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ABSTRACT: This paper presents a methodo-
logy for the stepwise specification of
dynamic database behaviour. A conceptual
schema 1s described i1n three levels: data,
objects and transactions. To determine
which sequences of database states are
"admissible”, integraity constraints on
objects are given 1i1n temporal 1logic.
Transactions are specified by pre/post-
conditions to praoduce "executable" state
sequences. In order to guarantee that exe-
cutable state sequences already become
admissible, integrity constraints are com—-
pletely transformed 1nto additional pre/
postconditions. We introduce general rules
for these transformations. Thus, schema
specifications can be refined and simpla-
fied systematically.

KEYWORDS: database design, conceptual
schema, database i1ntegrity, dynamic con-
straints, temporal logic, pre/postcondi-
tions

1. INTRODUCTION
Conceptual database design aims at de-—
fining a global information structure 1in-
LTFB2,
CeB831; 1ts result 1s the so—called concep-—

dependently of any implementation

tual schema. This phase corresponds to the

specification phase 1n general software

design meant to braidge the yap between re-—
quirements analysis and implementation. If

conceptual design 1s supparted by formal
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specification techniques, 1t may form a

basis of rapid prototyping, touo [FuB41.
Usually, the conceptual schema character-—
1zes the structure of the database con-
tents at any single instant, 1.e., 1t de—
fines the common structure of all database
states. If a database, however, i1s consi—
the beha-

viour over the course of time also has to

dered together with 1i1ts usage,

be described.

Dynamic database behaviour results from a

sequence of database states. Whereas

"statac” integrity constraints define
"consistency" of a single state, "dynamic"
integrity constraints are concerned with
"admissibilaity”" of a state sequence. To
specify admissible state sequences formal-
ly, temporal logic 15 an appropriate lan-—
guage. States within a sequence can con-—
veniently be related by means of temporal
formulas whach provide special quantifiers
like "always ... until” or "sometime ...
before" C[CCF82, KuB4, ELGB4/LEGBS].

During runtime of a datanase, transitions
between states are caused by user transac-
tions. To exclude undesirable database
manipulations which lead to inconsistent
states, a set of basic transactions should
Then, all
them.

transactions are

be agreed upon during design.
applications have to be composed of
In the i1mplementation,
realized by programs that access the data-
they can be

base system. Duraing design,

specir1fied i1ndependently of theair later
implementation by means of pre/postcondi-
tions. Thus, the set of possible trans-—

action sequences 1s restricted to "exe—



in which each state
must satisfy the

cutable” sequences
between two transactions
respective post- and precondition.

Thas
pletes the original specification of dyna-
Only those state

specification of transactions com—
mrc database behaviour:
sequences are allowed which are induced by
executable transaction sequences and which
admissible with respect to the i1nte-

grity constraints.

are

In order to ensure correct database beha-

viour, 1t becomes necessary to monitor the
constraints during runtime. In contrast to
expensive universal monitoring mechanisms,
transactions

offer a possaibility of con-

trolling database usage "locally"” and

Checks may be 11—
actually affected

therefore efficiently:
mited to the data
may be suited to the respective operation.

and

The same principle 1s persued in [N182] to
simplify static constraints for standard

relational updates.

To 1incorporate this kind of mon:itoring,
the specification of transactions should
be refined 1n subsequent design steps:

Integrity constraints have to be converted
into more restrictive pre/postconditions
so that executable transaction sequences
already guarantee admissible state sequen-—
ces. A similar procedure 1s recommended
by C[VF851,

s1tional

but only for static and tran-—

constraints (1.e. conditions on

single state transitaions).

This paper presents a methodology for such
a stepwise specification of dynamic data-
Unlike the related litera-
we concentrate on dynamic i1ntegrity

base behaviour.
ture,

constraints which refer to arbitrary in-

tervals of state sequences and

canstraints

we give
rules into

pre/postconditions systematically.

how to transform
In par-
ticular, verification of admssibility be-—
unnecessary when applying general
transformation rules.

comes

The following section i1ntroduces concep-

tual schema specifications and especially
integrity constraints and trans—
Section 3 describes

refining schema specifica-

explains
action specifications.

our method of
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tions by means of transformations. Final-
ly, related work and some conclusions will
be discussed.

2. CONCERPTUAL SCHEMA SPECIFICATION

The oraiginal specification of a conceptual
database schema consists of three levels,
each built upon the previous one:

(1)
(2)

data types

object types

with integrity constraints
(3) transactions

in the following, we only give a short in-
troduction to schema specifications, but
emphasize those aspects which are relevant
to the main subject of this paper. More
detailed work on levels (1) and (2) can be
found i1n [LEGBS5].

2.1 DATA AND OBJECTS

Data types are a fixed reservoire of val-
ues for the database, e.q9., bool, int, no,
year; they may be defined by, for

algebraic equational specifica-

text,
instance,
Objects are things about whaich
1nformation in the data-

They are partitioned i1nto sorts, and

tions.
1s to be stored
base.
information about them 1s carried by func-
tions between objects and data. Predicates
on objects are represented as bool-valued

functions. For example, i1n a schema for an
"Automobile Registration Authority®
lar to that of [IS0821, the following ob-

Ject sorts and functions appear:

s1m1—

sorts CAR, MODEL, CAR-OWNER, ...
subsorts CAR-OWNER =
MANUFACTURER+GARAGE+PERSON

functions regno: CAR -> no
madel -of: CAR -> MODEL
produced: CAR -> bool
registered: CAR => bool
approved: MODEL -> baol
name: CAR-OWNER -> text
owner: CAR —> CAR-OWNER
this—year: ~-> year



Later examples wi1ll refer to this syntac-—
tic structure.

with
predicate calculus

We assume the reader to be familiar
the construction of
formulas from object functions. General
temporal formulas can be built from those
formulas usaing

— logical connectives (A,V,1,=>,...)

- quantafication over possible objects

(v,
— temporal quantification by

always, sometime, next

- bounded temporal quantification by

always/sometime ... before/until

In order to express dynamic integrity con-—

straints, only the following special kinds
of teamporal formulas are used:

Vx158) ... Vx 18,

always before
alwa ( o0 => - T )
always someti1me until

Here x, B, and v are nontemporal formulas,

1.e. formulas without temporal quanta-

frers, and Xjy,...,%, are all free varia-
that occur i1n these

a simplified

bles of sorts s;,..,s,
In the following,
syntax 1s used for constraints;
the standard prefix and allows to omt the

o and T parts:

formulas.
1t omts

] always B before <t
[from o
sometime g until v

Examples: The integrity constraint

(I1) from produced(c) A this—year=y
sometime registered(c)

before this~yearay+2
(with variables c:CAR and y:year) says
that each car must be registered in the

of i1ts production or in the follow-
The mentioned database object
15 assumed to contain the

year
ing year.
this-year

current year.

Two further constraints shall restraict the
ownership relations. For
this purpose, we consider the subsort to
which an object of sort CAR—-OWNER belongs,

succession of

1.e. eirther to MANUFACTURER, GARRAGE, or
PERSON. Membership 1n a subsort 1s ex-—
pressed by the standard predicate 1s’.
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(I12) fraom owner(c) 1s MANUFACTURER
sometime owner(c) 1s GARAGE

before owner (c) 1s PERSON

(13) from owner(c)=co A co 15 GARAGE
always
before owner(c) i1s PERSON

(variables: c:CAR, co:CAR-OWNER)

owner (c)=co

A car must be passed from a manufacturer

to a garage first, before i1t may be passed
to a person.

It must remain property of

the same garage before it 1s sold to a
person. E )
Aside from the constraints above one can

imagine more complicated temporal formulas
or even other kinds of dynamic assertions
to the past [KuB4lj;
are not treated in thais

which might refer
such constraints
work. The restricted formulas from above
are not only an appropriate basis of moni-
but

also turn out to be sufficient for many

toring or refining specifications,

applications.

The object level of the schema specifica-
determines how database states are
structured and which state sequences are
state ¢, the sart and
function names are interpreted by finite
sets of

tion

admissible. In a
"actual"” objects and by functions
between object and data sets.
sequence o =

pretation may

In a state
<0038y 483,-..>, this inter-
change from state to state.
admissible

constraints.

¢ 1s called 1ff 1t satisfies

the integraity

We briefly define what 1t means that an
infinite state sequence 4 satisfies a
Let ‘[4,51kp’ denote the
a nontemporal formula vy holds

constraint T.
fact that
in a single state ¢ for a substitution 3.
& i1ndicates the aobjects and data which are
substituted for the free variables in .
all "possible" objects
must be considered, 1.e. all objects that
belong to some database state as actual
objects.

For substitutions,

(1) 4o satisfies
r= from x always p before v 1ff.
For all substitutions ¢ of free var-

in x,p,t and for all states

1ables



6,y 120, the following holds:

If U[d,,4]Fx, then EdJ,CJFp
for each state ¢« 14£3<pn, where
} Fond

e Fhon L 2 A
krGIFTIFIr 7.

Starting from any state 4, in whach the
"start condition" o holds, all states fol-—
lowing that state (including o, 1tself)

must satisfy the condition p, before the

condition” v becomes valad
(in d"). This si1tuation

eislhads dridksan > TI£ «
BUCSCI RliLAIT G 4% T

"termination
for the first time

£ mach
T =&l

is reguired

does not occur at all, g must hold 1n the
entire future of o, (u=cd.
(11) ¢ satisfies
rsz from « sometime p hefore v 1f
1

For all subhstitutions z

states o4, , 120, holds:
If [d,,2Jkx, then there 1s some
state dJ,1éJ<u, such that [dJ,thp
(p as above).

and

at
which satis—

In contrast to (1), there must exist
least one state following 4,
fies p before the termination condition ~
occurs.
(111) Analogous definitions apply to the

combinations of always/ sometime with

until. Here the bound p must be in-

cluded.
According to the kind of implicit quanti-

fication over states, we distinguish be-

tween universal constraints

keyword always
ones with sometime .

1n whaich the

appears

The above semantics of constraints refers
to

sent the complete behaviour

infinite state sequences which repre-—
of a database
from an imtial state (d5) to the future.
From a practical point of view, 1t 1s more
interesting to consider properties of the
partial database behaviour
tual state (d).

the following notions.

up to an ac-

Therefore, we i1ntroduce

A fimte state sequence 4 = <dgy... 0,7 1S

called (strictly) admssible 1¥€ the
infinite sequence <dpy..-90,30,,005-022

(remaining constant from position n on) 1s

adm ssible. If some 1infinite continua-

and existential
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tion g (not necessarily KOpe0nys=e>)

exists such that 6.4 becomes admssible,
thas

- A

if and

then d 1s possibly admissible. In

=z
S5101®

of

&, d 1s not strictly admis
y 1f the sometime—condition

i Mmoo mmemd
it has not been satis—

aif
fied up to 4, although the start condi-

tion had occurred. For example, the con-—

dition ‘registered(c) i1n constraint (I1)
might sti111 be pending, after ‘produced(c)’

has become valid.

looks
ahead from the actual state, we proceed on

In order to avoid any checking that

the "optimistic" assumption that all pen-
the
mi1ght
the

Formally, we assume that a

ding conditions are satisfiable 1in

future. Nevertheless, the user

after

choose a wrong continuation
actual state.
distinguished (1nfinite) state sequence )\
exists ain which every formula holds. A
1s defined to be
iff g.) 18 ad-

To assure provisional admissi-

fimite state sequence o

provisionally admissible

missible.
bilaity,
straint has been violated in o, or
state d,
existential constraint 1s violated in thas

1t suffices to prove that no con-
in any
before d,. For

instance, an

sense, 1f 1ts termination condition occurs
although the sometime-condition has not

been valid before.

The latter kind of
controlled by means of an integrity moni-

admissibility can be

tor which only refers to the database his—
tory, but does not i1nvolve any lookahead
[LEGBS]. that property
will refining
tions 1n section 3.

For this reason,

be the goal of specifica—

2.2 TRANSACTIONS

The third level
describes all transactions that may change
the In the style of
Hoare s assertions, transactions are spe-—

of a schema specification

database contents.

crfred by means of pre- and postcondi-
tions.

Such conditions may be expressed by arbi-—
trary formulas of predicate logic (nontem-—

poral formulas). A precondition contains a



condition on which the transaction may be

executed. Any state directly following the

transaction must satisfy the correspond-

ing postcondition. Besides, 1t 1s impli-—

citly assumed as a “"frame rule” that all
object functions that are not affected by
the postcondition remain unchanged. To

specitfy different cases of state transi-—

tions, several pairs of pre/postconditions
may be given {for one transaction.

automobile registration

Examples: The
schema of [IS082] includes transactions to
register or sell a car. They are specified

here as follows:

(T1) REBISTER (c:CAR, m:MODEL,...)

pre approved {(m)
post registered(c) [=truel

A model-of (c)=m A ...

1f

the declared model m has already been

A car c© may onlv be registered,

approved. During registration, any

information passed as parameter 1s

appropriately stored.

{T2) SELL (c:CAR, newco:CAR-OWNER)

pre ——~ [true; no restrictionl
post owner (c) = newco
A car ¢ 15 sold to a new owner
newco . A ®

The frame rule simplifies specaifications,

because only changes must be mentioned 1n
a postcondition. 5Since arbitrary formulas

are allowed, conditional or alternative
Thus,
state of a transaction may be left i1ndefi-—
will

only by later re-

effects may be formulated. the post-

nite within a certain range, and it
be
finement or i1mplementation.

deter mined uniquely

[huB4/ku8%5al and [VFB3S] also use pre/post-—
but
they have other

conditions to specify transactions,
apart from the frame rule
1mplicit assumptions which seem to be more
than helpful
[VFB851]

junctions of ground formulas

restrictive in many applai-

Besides, only admit con-—
{like 1n the
thus escluding 1mplica-
In [VCFB11

and [CVFB84] different formalisms of speci-—

cations.

ey amples above),

tions,e i1stence statements,etc.

fying transactions and operations are com-—
pared by means of eramples.
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Formally, syntax and semantics of transac-

tions are given by the following defini-—

tions:

A transaction specification consists of a

name T, (sorted) parameter variables X and
several prespostconditions FJ/QJ (121)3
notation: {FJ} T¢(X) {DJE . These con-—

ditions are nontemporal formulas 1n which

additional free variables Y
X.

variables 1s called an actual parameter.

may occur

beside A substitution ¢ of parameter

T transfers a state d into a state ¢ with

an actual parameter & 1f+:

(a) There 1s a precondition PJ and a sub-—
of the free variables Y

[d,c+51 F F .
J

strtution ¢
such that.

(b} For all pre/postconditions and
all
variables Y,

[d,c+elE F
J

F’J/G!J
of the
holds:

yGHElE @
J

no

for substitutions & free

the following

implies [a

{c) 6 1s mimimally changed to o , 1.e.,

value
wi thout

change of any objlect function

g to g can be undone

(b)

f+rom

violating conditaon

Fart (<)
ti1c characterization

of the definition gives a seman-—
of the
the so-called frame of T 1 constituted by

frame rule.

all formulas v which are i1nvariant 1n the

following sense:

For all traiples (g,6 ,&) such that T

transfers 4 1nto d with ¢ and for all

Fy» & as above, the following holds:
La,c+51E FJAw 1mplies [o ,S+&lF o
(We assume that x+Y already contains

the free variables occurring 1in @p.?J

that do

used 1n the

Obviously formulas not mention

any function postconditions

belong to the frame But there may also

be

those functions,

conditions 1n the frame which involve
trivial evamples are the
postconditions themselves. \O0f course,
To

rules

their negations are not i1nvariant

analvze specifications, deravation

far frame formulas are needed.

Transaction specitications restrict pos—

sible sequences of transactions or states

to "e ecutable® ones.



A transaction sequence TiseaasTps 15

called executable 1ff there 15 a sequence

6 = Ogy--.,0, oOf states, such that a;_;

15 transterred 1i1nto 8, by T1 with some
actual parameter &, {(for 1=1, ..,n). In
this case, the state sequence ¢ 15 also

called evecutable.

Thus, transactions and

constraints

dynamic i1ntegrity
complementary
they

state sequences to such sequences that are

can be seen as

specifications, together restrict

e ecutable and admissible. In the evxample

above, state transitions changing a “"car-—

must be i1nduced by corresponding
(T2,

satisfy the constraints (IX)

owner
transactions like S5ELL and they must

and (13).

7. REFINING THE SCHEMA SFECIFICATION

state se-
shall
con—

The possibility of restricting
quences
be

straints.

by specifying transactions

utilized to momitor integrity
The

1into a refined specification of the trans-

constraints are converted
actions so that evecutable state sequences
become provisionally admissible up to each
dynamic database beha-—

artual state. Thus,

viour 1s determined by transactions only,
and temporal constraints need not be con-

sidered for implementation any longer.

thi1s refinement offers the opportumity to
"global"
the "local' usage of

integraity
the
lead
to

schema spe-—

observe the i1mpacts of

constraints on
database If new pre/postconditions
to

contradictions,

undesirable restrictions or even
the original

cirficatron should be corrected. Moreover ,
that

can be i1mple—

there 1s some prospect 1integraity

monitoring by transactions
1+ checks
of

mented quite efficiently, are

suirted to the respective kind change

and to the objects affected.

As a preparation for refining a schema

specification, the set of object functions
15 e‘tended by some predicates which keep
tract ot partially satisfied constraints:
[here may be sometime—conditions which are
to

must hold only temporarily.

vet come or always—conditions which

It makes sense
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the

they can i1ndicate the actual degree

to store such "memos" 1n database,
since

of admissibility to the user.

of
further condi-—

Then, transac-—

tions

the pre/postconditions
by

evecutability of state
At
would be

are completed
tions.Semantically,
sequences becomes stronger restricted.
show which completion

first we

necessary without regarding any specific

nowledge about a transaction. This trans-—
to the

integrity monitor presented i1n [LEGBS].

un:versal
By
can change

formation corresponds

considering which transactions
which object functions, those completions
can be essentially simplified afterwards.

The bkey i1dea of monitoring or transform—

ing a dynamic constraint 1s to split a

temporal formula 11nto a nontemporal for-
that must hoild

a temporal one

in the actual state,
that to be
in the future. For this purpose,
of

mula
and remains
chected
temporal

so-called "recursion rules”

logic IMPB1] are helpful:

w A next (always @)
p v next (sometime )

always w =

sometime B =

and @ =

the following laws

For o=
(sometime B before ),

(x =~ sometime B before )

can be derived:

(1) (2)
(1) ® <=~ A(x= a1) A (xaf =- next @ )
(11) @ =<=- At A (2p => next ¢ )
1 one of the tempaoral formulas ® or ¢ 1s
required for a state sequence, part (1)
excludes an 1llegal occurrence of the
termination condition ~ in the first
state, and (2) i1ndicates on which premices

® must be satisfied by the rest sequence

starting with the next state. According to
the i1nterpretation of a constraint “"from o«

always p betore 1" {(see section 2.1), ©®

applies to arbitrary (starting) states and

substitutions According to the laws above
v may apply to following states for cer—

tain substitutions: 1t then replaces the
Thas

must be recorded

requirement ®, since @ 1mplies ®.
temporary requirement ¢

in a special memo.

in this section we discuss those two basaic



forms of 1ntegrity constraints which were

explained 1n section 2.1 explicitly. Each

ex1stential constraint

F = from « sometime §§ before v

1s transformed 1n the following way:

Step 1:
An additional predicate named sometime B

before =~ 15 1ntroduced whose arguments

correspond to the free variables 1i1n g and
T3 1t 1s abbreviated to
SB

cate must be entered

1n the following,

(though depending on ). This predi-
the database
S
from above)
that substitution
SB(¢)

“memo”.

in as

for a substitution 1f the corre-—
(@

mains to be checked with

true

sponding condition re—

in the next states; so plays the
Recall that

a certain

role of the menti:oned
a substitution jJust represents
combination of data and objects to be used

as actual arguments.

Thus,
schema

are added to the
the

In special cases,

as many predicates

as constraints are given 1in
ori1ginal specification.
such predicates can be expressed 1n terms
and predicates so
Thas

wi1ll be 1llustrated 1n a later example.

of existing functions

that a new predicate can be avoided.

Step II:

Let an arbitrary transaction T be given
with an original specification or with a
specirfication resulting from transforma-—

tion aof other constraints. Each assertion
{Fy 1 {@3

postconditions F/Q 1s rewrartten to:

consisting of a pair of pre/

(1)
B A (x=-a1t) A (xap
& A (g

(2)
SB) 3
=88}

{PA-SBY T
{FA BB T

=

AT A

above are
of
expresses
the
can be

data—
whether
The
controls

Here, the laws (1} and (11) from

utilized to restrict the set
states. The
the requirement that T has to monitor
this

the new actual

post—
new specification

given constraint as far as

done by inspecting
base state. A distinction 1s made,
or not a memo SB "exists" previously.

=, —direction of condition (2)
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"insertion” {SB) or "deletion® (-SB) of
the memo. The -= —direction of (2) deter-
mines 1f SB or 5B 1s retained. It should

be noticed that the free variables in the

added parts must be named differently from

parameter and other variables, because

those conditions shall hold for arbitrary

obiects.
Since postconditions affect only states
following transactions, the addaition an
the first line above has to hold 1in the
1nitial state of the database, too:
fa= 1) A (xAap = SB)

Example. By transforming the aintegraity
constraint
(I1) from producedic) A this-year=y

sometime registered(c)

before this—-yearay+2
the +following new specification 1s ob-
tained for the transaction (T1) REGIS-

TER(c,m,...)? of section 2.2:

pre; approved(m) A SB(c ,y )
post; registered(c) A ...

A  {(produced(c )athis-year=y )

=. =this~yearly +2 ) }(_)
{(produced(c )athis—year=y

A registered{c })

=, SB(c ,y ) )
Obviously (—-) 18 a tautology that
may be dropped
pre- approved(m}) A SB(c ,y )
posts registered(c) A ...

A this~year-y +2
—~SB(c

A ( registered(c ) <= Y ) )

For dewsign purposes, 1t 18 recommended to
1ntroduce a more application oriented name
for the predicate SB. A conversion of 1ts
parameters as 1t can be

(I1,-

may be i1ncluded,

done for

to—-be-regi1stered-before: CAR year -‘bool

where to-be-registered-hefore(c ,y +2)
= 8B(c ,y ) £ 22
Step II1:
Now, the transaction specifications of

step I1 can be essentially simplified.



Due to the trame rule with respect to the
originail
will
all,

stitutions.

specification many transactions
at

for many sub-

not change the added conditions
others w1ll not do so
Therefaore, the transformation
above needs only be done for transactions
the truth value of

some of these formulas or

which possibly change
o, B Or T,
their

the transaction.

1.8.,

negations are not 1n the frame of

Moreover, the new varia-
bles of step I1 may be replaced by those

parameter var:iables, original variables,

or terms which are involved in
the

If not all three constraint compo-

constants

changes of corresponding formula
parts.
above
the

new

nents change, whole factors of the

conjunctions may be omitted. Finally,

frame rule may be utilized for the

specification, too

let
which change

1o discuss us
at

&y

typrcal si1tuations,

consider transactions T
most one of the constraint components

p or v from false to true. Eqguivalently,
erther -,
T. The

from step III:

=3 or ntv 1s not 1n the frame of

following specifications result

(1) If T can change only « to true-

IPARSES T {Q A AT A P <= 5B}
Fa SBI T {07
(11 I+ T can change only g to true:
{FA-SB} T {Q A 5B}
{FA SB} T {@ A SB>
or cambined: (P> T (& A -5B3

(111) If T can change only 1 to true:
(FASSBY T {0 A @ A 5B}
{PA SB} T {0 A falsel (=)

Since the second postcondition (=)

the whole

line may be dropped so that the pre-
of T to

only.

cannot hold 1n any state,

condition restricted

{FA5E3

1s

E-amples: The above refinement of the spe-
cification for REGISTER

according to case

can be simplified

(11), because only -p =

registered(c’) 1s not i1nvariant:

REGISTER(Cc,m,.. )
A ESBlc,y )3

{approvedim) 2
regrstered(c) ..
After

memo

of REGISTER(c,m,...)}
An

e.ecution no

may e-i1st for the car c. imple-
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mentation of the transaction has to take
of

e-1sted before.

care deleting a memo which possibly

NEXT-YEAR be
year

et a further transaction
which the

this—year :

given updates current

{this~year=-+} NEXT-YEAR {this-year=x+13}

Referring to constraint (I1),

this~yearay+2

only the
termination condition T =

1s changed for y= x-1, so that transfor-
mation according to case (111) and obvious
simplification of the resulting postcondi-

tion yield:

{this-year=-
NEXT-YEAR

A BB(c,x—113
{this—-year=x+13}

right before execution of NEXT-YEAR
not

Thus,
fraom the previous year must
"the clock
settle the
required registrations for all cars c with
AR

any memo

e<i1st  any longer. In a way,

must be stopped” 1n order to

memo SBic,--1).

All simplifications in step 111 presuppose
that any partial condition or substitution

which 15 excluded here has been checked
after 1ts last change (and 1n the initial
state’. This 15 the case 1f all transac-—

ti1on specifications are treated according

to the rules above.

As can he seen state se-
the do
that executable state sequences

by r1nduction on

guences, transformation rules
guarantee
satisfy the given constraint in the sense
Thus,

superfluous.

of provisional admissibility. single

verifications are rendered
Additionally,

can

our ervamples demonstrate how

conditions typically be simplified

further i1n concrete situations, so that a
"readable” specification results in spite

of formal transformation.

of
wi1ll only be given by analogy to

The universal

straints

transformation con~

e i1stential ones. For each constraint

from o« always 8 before =T
a predicate always @ before T = AB 1s
needed (step I). Then, the basic trans—
formation of {F} T {@} reads as follows:



{FPA-AB]
{FA AB} T {Q A

T @ AlxaaTt=-p) A (xAaT <= AR}

(~T=2B) A (Tt <=>-AB)J

This specification i1s constructed similar-
ly to step 11 for eristential constraints.
The subsequent simplifications of step III
apply here, too.

Erample. The following constraint 1s to be

transformed:

(12} from owner(c)=co A co 15 GARAGE

always owner (c)=co
before owner(c) 1s FERSON
Among the given transactions only SELL

(T2) 1s affected by a transformation,
since no other transaction changes the
function owner . After some equivalence

conversions of the basic transformation

a refined specification 1s obtained for

SELL (c,newco) :

pre; -ABlc,co}

post; owner (c)=newco
A ((awner (c)=co A co i1s GARAGE) }(*)

~=+ AB(c,co))
or:

post; owner (c)=newco
~ (newco 1s GARAGE =. AB(c,newco))
({pre;3 T {post;} 1s equivalent to
{pre;» T {post;¥, since all omitted
assertions are in the frame of T wrt
post .)

pre, AB(c,co)

posts owner (c) =newco
Al{-newco 15 FERSON =:> co=newco) (+)
A{ newco 1s PERSON<=>-AB{(c,co))

Thus, restrictions on successi:on of owner-—

ships have been 1incorporated 1i1nto the

transaction specification. Subsequent

transformation of the other integraity con-

straint (I2) would lead to a further
differentiratiron. 22
The second postcondition of the example

(post-) strongly restricts the possibilaty
of

tion:

transferring states by this transac-

For some states satisfying the

precondition, there i1s no state satisfy-
ing the postcondition.
rectly that
not executable,

to be modelled

This specifies cor—
certain state sequences are
but the situation seems

in a somehow complicated

395

way. To get a clearer specification 1t as
should

exclude cases when no poststate erists.

recommended that the precond:ition

cont d.:
(+)

Example, In spite of the precon—
of the
for arbitrary parame-—

thas 1t

to put this restriction ainto

dition, part postcondition

cannot be satisfied
ters newco . in esample, 15
the

si1nce

enough
precondition 1n 1ts original form,
no object function being subject to change
Then, the

second specification part of SELL (c,newco)

15 1nvolved 1n this +formula.

reads;

AB(c,co)
A{-mnewco 15 PERSON =, co=newco)

pres;
{+)
post~ owner (c)=newco
Al newco 1s FERSON:=>-AB(c,co))

Moreover, here the new predicate AB can be
evpressed by means of existing predicates
provided that the function 15 af-
fected by SELL
tnduction
that

ways:

owner

only. It can be proved by

on executable state sequences

the following equivalence holds al-

(owner (c)=co A co 1s BARAGE) => AB(c,co)

(This was mentioned 1n the first postcon-

dition Eosgl as (#).) %

Static integrity constraints g which cor—

respond to special universal constraints

from true always g8 before false

do not require i1ntroducing any additional
predicate, either. For them, transforma-
tion of F3 T {03 vyields:

F A B> T (B A B3

In particular, this refinement might give

to checking the original postcondi-

with the stataic

rise
tion 0Q

constraint g.

for consistency

of
where certain integraity constraints can be
the

S0

course, one can 1magine situations

concluded directly from original

that

In any case,

transaction specifications no
transformation 1s necessary.
transformations

thus,

er at least as a guideline to refining the

general are possible and

reliables they can serve the design-—

schema specification. Besides, the evam-—



ples show that systematic simplifications

can lead to formulations easy to survey

and to grasp, where verification has

already been done. So transaction speci-

fications become a sufficirent and useful

interface to the i1mplementor.

4. RELATED WORKk AND CONCLUSIONS

The literature based upon similar calcul:

(temporal 1logic and pre/postconditions)
contains first approaches to comparable
multi-level database specifications

[CCFB2/ CVF84/ VFBS5, kuB4/ ku8Sb, SFNCB41.
Requirements and methods of verifying tem—
poral constraints are analyzed presuming
that complete descriptions of transactions
Already L[GM7%1 have

studied verification of static constraints

are girven beforehand.

by checlting 1nvariant pre/postcondations
[kuB4/kuBSal 1s

with consistency of schema spe-

of transactions. Besides,
concerned
cifications.
Only [VFB8S] methodical
hints that

the selection - of transactions

give some basic
the specification - and also
should be
refined 1n a stepwise way. The above ap-
cannot consider "some—
although

for

proaches, however,
time"
they
this,
brlity"”

formation

constraints i1n refinements,
may be formulated partiallys;
our notion of "provisional admissi-—
proves to be appropriate. Trans—

methods for dynamic i1ntegrity
constraints have not yet been discussed by

other authors.

The

depends

specification method presented here
on the prainciple to fix a module
of basic Lransactions for all database up-
dates. This module becomes responsible for

the correctness of dynamic database beha-

viour. Its design 1s based on the trans-
formation of the original schema specifi-—
cation: the designer i1s guided to recog-

nize the i1mpacts of the global specifica-

tion on the transactions.

The design procedure i1tself might be sup-

ported by an interactive system that con-
trols and manages stepwise transforma-—
tions and that offers simplifications of
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logical formulas. Moreover, those trans-

formations may be used to generate a pro-—
of a database

totype application system

from 1ts original specification. As shown
by LVF8351,

transactions

preliminary i1mplementations of
can be derived from certain

restricted pre/postconditions automati-—

cally.

Concerning theoretical the

simplification step (III) could be treated

but

itntroducing typical

foundations,

more formally than 1in this paper,

our emphasis was on

elements of a specification methodology.

For simplifications, 1nference rules are

needed to derive frame formulas and to
detect
The

straint simplafication

irrelevant variable substitutions.
of [N182]1 on
should be examined

approach static con-

1f 1t can be extended to general transac-

tion specifications. In addition, new
monitoring prainciples for dynamic con-
straints [LSEB6]1 might be utilized to
transtorm a larger class of temporal for-
mul as.
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