order to express dynamic rntegrlty con- 

stral nts, only the following special kinds 

of temporal formulas are used: 

!!x 1:si 1.1 "xn:sn 

always before 
always ( a => P -7) 

sometime until 

Here a, p, and T are nontemporal formulas, 
i.e. formulas without temporal quanta - 

f iers, and x lr--*rxn are all free varia- 

bles of sorts sir.. ,s,, that occur an these 

formulas. In the following, a simplified 
syntax 1s used for constraints; rt omits 

the standard prefix and allows to omit the 

a and T parts: 

always p before T 

H I 
sometime p until T 

Examples8 The integrity constraint 

(III from produced(c) A this-year=y 

(with 
that 
year 

sometrme regrstered (cl 

before this-yeardy+Z 

variables c:cRR and y:year) says 

each car must be reglstered in the 

of rts productron or in the follow- 

ing year. The mentloned database object 

this-year 1s assumed to contain the 

current year. 

Two further constraints shall restrict the 

success2 on of ownership relations. For 

thr s purpose, we consider the subsort to 

which an obJect of sort CAR-OWNER belongs, 

i.e. either to MAWUFCICTURER, GCIRAGE, or 

PERSOW. Membership in a subsort is ex- 

pressed by the standard predicate rp ‘. 

(121 from owner(c) is HMUFACTIJRER - 
sometime owner(c) IS GcIRclGE - 
before owner (c 1 rr PERSOW 

(13) from owner (c) YO A co is GARAGE - 
always owner(cI=co 
before owner(c) 1s PERSON - 

(variables: c:CAR, co: CCIR-OWNER1 

A c8r must be passed from a manufacturer 

to a garage first, before rt may be passed 

to a person. It must remain property of 

the same garage before at IS sold to a 

person. l ++ 

Aside from the constraints above one can 

Imagine more complrcated temporal formulas 
or even other kinds of dynamic assertions 

which ml ght refer to the past tKuB43 I 

such constraints are not treated in this 

work. The restricted formulas from above 

are not only an appropriate basis of monr- 

torrng or refining specifications, but 

also turn out to be suff lclent for many 

applications. 

The object level of the schema speclfrca- 

tion determines how database states are 

structured and which state sequences are 
admissible. In a state 6, the sort and 

function names are interpreted by finite 

sets of “actual” obJects and by functions 

between obJect and data sets. In a state 

sequence 5 = --g,~jr9,...>r this inter- 

pretatlon may change from state to state. 

a_ is called admissible iff it satisfies 

the Integrity constraznts. 

We briefly define what rt means that an 

inf mite state sequence g satlsf ies a 
constraint r. Let ‘CU,<JCQ’ denote the 

fact that a nontemporal formula y holds 

in a single state U for a substitution c. 

c indicates the obJects and data which are 

substituted for the free variables in e. 

For substrtutions, all “possible” obJects 

must be considered, i.e. all obJects that 

be1 ong to some database state as actual 

&Jects. 

(1) a satisfies 

rr f ram a always p before T lff. 

For all substitutions c of free var- 
iables in a,P9r and for all states 
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61’ rAO, the following holds: 
If CU,,~lCa, then Cu,rClm 
for each state 6,. ihj<u, where 

p= min ( Ck I kAlntuk,~31=T>+Coo> 1. 

Starting from any state 6, rn which the 

"start condrtron” a holds, all states fol- 
lowing that state (lncludlng 6, itself) 
dust satisfy the condition p, before the 

“termination condition” T become5 valid 
for the first time (in u,,). This situation 

is required for each substrtution C. If T 

does not occur at all, p must hold in the 

entire future of Ul (p=oo). 

(131 a satisfies 

Te from a sometime p before T 1ff: 

For all substitutions C and for all 
states Ul, r&O, holds: 

If CU, ,cWa, then there is some 

state UJ, ih~<p, such that CU,,Clhp 

(p as above). 

In contrast to (iI, there must exist at 

least one state following U, which satrs- 

fies p before the termination condition T 

occurs. 

(111) Analogous definitions apply to the 

combrnatlons of always/ sometime with 

until. Here the bound p must be in- 

cl uded. 

According to the kind of implicit quanti- 

f 1cat1on over states, we distinguish be- 

tween universal constraints in which the 

keyword al ways appears and existential 
ones with sometime . 

The above semantic5 of constraints refers 

to inf inrte state sequences which repre- 

sent the complete behaviour of a database 

from an initral state (do) to the future. 

From a practical point of vrew, it 15 more 

interesting to consider properties of the 

partial database behaviour up to an ac- 

tual state (6,). Therefore, we introduce 

the following notions. 

A finite state 5equence c = <do,. . . ,Un> 1s 

called (strictly) admi s5x bl e lff the 

infinite sequence <Uo,...,Un,Un,Un,...> 

(remalnlnq constant from posrtlon n on) 1s 

adm15s1ble. If some inf mite continua- 

tion c (not necessarily <Un,Un,...>) 
exists such that 15.6 become5 adm1s51ble, -- 
then u 1s possrbly admlssrble. In this 

case, g 1s not strictly admrssrble if and 

only if the sometime-condition of SOlIt@ 

existential constraint ha5 not been satis- 
fled up to d,, although the start condi- 

tion had occurred. For example, the con- 

dition ‘registered(c) in constraint ( 11 l 
might still be pending, after’produced(c) ’ 

has become valid. 

In order to avoid any checking that looks 
ahead from the actual state, we proceed on 

the “optimistic” assumption that all pen- 

ding conditions are satisfiable in the 
future. Nevertheless, the user might 

choose a wrong continuation after the 

actual state. Formally, we a05ume that a 

distinguished (infinite) state sequence & 

exists in which every formula holds. CI 
finite state sequence a is defined to be 

provisionally admissible iff a.A is ad- 

m1s51ble. To assure provisional admrssl- 

bilrty, it suffice5 to prove that no con- 

straint has been violated in 6, or in any 

state U, before ‘87. For instance, an 

existential constraint 15 violated in this 

sense, if its termrnatlon condition occurs 

al though the sometime-condition has not 

been valid before. 

The latter kind of admissibility can be 

controlled by mean5 of an integrity moni- 

tor which only refers to the database his- 

tory, but doe5 not involve any lookahead 

LLEGGSI. For this reason, that property 

Will be the goal of refining rpecif ica- 

trons in section 3. 

2.2 TRANSCICTIONS 

The third level of a schema specification 

describes all transactions that may change 
the database contents. In the style of 

Hoare s assertions, transactions are spe- 

cified by means of pre- and postcondr - 

tions. 

Such conditions may be expressed by arbr- 

trary formulas of predicate logic (nontem- 

poral formulas). A precondition contains a 
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condition on which the transaction may be 

executed. Any state directly following the 

transaction must satisfy the correspond- 

ing postcondition. Best des , It 1s lmpli- 

c1t1y assumed as a “frame rule" that all 

ObJeCt functions that are not affected by 

the postcondi tl on remain unchanged. To 

speclf y different cases of state transl- 

tlons, several pairs of pre/postconditions 

may be qlven for one transaction. 

Examples: The automobile -- registration 

schema of CISOS21 includes transactions to 

register or sell a car. They are speclfled 

here as follows: 

(Tl) KEGISlEK (c:CAR, m:MODEL,. . .) 

!z!! approved (rn) 

post registered (cl C=truel 

A model-of (c)=m A . .- 

Acar c may onlv be registered, If 

the declared model m has already been 

approved. During registration, any 
information passed as parameter 1s 

appropriately stored. 

(TZ) SELL cc: CAR, newco: CAR-OWNEli) 

pre --- [true; no restriction3 

popt owner (c) = newco 

A car c IS sold to a new owner 

newco . *** 

The frame rule simplifies specifications, 

because only changes must be mentioned in 

a postcondition. Since arbitrary formulas 

are al 1 owed, conditional or alternative 

effects may be formulated. Thus, the post- 

state of a transactlon may be left lndefi- 

nite within a certain range, and It Will 

be deter ml ned unl quel y only by later re- 

f 1 nement or implementation. 

Chu84/CuS5al and EVFBSI also use pre/post- 

conditions to specify transactions, but 

apart from the frame rule they have other 

implicit assumptions which seem to be more 

restrictive than he1 pf ul In many appl1- 

cations. Besides, CVF851 on1 y admit con- 

Junctions of ground formulas (like In the 

e, amp 1 es above), thus e/cludlng implica- 

tions,e istence statements,etc. In CVCFEl3 

and CCVF841 different formalisms of specl- 

fylng transactlons and operations are com- 

pared by means of eramples. 

Formal 1 y , syntax and semantics of transac- 

t1ons are qlven by the following deflni- 

tions: 

CI transaction specification consists of a --_ 
name T, (sorted) parameter variables X and 

several prefpostcondltlons FJ'BJ (J&l); 

notation: CFJ3 I(X) COJ: . These con- 

dltlons are nontemporal formulas In which 

add1 tional free variables Y may occur 

beside X. A substitution 5 of parameter 

variables IS called an actual parameter. 

T transfers a state d Into a state d with _____-- 

an actual parameter < lff: 

(a) There 1s a precondltlon PJ and a sub- 

stitution 4 of the free variables Y 

such that. [d,r;+$l C F . 
J 

(b) For all pre/postconditions PJ/QJ and 

for al 1 substitutions p of the free 

variables Y, the following holds: 

cd ,<+<I!= F lmpl ies Cd ,<+<]I= Q 
3 J 

ic) o 1s minimally changed to d , I.e., no I- 

change of any obJect function value 

from d to d can be undone WI thout 

vlolatlng condition (b) 

Fart (c) of the deflnltlon qlves a seman- 

tic characterlzatlon of the frame rule. 

Ihe so-called frame of T 1s constituted by 

311 formulas up which are invarlant in the 

following sense: 

For all triples (d,d ,c) such that T 

transfers d into d with r; and for all 

F J, 5 as above, the following ho1 ds.: 

Ld, <+<I!= F J~tp implies co *<+<1i= lp 

(We assume that X+Y already contains 

the free variables occurring in w.f 

Obvlousiy formulas that do not mention 

aray function used In the postcondltlons 

belong to the frame But there may also 

be conditions In the frame which involve 

rrhose functions. trlvlal evamples are the 

postcondi tlons themselves. rOf course, 

tltelr negat 1 ons are not invariant I To 

analvze speclficatlons, derivation rules 

far frame f ormutas are needed. 

lransactlon speclficatlons restrict pos- 

sable sequences of transactions or- states 

to “e eLutable” ones. 
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f3 transaction sequence Tl,...,-rn2 15 

called executable ______- if f there 15 a sequence 

(I = 0;,r- - - ,a#-) of states, such that 61-i 

15 transterred into d, by T, WL th some 

actual parameter 51 (for 1=1, ..,n). In 

this case, the state sequence d_ 15 also 

cdl led evecutable. -___^_ 

Thus, transactions and dynamic 1ntegrlt.y 

constraints can be seen as complementary 

spec1 f rcat1ons. together they restrict 

state sequences to such sequences that are 

e ecutabl e and admissible. In the example 

above, state transltlons changing a “car- 

owner” must be induced by corresponding 

transactions like SELL (TZ), and they must 

satisfy the constraints (12) and (13). 

- KEFINING THE SCHEMA SFECIFICATION -. 

The poss1b111ty of restricting state se- 

quences by specifying transactions shall 

be utilized to monr tor integrity con- 

stralnts. The constraints are converted 

into a refined speclflcatlon of the trans- 

actrons 50 that evecutable state sequences 

become provisronally admissible up to each 

actual state. Thus, dynamic database beha- 

v1our 15 determined by transactions only, 

and temporal constraints need not be con- 

sidered for implementatron any longer. 

Ih1s refinement offers the opportunity to 

observe the impacts of "global" integrity 

constraints on the "local" usage of the 

database If new pre/postconditions lead 

to undes1 rabl e restrlctlons or even to 

contradictions, the original schema spe- 

cification should be corrected. Moreover, 

there 1s some prospect that integrity 

monitoring by transactions can be imple- 

mented quite efficiently, 1f checks are 

SUL ted to the respective kind of change 

and to the ObJecta affected. 

As a preparation for ref 1nrng a schema 

specification, the set of ObJeCt functions 

~5 e/tended by some predicates which keep 

tracl of partial 1 y satrsf led constraints: 

ihere may be sometime-conditions which are 

yet to come or always-condrtions which 

must hold only temporarrly. It makes sense 

to store such “memos” 1n the database, 

51 nce they can indicate the actual degree 

of admissibility to the user. 

Then, the pre/postcondltlons of transac- 

tions are completed by further condl- 

tions.Semantically, evecutabr 11 ty of state 

sequences become5 stronger restricted. Clt 

first we show which completron would be 

necessary without regarding any specific 

knowledge about a transactron. Th15 trans- 

formation correspond5 to the universal 

integrity monitor presented 1n CLEGGSI. By 

considering which transactions can change 

which object functions, those completions 

can be essentially simplified afterwards. 

The key idea of monitoring or transform- 

lng a dynamic constraint 15 to split a 

temporal formula into a nontemporal for- 

mula that must hold in the actual state, 

and a temporal one that remains to be 

checked ln the future. For this purpose, 

so-called “recur51 on rules” of temporal 

logic CtlP811 are helpful: 

always tp =, -- p A next (always rpt 

sometime cp .=, q3 v next (sometime cpi 

For es (W == sometime j3 before T) and 0 5 

(sometime p before T), the following laws -- - 
can be derived: 

(1) 12) 

(1) cp (=' (a=‘771 A (any3 =z nevt Q, i 

(11) @ <=* -IT A (3 => next 0 ) 

If one of the temporal formulas 0 or B 1s 

requ1 red for a state sequence, part (1) 

excludes an illegal occurrence of the 

termlnatlon cond1tzon ‘c in the f 1r5t 

state, and (2) indicates on which premises 

B must be satisfied by the rest sequence 

starting with the next state. According to 

the interpretatron of a constraint “from a 

always $ betore T” (see 5ection 2.1) , 0 

applies to arbitrary (starting) states and 

substitutions Accordrng to the laws above 

B may apply to following rjtates for cer- 

tain substitutions: it then replaces the 

requirement @, since Cp implies 0. This 

temporary requirement @ must be recorded 

in a special memo. 

in this sectron we d15cuss those two ba51c 
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forms of integrity constraints which were 

evpiained In section 2.1 explicitly. Each 

existentlal constraint - 

I- - = from CI sometlme p before T -__ --- ____ 

is transformed In the following way: 

Step I: 

An additional predicate named sometlme p 

before t 1s introduced whose arguments 

correspond to the free variables In p and 

t; in the following, it is abbreviated to 

SB (though depending on l-1. This predi- 

cate must be entered In the database as 

true for a substitution 5, if the corre- 

spondi ng condition (0 from above) re- 

mains to be checked with that substitution 

in the next states; so SE(<) plays the 

role of the mentioned “memo”. Kecall that 

a substitution Just represents a certain 

combination of data and obJects to be used 

as actual arguments. 

Thus, as many predicates are added to the 

schema as constraints are qlven 113 the 

orlqinal specif Ication. In special cases, 

such predicates can be expressed in terms 

of existing functions and predicates so 

that a new predicate can be avoided. This 

will be illustrated In a later example. 

Step II: 

Let an arbitrary transaction T be given 

with an original specrflcatlon or with a 

specif icatlon resulting from transf orma- 

tion of other constraints. Each assert1 on 

CP> 1 <Q> consisting of a pair of pre/ 

postconditlons PIG! 1s rewritten to: 

(1) (2) 

;PA-ISB> T :Q A (cc=nt) A (a/i-q3 \= 5%): 

:PA SB: T :Q A -It A (P = mSB) 3 

Here, the laws (1) and (11) from above are 

utzllzed to restrict the set of post- 

states. The new specification expresses 

the requirement that T has to monitor the 

given constraint as far as thl s can be 

done by inepectlng the new actual data- 

base state. A distinction 1s made, whether 

or not a memo SB “exists” previously. The 

=X -dlrectlon of condition (2) controls 

“lnsertlon” (SIO or “deletion” (-ISB) of 

the memo. The ’ = -direction of (2) deter- 

mines if -I% or 56 1s retalned. It should 

be noticed that the free variables In the 

added parts must be named differently from 

parameter and other variables, because 

those condltrons shall hold for arbitrary 

ObJects. 

Si nie postconditions affect only states 

following transactions, the addition in 

the first line above has to hold In the 

initial state of the database, too: 

tcr(= -It) h (ctAq3 =,- SB) 

Example. By transforming the Integrity 

constraint 

(11) from produced tc) A this-year=y 

somet I me registered(c) 

before this-year&y+2 

the following new specification is ob- 

tained for the transaction ITl) HEGIS- 

TEH(c,m,...) of section 2.2: 

Prel approved(m) A GB(c ,y ) 

poet1 registered(c) A . . . 

A ( (produced(c )hthis-year=y ) 

EI +hls-yearly +2 ) (-) 

A ( (produced cc 1 Athis-year=y 

A ~registered(c ) ) 

=, SEl(c ,y ) ) 

Ubvlously (-) 15 a taut01 ogy that 

may be dropped 

pi-e-, approved(m) A SB(c ,y ) -& 

eolt2 regIstered A . . . 

h this-year. y +2 

A ( reglstered(c ) q=, +.B(c ,y ) ) 

For design purposes, it 1s recommended to 

introduce a more application oriented name 

for the predicate SB. A conver-szon of its 

parameters may be included, as it can be 

done for IIl>* 

to-be-registered-before: CAR year -‘boo1 

where to-be-registered-beforetc ,y +2) 

= SE((c ,y 1 *** 

Step III: ---- 

NOW) the transaction speclf lcatlons of 

step II can be essentially simplified. 
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Uue to the frame rule with respect to the 

original specification many transactions 

WI11 not change the added conditions at 

al 1, others will not do so for many sub- 

stltutlons. Therefore, the transf ormatlon 

above needs only be done for transactions 

whl ch posse bl y change the truth value of 

01, f3 or T. I.=., some of these formulas or 

thelr negat i ons are not In the frame of 

the transaction. Moreover, the new varla- 

bles of step II may be replaced by those 

parameter variables, original variables, 

constants or terms which are involved In 

changes of the correspond1 ng formula 

parts. If not all three constraint compo- 

nents change, whole factors of the above 

conJunctions may be omltted. Finally, the 

frame rule may be utilized for the new 

specification, too 

TO dl scuss typl cal situations, let us 

cons.1 der transactions T which change at 

most one of the constraint components c<, 

p or T from false to true. Equl val entl y , 

el ther yc(, ~(3 or 7~ 1s not In the frame of 

T. The following specifications result 

from step II I: 

(1) If T can change only o[ to true- 

:PA-lSB: T CQ A -IT A IMP s = SE) 1 

CFA SB: T CO; 

(11) If T can change only p to true: 

:Fn+3B> T CC! A -&B> 

<FA ‘3: T CR A +B> 

or comb1 ned: :I=> T :G! A +B: 

(111) If T can change only T to true: 

:FA+~&> T CQ A -ICI( A +B> 

CPA SB: F <Q A false: (-) 

Since the second postcondition (-) 

cannot hold in any state, the whole 

line may be dropped so that the pre- 

condltron of T 1s restricted to 

:FA-lSB: only. 

E/amples: The above refinement of the spe- -----__- 
cification for REGISTER can be slmpllfled 

according to case (111, because only 7$ I 

Iregistered (cl 1s not Invariant: 

Capprotied tm) 1 REGISTEli(c,m,. . ) 

[registered Cc) . . h +atc,y )> 

After execution of REGISTEF.(c,m,. . .) no 

memo may e,ist for the car c. An imple- 

mentation of the transaction has to take 

care of deleting a memo which possl bl y 

e,l sted before. 

Let a further transact 1 on NEXT-VEAK be 

given whl ch updates the current year 

this-year : 

:thls-year=>> NEXT-YEAR Cthls-year=%+13 

Referrlng to constraint (Ii), only the 

termination condition T I th 1 s-year&y+2 

II changed for y= x-l, so that transfor- 

matlon according to case Ciii) and obvious 

slmpllflcatlon of the resulting postcondi- 

tion yield: 

:this-year=, h +a(c,u-l)l 

NEXT-YEAR <this-year=x+l> 

1 hus, right before execution of NEXT-YEAR 

any memo from the previous year must not 

eciet any longer. In a way, "the clock 

must be stopped” 1r-1 order to settle the 

required reglstratlons for all cars c with 

memo SB(c.\ -1). *** 

All slmpliflcations In step III presuppose 

that any partial condition or substitution 

which IS excluded here has been checked 

after its last change (and in the initial 

state) _ This is the case if al 1 transac- 

tion speclflcatzons are treated accord1 ng 

to the rules above. 

As can be seen by induction on state ee- 

quences, the transf ormatl on rules do 

quarantee that executable state sequences 

satisfy the given constraint In the sense 

of provlslonal admlsslblllty. Thus, single 

verifications are rendered superfluous. 

Addltlonally, our eramples demonstrate how 

condltlons can typically be simplified 

further in concrete situations, so that a 

"readable" specification results In spite 

of formal transformation. 

The transformation of universal con- 

straints will only be given by analogy to 

e istentlal ones. For each constraint 

from ci always (3 before T 

a predicate always f3 before T riw 1s 

needed (step I). Then, the basic trans- 

formation of CF3 T IQ> reads as follows: 
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CPA-IAB: T CR h(a~3T=q3) h (ah-rT 5=’ AB) 3 

CPA A63 T CR A (-IT=,+) A (T c=>1AB) 3 

This specification is constructed slmllar- 

ly to step II for eristential constraints. 

The subsequent simplifications of step III 

apply here, too. 

Erample. The following constraint 1s to be 

transformed: 

(13) from owner (cl =co A co 1s GARAGE - 
al ways owner (c) =co 

before owner (c) II PERSON -- - 

Among the given transactions only SELL 

(T2) 1s affected by a transformation, 

since no other transaction changes the 

function owner . After some equi valence 

conversions of the basic transformation 

a ref 1 ned speclflcatlon is obtalned for 

SELL fc ,newco) : 

Pi?1 
posjtl 

or: 

post1 

E!re, 
post* 

Thus, 

ships 

-lAB(c,co) 

owner (c) =newco 

A ((owner(c)=co A co is GARAGE) - (*) 
‘.=* AB(c,co)) 

owner (c) =newco 

A (newco 1s GARAGE =K AB(c,newco)) - 

(Cpre13 T <post11 is equivalent to 

Cpre13 T Cpostl>, since all omitted 

assertions are in the frame of T wt-t 

cost,. ) 

AB(C,CO) 

owner (c) =newco 

h(lnewco is FERSON = ’ co=newco) (+) - 
A( newco is PERSONr=>~AB(c,co) 1 - 

restrictions on succession of owner- 

have been incorporated into the 

transaction specification. Subsequent 

transformation of the other integrity con- 

straint (12) would lead to a further 

differentiation. *** 

The second postcondltlon of the example 

(post-,) strongly restricts the possibility -A 
of transfert-lng states by this transac- 

tion: For some states satisfying the 

precondition, there is no state satisfy- 

ing the postcondition. This speclfles cor- 

rectly that certain state sequences are 

not executable, but the situation seems 

to be model1 ed in a somehow complicated 

way. To get a clearer specification it is 

recommended that the precondition should 

exclude cases when no poststate erists. 

Example, cant d.: -~ In spite of the precon- 

dltlon, part (+) of the postcondition 

cannot be satisfied for arbitrary parame- 

ters newco . In this esample, it is 

enough to put this restriction into the 

precondl tlon in its original form, since 

no obJect function being subJect to change 

1s Involved rn this formula. Then, the 

second speclflcatron part of SELL(c,newco) 

reads: 

pi-e7 -& AB(c,co) 

h(Tnewco 1s PERSON =) co-newco) (+) - 
post? owner Cc) =newco 

A( newco is FERSON~=,‘YAB(C,CO)) - 

Moreover, here the new predicate AB can be 

expressed by means of existing predicates 

prove ded that the function owner 1s af- 

fected by SELL only. It can be proved by 

lnductlon on executable state sequences 

that the following equivalence holds al- 

ways: 

(owner(c)=co A co 1s GARAGE) - => A6 cc ,co) 

(This was mentioned in the first postcon- 

dition post as (*).I *** 
-1 

Static integrity constraints p which cor- 

respond to special universal constraints 

from true always p before false 

do not require introducing any additional 

predicate, either. For them, transf orma- 

tion of CP: T CcI> yields: 

CF A ~3 T :13 A p: 

In particular, this refinement might give 

rise to checking the original postcondz- 

tion 0 for consistency WI th the static 

constraint f3. 

Of course, one can imagine 51 tuations 

where certain integrity constraints can be 

concluded directly from the original 

transaction specifications so that no 

transformation i 5 necessary. In any case, 

general, transf ormationr are possible and 

reliable; thus, they can serve the design- 

er at least as a guideline to refining the 

schema speclflcation. Ecesl des, the euam- 
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ples show that systematic slmpllflcatlons 

can lead to formulations easy to survey 

and to grasp, where verification has 

al ready been done. So transaction specs- 

f ications become a sufflclent and useful 

interface to the rmplementor. 

4. RELATED WORii AND CONCLUSIONS 

The literature based upon similar calcull 

(temporal logic and pre/postcondltrons) 

contal ns first approaches to comparable 

multi-level database specifications 

CCCF82/ CVF84/ VF85, ku84/ ku85b, SFNC843. 

Requirements and methods of verifying tem- 

poral constraznts are analyzed presuming 

that complete descriptions of transactions 

are given beforehand. Already CGM793 have 

studied verlfzcatlon of static constraints 

by checking 1 nvar 1 ant pre/postcondl tlons 

of transactrons. Bea des, Cku841ku85al 1s 

concerned with conslatency of schema spe- 

ciflcations. 

Only CVF853 give some basic methodical 

hints that the specification - and also 

the selectlon - of transactions should be 

ref 1 ned in a stepwlse way. The above ap- 

proaches, however, cannot cons1 der “some- 

time” constraints In refinements, although 

they may be formulated parti ally; for 

thrs, our notlon of “prove si onal admi 8s~ - 

blilty” proves to be appropriate. Trans- 

f ormatlon methods for dynamic integrity 

constraints have not yet been dlscussed by 

otljer authors. 

The specif xcation method presented here 

depends on the principle to fix a module 

of basic transactions for all database up- 

dates. This module becomes responsible for 

the correctness of dynamic database beha- 

vlour. Its design 1s based on the trans- 

formation of the original schema specifl- 

cation: the designer 1s guided to recog- 

nize the Impacts of the global specifica- 

tron on the transactions. 

The design procedure Itself might be sup- 

ported by an interactive system that con- 

trols and manages stepwr se transf orma- 

tions and that offers slmpllf lcatrons of 

logical formulas. Moreover, those trans- 

formations may be used to generate a pro- 

totype of a database application system 

from Its orlginal rpeclflcatlon. As shown 

by LVF851, preliminary implementations of 

transactions can be derived from certain 

restricted pre/postcondltions automatz- 

tally. 

Concerning theoretical f oundat 1 one, the 

slmpllflcatlon step (III) could be treated 

more formally than In this paper. but 

our emphasis was on introducing typical 

elements of a specifxcation methodology. 

For simplifications, Inference rules are 

needed to der 1 ve frame formulas and to 

detect Irrelevant variable substrtutrons. 

The approach of CNi823 on static con- 

straint simplification should be examined 

if it can be extended to general transac- 

tlon specifications. In addition, new 

mono tor 1 ng principles for dynamr c con- 

straints CLSEG61 might be utrlxzed to 

transtorm a larger class of temporal for- 

mulas. 
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