
STEPWISE SPECIFICCITION OF DYNCIHIC DCITCIBME SEH~VIOUR

Udo W. L1peck

Institute fur Informatik
Technische Universrtat Braunschwelg
Postf ach 3329, D-3300 Braunschweig

West Germany

CIBSTRCICT: This paper presents a methodo-

1 WY for the stepwise specification of
dynamic database behaviour. CI conceptual
schema 15 de5cr1bed 1n three levels: data,
oblects and transactions. To determ1 ne
which sequences of database states are
“adm1551ble”, integrity constraints on
obJect5 are given 1n temporal logrc.
Traneactions are speczfied by pre/post-
conditions to produce “executable” state
sequences. In order to guarantee that exe-
cutable state sequences already become
admissible, integrity constraints are com-
pletely transformed into addrtional pre/
postconditlons. We introduce general rules
for these transformations. Thus, schema
specifications can be refined and simple-
f red systematically.

KEYWORDS: database des1 gn , conceptual
schema, database integrity, dynamic con-
straints, temporal logic, pre/postcondi-
tions

1. INTRODUCTION

Conceptual database design aims at de-

fining a global information structure in-

dependent1 y of any implementation CTFGZ,

CeG3 I ; its result 1s the so-called concep-

tual schema. This phase corresponds to the

Dynam1 c database behav1 our results from a

sequence of database states. Whereas

“static” integrity constraints def 1ne

“cons1 stency” of a single state, “dynamic”

integrity constraints are concerned with

“admi 551 bill ty" of a state sequence. To

specify adm1551ble state sequences formal-

ly, temporal logic 15 an appropriate lan-
guage. State5 within a sequence can con-

veniently be related by means of temporal

formulas which provide special quantifiers

like "alwayr . . . until” or “sometime . . .

before” CCCFGZ, KuG4, ELGG4/LEG853.

During runtime of a dataoase, transitions
specification phase 1 n general software between states are caused by user transac-
design meant to bridge the rap between re- tions. To exclude undesirable database
quirements analysis and implementation. If manipulations which lead to inconsistent
conceptual design 15 SupDOrted by formal states, a 5et of basic transactions should

be agreed upon during design. Then, all
appllcatlons have to be composed of them.

In the implementation, transactions are

realized by programs that access the data-
PermIssIon to copy wIthout fee all or part of this material IS granted
prowded that the copies are not made or dlstnbuted for krect

base sy5tem. During design, they can be

commercial advantage, the ACM copyrIght notxe and the title of the apeclf led Independently of their 1 ater

puhhcatlon and its date appear, and notIce IS given that copymg IS by implementation by means of pre/postcondi-
permrssion of the Assoclatlon for Computmg Machmery To copy tlons. the set of
otherwIse, or lo repubhsh, reqmres a fee and/or specdic pe.rmsslon

Thus, possible trans-

act1on requences 15 restricted to “exe-

0 1986 ACM 0-89791-191-l/86/05000/0387 $00 75

specification techniques, it may form a

basis of rapid prototyp1ng. too CFuG43.

U5ually, the conceptual schema character-

izes the structure, of the database con-

tents at any single instant, i.e., it de-

fines the common structure of all database

states. If a databale, however, 15 consi-

dered together with 1t5 usage, the beha-

v1our over the course of time also has to

be descr 1 bed.

387

cutabl e” sequences 1n which each state

between two transactions must satiofy the

respectrve post- and precondition.

This specif icatIon of transactions com-

pletes the orrgrnal specification of dyna-

m1c database behavrour: Only those state

sequences are allowed whrch are induced by

executable transactron sequences and which

are admissible with respect to the 1nte-

grity constraints.

In order to ensure correct database beha-

vi our, 1t becomes necessary to monitor the

constraints durrng runtime. In contrast to
expensive universal monrtor1ng mechanisms,

transact 1 ons offer a possib111ty of con-

trol 1 i ng databare usage "locally" and

therefore eff lciently: Checks may be lr-
m1ted to the data actually affected and

may be suited to the respective operation.

The same princrple 1s persued 1n EN1821 to

slmplrfy static constraints for standard

relational updates.

To rncorporate this kind of monztor1ng,

the specification of transactions should

be ref 1 ned 1n subsequent design steps:

Integrity constraints have to be converted

into more restrrctlve pre/postcondrt1ons

so that executable transaction sequences

already guarantee admrssrble state sequen-

ces. CI s1m1 lar procedure 1s recommended

by CVF853, but only for static and tran-

sitlonal constraints (1 .e. cond1 t1 ons on

single state transitions).

This paper presents a methodology for such

a stepwlse specif1catlon of dynamic data-

base behavi our. Unlike the related lltera-
ture, we concentrate on dynamzc integrity

constraints which refer to arb1 trary 1n-

tervals of state sequences and we give

rules how to transform constraints into

pre/postconditlons systematically. In par-

ticular, verrflcatron of adm1ss1brl1ty be-

comes unnecessary when appl y1 ng general

transformation rules.

The followlng sectlon introduces concep-

tual schema specrflcatlons and especially
explains integrity constraints and trans-

action speclfrcatlons. SectIon 3 describes

our method of refining schema speclflca-

t1ons by means of transformations. Frnal-
ly, related work and some conclusions will

be d1 scussed.

2. CONCEPTUAL SCHElvI SPECIFICATION

The original specification of a conceptual

database schema consrsts of three levels,
each bull t upon the prevrous one:

(1) data types

(2) ObJeCt types

with rntegrrty constrarnts

(3) transactions

In the following, we only give a short rn-

troduction to schema specifications, but

emphasize those aspects which are relevant

to the main subJect of this paper. Hore

detarled work on levels (1) and (2) can be

found 1n CLEG853.

2.1 DATA AND OBJECT8

Data types are a fixed reservoire of val-
ues for the database, e.g., boo1 -, int, "9
text, year; they may be defined by, for

instance, algebrarc equatronal 5pecifica-

trans. ObJectS are things about which

information 1s to be stored 1n the data-

base. They are partrtloned into sorts, and

rnformat1on about them 1s carried by func-

t1ons between ObJeCtS and data. Predicates

on obJects are represented as bool-valued

functions. For example, 1n a schema for an

“Automobile Registration Authority” simi-

lar to that of CISO823, the following ob-
Ject sorts and functions appear:

sorts CAR, MODEL, CAR-OWNER, . . .

subsorts CCIR-OWNER =

MANUFACTURER+GARAGE+PERSON
..I

f unctrons regno: CAR -> no -
model -of : CCIR -> MODEL

produced: CCIR - -> boo1

reg1 stered: CAR -> boo1

approved: MODEL -> boo1

name: CAR-OWNER -> text

owner: CCIR -> CAR-OWNER

th1syear: -> x

388

Later examples wall refer to this syntac-

tic structure.

We assume the reader to be f am1 liar with

the construction of predr cate calculus

formulas from obJect functions. general
temporal formulas can be built from those

formulas using

logical connectives (~,v,t,=>,...l

quantification over possible obJects

(!t,3_)
temporal quantzflcatlon by

al ways, next somet i me,

bounded temporal quantification by

always/sometime . . . before/until

In order to express dynamic rntegrlty con-

stral nts, only the following special kinds

of temporal formulas are used:

!!x 1:si 1.1 "xn:sn

always before
always (a => P -7)

sometime until

Here a, p, and T are nontemporal formulas,
i.e. formulas without temporal quanta -

f iers, and x lr--*rxn are all free varia-

bles of sorts sir.. ,s,, that occur an these

formulas. In the following, a simplified
syntax 1s used for constraints; rt omits

the standard prefix and allows to omit the

a and T parts:

always p before T

H I
sometime p until T

Examples8 The integrity constraint

(III from produced(c) A this-year=y

(with
that
year

sometrme regrstered (cl

before this-yeardy+Z

variables c:cRR and y:year) says

each car must be reglstered in the

of rts productron or in the follow-

ing year. The mentloned database object

this-year 1s assumed to contain the

current year.

Two further constraints shall restrict the

success2 on of ownership relations. For

thr s purpose, we consider the subsort to

which an obJect of sort CAR-OWNER belongs,

i.e. either to MAWUFCICTURER, GCIRAGE, or

PERSOW. Membership in a subsort is ex-

pressed by the standard predicate rp ‘.

(121 from owner(c) is HMUFACTIJRER -
sometime owner(c) IS GcIRclGE -
before owner (c 1 rr PERSOW

(13) from owner (c) YO A co is GARAGE -
always owner(cI=co
before owner(c) 1s PERSON -

(variables: c:CAR, co: CCIR-OWNER1

A c8r must be passed from a manufacturer

to a garage first, before rt may be passed

to a person. It must remain property of

the same garage before at IS sold to a

person. l ++

Aside from the constraints above one can

Imagine more complrcated temporal formulas
or even other kinds of dynamic assertions

which ml ght refer to the past tKuB43 I

such constraints are not treated in this

work. The restricted formulas from above

are not only an appropriate basis of monr-

torrng or refining specifications, but

also turn out to be suff lclent for many

applications.

The object level of the schema speclfrca-

tion determines how database states are

structured and which state sequences are
admissible. In a state 6, the sort and

function names are interpreted by finite

sets of “actual” obJects and by functions

between obJect and data sets. In a state

sequence 5 = --g,~jr9,...>r this inter-

pretatlon may change from state to state.

a_ is called admissible iff it satisfies

the Integrity constraznts.

We briefly define what rt means that an

inf mite state sequence g satlsf ies a
constraint r. Let ‘CU,<JCQ’ denote the

fact that a nontemporal formula y holds

in a single state U for a substitution c.

c indicates the obJects and data which are

substituted for the free variables in e.

For substrtutions, all “possible” obJects

must be considered, i.e. all obJects that

be1 ong to some database state as actual

&Jects.

(1) a satisfies

rr f ram a always p before T lff.

For all substitutions c of free var-
iables in a,P9r and for all states

389

61’ rAO, the following holds:
If CU,,~lCa, then Cu,rClm
for each state 6,. ihj<u, where

p= min (Ck I kAlntuk,~31=T>+Coo> 1.

Starting from any state 6, rn which the

"start condrtron” a holds, all states fol-
lowing that state (lncludlng 6, itself)
dust satisfy the condition p, before the

“termination condition” T become5 valid
for the first time (in u,,). This situation

is required for each substrtution C. If T

does not occur at all, p must hold in the

entire future of Ul (p=oo).

(131 a satisfies

Te from a sometime p before T 1ff:

For all substitutions C and for all
states Ul, r&O, holds:

If CU, ,cWa, then there is some

state UJ, ih~<p, such that CU,,Clhp

(p as above).

In contrast to (iI, there must exist at

least one state following U, which satrs-

fies p before the termination condition T

occurs.

(111) Analogous definitions apply to the

combrnatlons of always/ sometime with

until. Here the bound p must be in-

cl uded.

According to the kind of implicit quanti-

f 1cat1on over states, we distinguish be-

tween universal constraints in which the

keyword al ways appears and existential
ones with sometime .

The above semantic5 of constraints refers

to inf inrte state sequences which repre-

sent the complete behaviour of a database

from an initral state (do) to the future.

From a practical point of vrew, it 15 more

interesting to consider properties of the

partial database behaviour up to an ac-

tual state (6,). Therefore, we introduce

the following notions.

A finite state 5equence c = <do,. . . ,Un> 1s

called (strictly) admi s5x bl e lff the

infinite sequence <Uo,...,Un,Un,Un,...>

(remalnlnq constant from posrtlon n on) 1s

adm15s1ble. If some inf mite continua-

tion c (not necessarily <Un,Un,...>)
exists such that 15.6 become5 adm1s51ble, --
then u 1s possrbly admlssrble. In this

case, g 1s not strictly admrssrble if and

only if the sometime-condition of SOlIt@

existential constraint ha5 not been satis-
fled up to d,, although the start condi-

tion had occurred. For example, the con-

dition ‘registered(c) in constraint (11 l
might still be pending, after’produced(c) ’

has become valid.

In order to avoid any checking that looks
ahead from the actual state, we proceed on

the “optimistic” assumption that all pen-

ding conditions are satisfiable in the
future. Nevertheless, the user might

choose a wrong continuation after the

actual state. Formally, we a05ume that a

distinguished (infinite) state sequence &

exists in which every formula holds. CI
finite state sequence a is defined to be

provisionally admissible iff a.A is ad-

m1s51ble. To assure provisional admrssl-

bilrty, it suffice5 to prove that no con-

straint has been violated in 6, or in any

state U, before ‘87. For instance, an

existential constraint 15 violated in this

sense, if its termrnatlon condition occurs

al though the sometime-condition has not

been valid before.

The latter kind of admissibility can be

controlled by mean5 of an integrity moni-

tor which only refers to the database his-

tory, but doe5 not involve any lookahead

LLEGGSI. For this reason, that property

Will be the goal of refining rpecif ica-

trons in section 3.

2.2 TRANSCICTIONS

The third level of a schema specification

describes all transactions that may change
the database contents. In the style of

Hoare s assertions, transactions are spe-

cified by means of pre- and postcondr -

tions.

Such conditions may be expressed by arbr-

trary formulas of predicate logic (nontem-

poral formulas). A precondition contains a

390

condition on which the transaction may be

executed. Any state directly following the

transaction must satisfy the correspond-

ing postcondition. Best des , It 1s lmpli-

c1t1y assumed as a “frame rule" that all

ObJeCt functions that are not affected by

the postcondi tl on remain unchanged. To

speclf y different cases of state transl-

tlons, several pairs of pre/postconditions

may be qlven for one transaction.

Examples: The automobile -- registration

schema of CISOS21 includes transactions to

register or sell a car. They are speclfled

here as follows:

(Tl) KEGISlEK (c:CAR, m:MODEL,. . .)

!z!! approved (rn)

post registered (cl C=truel

A model-of (c)=m A . .-

Acar c may onlv be registered, If

the declared model m has already been

approved. During registration, any
information passed as parameter 1s

appropriately stored.

(TZ) SELL cc: CAR, newco: CAR-OWNEli)

pre --- [true; no restriction3

popt owner (c) = newco

A car c IS sold to a new owner

newco . ***

The frame rule simplifies specifications,

because only changes must be mentioned in

a postcondition. Since arbitrary formulas

are al 1 owed, conditional or alternative

effects may be formulated. Thus, the post-

state of a transactlon may be left lndefi-

nite within a certain range, and It Will

be deter ml ned unl quel y only by later re-

f 1 nement or implementation.

Chu84/CuS5al and EVFBSI also use pre/post-

conditions to specify transactions, but

apart from the frame rule they have other

implicit assumptions which seem to be more

restrictive than he1 pf ul In many appl1-

cations. Besides, CVF851 on1 y admit con-

Junctions of ground formulas (like In the

e, amp 1 es above), thus e/cludlng implica-

tions,e istence statements,etc. In CVCFEl3

and CCVF841 different formalisms of specl-

fylng transactlons and operations are com-

pared by means of eramples.

Formal 1 y , syntax and semantics of transac-

t1ons are qlven by the following deflni-

tions:

CI transaction specification consists of a --_
name T, (sorted) parameter variables X and

several prefpostcondltlons FJ'BJ (J&l);

notation: CFJ3 I(X) COJ: . These con-

dltlons are nontemporal formulas In which

add1 tional free variables Y may occur

beside X. A substitution 5 of parameter

variables IS called an actual parameter.

T transfers a state d Into a state d with _____--

an actual parameter < lff:

(a) There 1s a precondltlon PJ and a sub-

stitution 4 of the free variables Y

such that. [d,r;+$l C F .
J

(b) For all pre/postconditions PJ/QJ and

for al 1 substitutions p of the free

variables Y, the following holds:

cd ,<+<I!= F lmpl ies Cd ,<+<]I= Q
3 J

ic) o 1s minimally changed to d , I.e., no I-

change of any obJect function value

from d to d can be undone WI thout

vlolatlng condition (b)

Fart (c) of the deflnltlon qlves a seman-

tic characterlzatlon of the frame rule.

Ihe so-called frame of T 1s constituted by

311 formulas up which are invarlant in the

following sense:

For all triples (d,d ,c) such that T

transfers d into d with r; and for all

F J, 5 as above, the following ho1 ds.:

Ld, <+<I!= F J~tp implies co *<+<1i= lp

(We assume that X+Y already contains

the free variables occurring in w.f

Obvlousiy formulas that do not mention

aray function used In the postcondltlons

belong to the frame But there may also

be conditions In the frame which involve

rrhose functions. trlvlal evamples are the

postcondi tlons themselves. rOf course,

tltelr negat 1 ons are not invariant I To

analvze speclficatlons, derivation rules

far frame f ormutas are needed.

lransactlon speclficatlons restrict pos-

sable sequences of transactions or- states

to “e eLutable” ones.

391

f3 transaction sequence Tl,...,-rn2 15

called executable ______- if f there 15 a sequence

(I = 0;,r- - - ,a#-) of states, such that 61-i

15 transterred into d, by T, WL th some

actual parameter 51 (for 1=1, ..,n). In

this case, the state sequence d_ 15 also

cdl led evecutable. -___^_

Thus, transactions and dynamic 1ntegrlt.y

constraints can be seen as complementary

spec1 f rcat1ons. together they restrict

state sequences to such sequences that are

e ecutabl e and admissible. In the example

above, state transltlons changing a “car-

owner” must be induced by corresponding

transactions like SELL (TZ), and they must

satisfy the constraints (12) and (13).

- KEFINING THE SCHEMA SFECIFICATION -.

The poss1b111ty of restricting state se-

quences by specifying transactions shall

be utilized to monr tor integrity con-

stralnts. The constraints are converted

into a refined speclflcatlon of the trans-

actrons 50 that evecutable state sequences

become provisronally admissible up to each

actual state. Thus, dynamic database beha-

v1our 15 determined by transactions only,

and temporal constraints need not be con-

sidered for implementatron any longer.

Ih1s refinement offers the opportunity to

observe the impacts of "global" integrity

constraints on the "local" usage of the

database If new pre/postconditions lead

to undes1 rabl e restrlctlons or even to

contradictions, the original schema spe-

cification should be corrected. Moreover,

there 1s some prospect that integrity

monitoring by transactions can be imple-

mented quite efficiently, 1f checks are

SUL ted to the respective kind of change

and to the ObJecta affected.

As a preparation for ref 1nrng a schema

specification, the set of ObJeCt functions

~5 e/tended by some predicates which keep

tracl of partial 1 y satrsf led constraints:

ihere may be sometime-conditions which are

yet to come or always-condrtions which

must hold only temporarrly. It makes sense

to store such “memos” 1n the database,

51 nce they can indicate the actual degree

of admissibility to the user.

Then, the pre/postcondltlons of transac-

tions are completed by further condl-

tions.Semantically, evecutabr 11 ty of state

sequences become5 stronger restricted. Clt

first we show which completron would be

necessary without regarding any specific

knowledge about a transactron. Th15 trans-

formation correspond5 to the universal

integrity monitor presented 1n CLEGGSI. By

considering which transactions can change

which object functions, those completions

can be essentially simplified afterwards.

The key idea of monitoring or transform-

lng a dynamic constraint 15 to split a

temporal formula into a nontemporal for-

mula that must hold in the actual state,

and a temporal one that remains to be

checked ln the future. For this purpose,

so-called “recur51 on rules” of temporal

logic CtlP811 are helpful:

always tp =, -- p A next (always rpt

sometime cp .=, q3 v next (sometime cpi

For es (W == sometime j3 before T) and 0 5

(sometime p before T), the following laws -- -
can be derived:

(1) 12)

(1) cp (=' (a=‘771 A (any3 =z nevt Q, i

(11) @ <=* -IT A (3 => next 0)

If one of the temporal formulas 0 or B 1s

requ1 red for a state sequence, part (1)

excludes an illegal occurrence of the

termlnatlon cond1tzon ‘c in the f 1r5t

state, and (2) indicates on which premises

B must be satisfied by the rest sequence

starting with the next state. According to

the interpretatron of a constraint “from a

always $ betore T” (see 5ection 2.1) , 0

applies to arbitrary (starting) states and

substitutions Accordrng to the laws above

B may apply to following rjtates for cer-

tain substitutions: it then replaces the

requirement @, since Cp implies 0. This

temporary requirement @ must be recorded

in a special memo.

in this sectron we d15cuss those two ba51c

392

forms of integrity constraints which were

evpiained In section 2.1 explicitly. Each

existentlal constraint -

I- - = from CI sometlme p before T -__ --- ____

is transformed In the following way:

Step I:

An additional predicate named sometlme p

before t 1s introduced whose arguments

correspond to the free variables In p and

t; in the following, it is abbreviated to

SB (though depending on l-1. This predi-

cate must be entered In the database as

true for a substitution 5, if the corre-

spondi ng condition (0 from above) re-

mains to be checked with that substitution

in the next states; so SE(<) plays the

role of the mentioned “memo”. Kecall that

a substitution Just represents a certain

combination of data and obJects to be used

as actual arguments.

Thus, as many predicates are added to the

schema as constraints are qlven 113 the

orlqinal specif Ication. In special cases,

such predicates can be expressed in terms

of existing functions and predicates so

that a new predicate can be avoided. This

will be illustrated In a later example.

Step II:

Let an arbitrary transaction T be given

with an original specrflcatlon or with a

specif icatlon resulting from transf orma-

tion of other constraints. Each assert1 on

CP> 1 <Q> consisting of a pair of pre/

postconditlons PIG! 1s rewritten to:

(1) (2)

;PA-ISB> T :Q A (cc=nt) A (a/i-q3 \= 5%):

:PA SB: T :Q A -It A (P = mSB) 3

Here, the laws (1) and (11) from above are

utzllzed to restrict the set of post-

states. The new specification expresses

the requirement that T has to monitor the

given constraint as far as thl s can be

done by inepectlng the new actual data-

base state. A distinction 1s made, whether

or not a memo SB “exists” previously. The

=X -dlrectlon of condition (2) controls

“lnsertlon” (SIO or “deletion” (-ISB) of

the memo. The ’ = -direction of (2) deter-

mines if -I% or 56 1s retalned. It should

be noticed that the free variables In the

added parts must be named differently from

parameter and other variables, because

those condltrons shall hold for arbitrary

ObJects.

Si nie postconditions affect only states

following transactions, the addition in

the first line above has to hold In the

initial state of the database, too:

tcr(= -It) h (ctAq3 =,- SB)

Example. By transforming the Integrity

constraint

(11) from produced tc) A this-year=y

somet I me registered(c)

before this-year&y+2

the following new specification is ob-

tained for the transaction ITl) HEGIS-

TEH(c,m,...) of section 2.2:

Prel approved(m) A GB(c ,y)

poet1 registered(c) A . . .

A ((produced(c)hthis-year=y)

EI +hls-yearly +2) (-)

A ((produced cc 1 Athis-year=y

A ~registered(c))

=, SEl(c ,y))

Ubvlously (-) 15 a taut01 ogy that

may be dropped

pi-e-, approved(m) A SB(c ,y) -&

eolt2 regIstered A . . .

h this-year. y +2

A (reglstered(c) q=, +.B(c ,y))

For design purposes, it 1s recommended to

introduce a more application oriented name

for the predicate SB. A conver-szon of its

parameters may be included, as it can be

done for IIl>*

to-be-registered-before: CAR year -‘boo1

where to-be-registered-beforetc ,y +2)

= SE((c ,y 1 ***

Step III: ----

NOW) the transaction speclf lcatlons of

step II can be essentially simplified.

393

Uue to the frame rule with respect to the

original specification many transactions

WI11 not change the added conditions at

al 1, others will not do so for many sub-

stltutlons. Therefore, the transf ormatlon

above needs only be done for transactions

whl ch posse bl y change the truth value of

01, f3 or T. I.=., some of these formulas or

thelr negat i ons are not In the frame of

the transaction. Moreover, the new varla-

bles of step II may be replaced by those

parameter variables, original variables,

constants or terms which are involved In

changes of the correspond1 ng formula

parts. If not all three constraint compo-

nents change, whole factors of the above

conJunctions may be omltted. Finally, the

frame rule may be utilized for the new

specification, too

TO dl scuss typl cal situations, let us

cons.1 der transactions T which change at

most one of the constraint components c<,

p or T from false to true. Equl val entl y ,

el ther yc(, ~(3 or 7~ 1s not In the frame of

T. The following specifications result

from step II I:

(1) If T can change only o[to true-

:PA-lSB: T CQ A -IT A IMP s = SE) 1

CFA SB: T CO;

(11) If T can change only p to true:

:Fn+3B> T CC! A -&B>

<FA ‘3: T CR A +B>

or comb1 ned: :I=> T :G! A +B:

(111) If T can change only T to true:

:FA+~&> T CQ A -ICI(A +B>

CPA SB: F <Q A false: (-)

Since the second postcondition (-)

cannot hold in any state, the whole

line may be dropped so that the pre-

condltron of T 1s restricted to

:FA-lSB: only.

E/amples: The above refinement of the spe- -----__-
cification for REGISTER can be slmpllfled

according to case (111, because only 7$ I

Iregistered (cl 1s not Invariant:

Capprotied tm) 1 REGISTEli(c,m,. .)

[registered Cc) . . h +atc,y)>

After execution of REGISTEF.(c,m,. . .) no

memo may e,ist for the car c. An imple-

mentation of the transaction has to take

care of deleting a memo which possl bl y

e,l sted before.

Let a further transact 1 on NEXT-VEAK be

given whl ch updates the current year

this-year :

:thls-year=>> NEXT-YEAR Cthls-year=%+13

Referrlng to constraint (Ii), only the

termination condition T I th 1 s-year&y+2

II changed for y= x-l, so that transfor-

matlon according to case Ciii) and obvious

slmpllflcatlon of the resulting postcondi-

tion yield:

:this-year=, h +a(c,u-l)l

NEXT-YEAR <this-year=x+l>

1 hus, right before execution of NEXT-YEAR

any memo from the previous year must not

eciet any longer. In a way, "the clock

must be stopped” 1r-1 order to settle the

required reglstratlons for all cars c with

memo SB(c.\ -1). ***

All slmpliflcations In step III presuppose

that any partial condition or substitution

which IS excluded here has been checked

after its last change (and in the initial

state) _ This is the case if al 1 transac-

tion speclflcatzons are treated accord1 ng

to the rules above.

As can be seen by induction on state ee-

quences, the transf ormatl on rules do

quarantee that executable state sequences

satisfy the given constraint In the sense

of provlslonal admlsslblllty. Thus, single

verifications are rendered superfluous.

Addltlonally, our eramples demonstrate how

condltlons can typically be simplified

further in concrete situations, so that a

"readable" specification results In spite

of formal transformation.

The transformation of universal con-

straints will only be given by analogy to

e istentlal ones. For each constraint

from ci always (3 before T

a predicate always f3 before T riw 1s

needed (step I). Then, the basic trans-

formation of CF3 T IQ> reads as follows:

394

CPA-IAB: T CR h(a~3T=q3) h (ah-rT 5=’ AB) 3

CPA A63 T CR A (-IT=,+) A (T c=>1AB) 3

This specification is constructed slmllar-

ly to step II for eristential constraints.

The subsequent simplifications of step III

apply here, too.

Erample. The following constraint 1s to be

transformed:

(13) from owner (cl =co A co 1s GARAGE -
al ways owner (c) =co

before owner (c) II PERSON -- -

Among the given transactions only SELL

(T2) 1s affected by a transformation,

since no other transaction changes the

function owner . After some equi valence

conversions of the basic transformation

a ref 1 ned speclflcatlon is obtalned for

SELL fc ,newco) :

Pi?1
posjtl

or:

post1

E!re,
post*

Thus,

ships

-lAB(c,co)

owner (c) =newco

A ((owner(c)=co A co is GARAGE) - (*)
‘.=* AB(c,co))

owner (c) =newco

A (newco 1s GARAGE =K AB(c,newco)) -

(Cpre13 T <post11 is equivalent to

Cpre13 T Cpostl>, since all omitted

assertions are in the frame of T wt-t

cost,.)

AB(C,CO)

owner (c) =newco

h(lnewco is FERSON = ’ co=newco) (+) -
A(newco is PERSONr=>~AB(c,co) 1 -

restrictions on succession of owner-

have been incorporated into the

transaction specification. Subsequent

transformation of the other integrity con-

straint (12) would lead to a further

differentiation. ***

The second postcondltlon of the example

(post-,) strongly restricts the possibility -A
of transfert-lng states by this transac-

tion: For some states satisfying the

precondition, there is no state satisfy-

ing the postcondition. This speclfles cor-

rectly that certain state sequences are

not executable, but the situation seems

to be model1 ed in a somehow complicated

way. To get a clearer specification it is

recommended that the precondition should

exclude cases when no poststate erists.

Example, cant d.: -~ In spite of the precon-

dltlon, part (+) of the postcondition

cannot be satisfied for arbitrary parame-

ters newco . In this esample, it is

enough to put this restriction into the

precondl tlon in its original form, since

no obJect function being subJect to change

1s Involved rn this formula. Then, the

second speclflcatron part of SELL(c,newco)

reads:

pi-e7 -& AB(c,co)

h(Tnewco 1s PERSON =) co-newco) (+) -
post? owner Cc) =newco

A(newco is FERSON~=,‘YAB(C,CO)) -

Moreover, here the new predicate AB can be

expressed by means of existing predicates

prove ded that the function owner 1s af-

fected by SELL only. It can be proved by

lnductlon on executable state sequences

that the following equivalence holds al-

ways:

(owner(c)=co A co 1s GARAGE) - => A6 cc ,co)

(This was mentioned in the first postcon-

dition post as (*).I ***
-1

Static integrity constraints p which cor-

respond to special universal constraints

from true always p before false

do not require introducing any additional

predicate, either. For them, transf orma-

tion of CP: T CcI> yields:

CF A ~3 T :13 A p:

In particular, this refinement might give

rise to checking the original postcondz-

tion 0 for consistency WI th the static

constraint f3.

Of course, one can imagine 51 tuations

where certain integrity constraints can be

concluded directly from the original

transaction specifications so that no

transformation i 5 necessary. In any case,

general, transf ormationr are possible and

reliable; thus, they can serve the design-

er at least as a guideline to refining the

schema speclflcation. Ecesl des, the euam-

395

ples show that systematic slmpllflcatlons

can lead to formulations easy to survey

and to grasp, where verification has

al ready been done. So transaction specs-

f ications become a sufflclent and useful

interface to the rmplementor.

4. RELATED WORii AND CONCLUSIONS

The literature based upon similar calcull

(temporal logic and pre/postcondltrons)

contal ns first approaches to comparable

multi-level database specifications

CCCF82/ CVF84/ VF85, ku84/ ku85b, SFNC843.

Requirements and methods of verifying tem-

poral constraznts are analyzed presuming

that complete descriptions of transactions

are given beforehand. Already CGM793 have

studied verlfzcatlon of static constraints

by checking 1 nvar 1 ant pre/postcondl tlons

of transactrons. Bea des, Cku841ku85al 1s

concerned with conslatency of schema spe-

ciflcations.

Only CVF853 give some basic methodical

hints that the specification - and also

the selectlon - of transactions should be

ref 1 ned in a stepwlse way. The above ap-

proaches, however, cannot cons1 der “some-

time” constraints In refinements, although

they may be formulated parti ally; for

thrs, our notlon of “prove si onal admi 8s~ -

blilty” proves to be appropriate. Trans-

f ormatlon methods for dynamic integrity

constraints have not yet been dlscussed by

otljer authors.

The specif xcation method presented here

depends on the principle to fix a module

of basic transactions for all database up-

dates. This module becomes responsible for

the correctness of dynamic database beha-

vlour. Its design 1s based on the trans-

formation of the original schema specifl-

cation: the designer 1s guided to recog-

nize the Impacts of the global specifica-

tron on the transactions.

The design procedure Itself might be sup-

ported by an interactive system that con-

trols and manages stepwr se transf orma-

tions and that offers slmpllf lcatrons of

logical formulas. Moreover, those trans-

formations may be used to generate a pro-

totype of a database application system

from Its orlginal rpeclflcatlon. As shown

by LVF851, preliminary implementations of

transactions can be derived from certain

restricted pre/postcondltions automatz-

tally.

Concerning theoretical f oundat 1 one, the

slmpllflcatlon step (III) could be treated

more formally than In this paper. but

our emphasis was on introducing typical

elements of a specifxcation methodology.

For simplifications, Inference rules are

needed to der 1 ve frame formulas and to

detect Irrelevant variable substrtutrons.

The approach of CNi823 on static con-

straint simplification should be examined

if it can be extended to general transac-

tlon specifications. In addition, new

mono tor 1 ng principles for dynamr c con-

straints CLSEG61 might be utrlxzed to

transtorm a larger class of temporal for-

mulas.

FiEFERENCES

Abbreviations:

FODS Froc. ACM Symp. on Principles of
Database Systems

SIGMOD Froc. Int. ACM-SIGMOD Conf. on Ma-
nagement of Data

TFAIS Froc. IFIP Work.Conf.on Theoretical
and Formal Aspects of Information
Systems (A.Sernadas et al. , eds.),
North-Holland, Amsterdam 1985

VLDB Froc. Int. Conf. on Very Large Data
Bases

CCCF823 Castilho,J.M.V.de/ Casanova,M.A./
Furtad0,A.L. : A Temporal Framework for
Database Specif zcations. VLDB 1982,
280-29 1

CCVF841 Casanova, M.A. / Veloso, P.A.S. /
Furtad0,A.L.: Formal Database Specs f l-
cation - An Eclectic Perspective. PODS
1984, 110-118

CCe831 Ceri,S. led.) : Methodology and
Tools for Data Base Des1 gn. North-
Ho1 1 and, Amsterdam 1985

CELG841 Ehrich, H.-D. / Lipeck, U.W. /
Gogolla, M. : Specification, Semantics
and Enforcement of Dynamo c Database
Constraints. VLDB 1984, 301-308

CFu843 Furtado, A.L. : An Informal Ap-
proach to Formal Specifications. SIGMOD
Record 14,l (1984), 45-54

396

CGM791 Gardarln,G./tlelkanoff,M.: Proving
Consrstency of Database Transactions.
VLDB 1979, 291-298

CISO821 ISO/TC97/SCS/WG3 : Concepts and
Terminology for the Conceptual Schema
and the Information Base. (J-J. van
Grzethuysen, ed.) 1982

Eku843 Kung,C.H. : A Temporal Framework
for Database Specification and Verifi-
cation. ULDB 1984, 91-99

CCuESal Yung,C.H. : A Tableaux Approach
for Consistency Checking. TFAIS 1985,
191-210

CCu85bl t'ung,C.H. : On Verification of
Temporal Database Constraints. SIGMOD
1985, 169-179

[LEG851 Llpeck, U.W. / Ehrich, H.-D. /
Gogolla,tl. : Specifying Admissibility
of Dynamic Database Behavrour Using
Temporal Logic. TFAIS 1985, 145-157

ELSE863 Lrpeck,U.W./Saake,G./Ehrlch,H.D.:
Monitoring Dynamic Database Integrity
by Transition Graphs. 1986
(submitted for publication)

CMP811 tlanna,Z./Pnuell,A.: Verification
of Concurrent Programs: The Temporal
Framework. in: The Correctness Problem
in Computer Science (R-S. Bayer/ J.S.
Moore, eds.), Academic Press, 1981,
215-27:

CN1823 Nlcolas,J.-M.: Logic for Improv-
ing Integrity Checking in Relational
Data Bases. Acta Informatica 18 (1982),
227-253

CSFNC843 Schiel,U./ Furtado,A.L./ Neuhold,
E.J./Casanova,M.A.: Towards Multi-Level
and Modular Conceptual Schema Specifi-
cations. Information Systems 9 (1984),
43-57

CTF821 Teorey,T.J./ Fry,J.P.: Design of
Database Structures. Prentice-Hall,
Englewood Cliffs 1982

CVCF81~ Veloso,P.&.S./ Castllho,J.tl.V.de/
Furtad0,A.L.: Systematic Der-lvatzon of
Complementary Specfications. VLDB 1981,
409-42 1

CVF851 Veloso,P.A.S./ Furtad0,A.L.: To-
wards Simpler and Yet Complete Formal
Specifications. TFAIS 1985, 175-189

ACKNOWLEDGEMENT

I wish to thank klaus Drosten for helping
me to Improve the English of this paper.

397

