
IMPLEMENTATION OF DATA ABSTRACTION IN THE
RELATIONAL DATABASE SYSTEM INGRES

James Ong
Bell Laboratories

Crawfords Corner Road
Holmdel, New Jersey 07733

Dennis Fogg
University of California

Berkeley, California 94720

Michael Stonebraker
University o f California

Berkeley, California 94720

ABSTRACT

This paper discusses the design and implementation of an abstract
data type (ADT) Zacility which was added to the INGRES database
manager. Our implementation of ADTs allows a user to register ADTs
and ADT operators with the run-time database manager, declare
column values of relations to be instances of ADTs, and formulate
queries containing references to ADTs and ADT operators. The user
view, implementation, performance, and possible extensions to this
new facility are described.

I. INTRODUCTION

In recent years, much attention has been paid to the feasibility of
adding data abstraction capabilities to a database manager. Many
database query languages such as RIGEL [ROWE 79,81], PLAIN [WASS
81], DAPLEX [SHIP 81], FQL [BUNE 79], and INGRES [OVER 813 already
support some type of data abstraction facility.

This paper will d i s c u s s the design and implementation of an
abstract data ~vpe (ADT) facility which was added to the INGRES
database manager. ADTs have been explored extensively in a
programming language context [LISK74, GUTT773. Basicakly, an ADT
i s an encapsulation of a data structure and a set of associated
operators that may access the data structure. Because the
implementation details of the data structure and the operators are
hidden, the user may write implementation-independent code which
references high-level, user-defined data objects that are specific
to the application.

Our implementation of ADTs allows a user to register ADTs and ADT
operators with the run-time database manager, declare column values
of relations to be instances of ADTs, and formulate queries
containing references to ADTs and ADT operators. This paper will
discuss the user view, implementation, performance, and possible
extensions to this new facility.

2. USER VIEW

Before a user can enter queries containing ADTs and ADT
he must first:

o p e r a t o r s ,

• Register the ADTs and ADT operators with the database manager,

• Code and compile the user-written functions and operators
associated with the ADTs, and

• Declare columns of a relation to store instances of the
defined ADTs.

2.1 R e g i s t r a t i o n o f ADTs

Each ADT possesses an internal representation and an external
representation. The internal representation is a user-defined data
structure that represents the ADT value when i t is stored and
manipulated in the database system. The external representation is
a character str ing that represents the AI)T value in a form that is
easi ly understood by a person. INGRES displays ADT values to the
user in th is form. Conventional data types also possess two
representations: for example, the internal representation of an
integer on a VAX is a 32-bit two's complement format while the
external representation is a character str ing of d ig i t s .

As an example, we created an ADT called "complex" so that complex
numbers could be treated as a data type. The internal
representation was sixteen bytes long; eight bytes each were used
to store the real and imaginary parts in double precision floating
point format. The external representation consisted of two
character strings representing the two values, separated by a
comma. Therefore, a valid external representation of the complex
value 3+4i could be "3,4".

To convert between internal representations and external
representations, the definer of an ADT must supply two conversion
routines. INGRES invokes the external-to-internal conversion
routine to translate ADT values entered by the user into internal
representations. In addition, INGRES invokes the internal-to-
external conversion routine when displaying the results of a query
to a user.

To register an ADT with INGRES, the names of these two
must be supplied in a DEFINE ADT command. The
specification of an ADT includes the following:

routines
complete

• The name of the ADT (TYPENAME),

• The maximum length of the internal (byte) representation in
bytes (BYTESIN),

• The maximum length of the external (string) representation in
bytes (BYTESOUT),

• The name of the user-written C function that converts external
representations to internal representations (INPUTFUNC), and

• The name of the user-written C function that converts internal
representations to external representations (OUTPUTFUNC),

• The name of the file that contains the conversion functions
(FILENAME).

Type "complex" was defined by entering:

DEFINE ADT (TYPENAME
BYTESIN
BYTESOUT
INPUTFUNC
OUTPUTFUNC
FILENAME

IS "complex",
IS 16,
IS 27,
IS "tointernal",
IS "toexternal",
IS "/ja/guest/fogg/complex")

An UNDEFINE ADT command w a s a l s o a d d e d t o u n r e g i s t e r a n ADT f r o m
t h e d a t a b a s e m a n a g e r .

2.2 Declaration of ADT Attributes

Once-the ADT has been registered, a user may define columns of a
relation to contain ADT values. For example, to CREATE a relation
called "ComplexNum" with fields of type "complex" and float, one
may enter :

CREATE ComplexNums (fieldl = ADT:complex, field2 = f4)

where "ADT:" specifies that the field is an instance of an abstract
data type, and "complex" specifies the name of the ADT.

2.3 Registration of ADT Operators

The INGRES ADT facility supports unary and binary ADT operators.
The operands and result may be standard INGRES data types (e.g.,
integers, floats, character strings) or user-defined data types
(e.g., ADT "complex"). Thus, one may use the INGRES ADT facility
to define new operators on standard INGRES data types as well as
operators on new types. For example, INGRES does not support a
built-in cube-root function, so a user could add one using the ADT
facility.

Each ADT operator possesses a name and a precedence level. The
name is used to reference an operator within a query. For
instance, the addition operator has the name "+". The precedence
level specifies how queries with multiple operators should be
interpreted. For example, the precedence of "*" is automatically
higher than that of "+", so the expression a + b * c is interpreted
as a + (b ~ c). All ADT operators must be given a precedence
level.

Each operator is implemented by a user-written C function. When
INGRES needs to apply an ADT operator to its operands, it calls the
function and passes pointers to the operands and to the buffer
where the result value should be placed. The user-written function
must be designed to accept this communication protocol.

Consequently, the following information must be entered into INGRES
to define an ADT operator:

• The operator name as it appears in a query (OPNAME),

• The name of the user-written C function that implements the
operator (FUNCNAME),

• The name of the file containing the C function (FILENAME),

• The types and lengths of the operands (ARGI and ARG2) and the
result (RESULT).

• The precedence of the operator - (PRECLEVEL) if binary. This
may be any of the four precedence levels used by built-in

INGRES operators. Unary operators are assumed to have the
highest precedence.

The DEFINE ADTOP command was added to allow a user to register an
ADT operator with INGRES. For example, the declaration of a binary
ADT operator that returns the complex product of two numbers might
be written as:

DEFINE ADTOP (OPNAME IS "*"
FUNCNAME IS "complexProduct",
FILENAME IS "/ja/guest/fogg/complex",
RESULT IS ADT:complex,
ARGI IS ADT:complex,
ARG2 IS ADT:complex,
PRECEDENCE LIKE "*") /* like INGRES * */

The declaration of a unary ADT operator that yields the magnitude
of a complex number might be written as:

DEFINE ADTOP (OPNAME IS "Magnitude",
FUNCNAME IS "magnitude",
FILENAME IS "/ja/guest/fogg/complex",
RESULT IS fS,
ARGI IS ADT: complex)

The name of an ADT operator may be unique, or it may be the same as
a built-in INGRES operator.

2.4 Use of ADT Expressions Within Queries

After the above steps have been completed, queries may be
formulated to execute operations on ADT values. For example, a
query which retrieves all complex numbers whose magnitude is
greater than the magnitude of the complex number 3+4i may be
written as :

RANGE OF C IS ComplexNums
RETRIEVE (C.fieldl)

WHERE Magnitude C.fieldl > Magnitude "3,4"

where "Magnitude" is the ADT unary operator defined above. Because
"Magnitude" accepts an operand of type "complex", "3,4" is
interpreted as the external representation of an ADT rather than as

S

a character string. Execution of the above query might yield:

3.000000e+00, 5.000000e÷00

I -4. O00000e+00, -4. 000000e+00

3. IMPLEMENTATION

A copy of INGRES was modified in fourteen man-weeks to support
abstract data types. CHanges were needed primarily in the scanner,
the parser, and the One-Variable Query Processor (OVQP).

The scanner and parser accept a query entered by the user and
generate a tree which INGRES uses internally to represent a parsed
query. The scanner and parser modules were modified to generate
trees for queries containing references to ADTs and ADT operators.
A multi-relation query is decomposed into a sequence of one-
relation commands by module DECOMP. This module required no
changes. Module OVQP accepts a one-relation query tree and
executes all retrievals and modifications to the relation
specified. OVQP was modified to accept and execute query trees
containing references to ADTs and ADT operators.

Moreover, two new system relations, "adt" and "adtoperator", were
created to store information about user-defined ADTs and ADT
operators. INGRES frequently accesses information stored in these
relations when processing each query, so LRU software caches were
created to speed up the access time. Four utilities were written
to support the commands DEFINE ADT, UNDEFINE "ADT, DEFINE ADTOP, and
UNDEFINE ADTOP described in section 2.

Application of ADT operators requires INGRES to invoke the
appropriate user-written C functions. Several possibilities for
providing access to these C functions were considered. Static
linking of the functions with the INGRES program was rejected
because it would require INGRES to be re-linked each time an ADT
operator is registered. The size of INGRES would also continue to
grow with the addition of each new ADT. Running the user-written
functions as separate processes was rejected because of the high
overhead incurred when passing arguments and result values via
inter-process communication. As a result, a simple dynamic linker
was written to provide run-time access to user-written routines.

4. PERFORMANCE

In this section, the original copy of the INGRES program will be
referred to as "Standard-INGRES", and the modified copy will be
referred to as "ADT-INGRES."

4.1 P e r f o r m a n c e o f ADT-INGRES When R u n n in g a S t a n d a r d Query

For the first comparison, both programs executed:

Query-A: RANGE OF R is RealpImagp
RETRIEVE (SQRT(R.Realpee2 + R.Imagpee2))

WHERE R.Realp = <const>
AND R. Imagp = <const>

where relation "RealpImagp!' contained 25,600 tuples, each with two
8-byte floating point attributes, "Realp" and "Imagp". This query
computes the magnitude of a complex number when stored as two
floating point numbers using standard INGRES data types. Table One
presents the results.

Access
Method

Standard-INGRES/Query-A vs. ADT-INGRES/Query-A

Standard-INGRES Times (secs) ADT-INGRES Times (secs)
User System Elapsed User System Elapsed

Hashed 0.67 0.16 0.85 I 1.10 0.36 1.57
Indexed 0.72 0.19 0.98 1 1.14 0.36 1.52
Heap 28.34 2.88 33.17 30.16 2.69 35.73

Table One

Table One shows that ADT-INGRES consumes nearly twice the CPU time
required by STANDARD-INGRES when running QUERY-A for hashed
relations, but consumes only about 5 percent more when running the
same query for heap relations. Thus, ADT-INGRES appears to have a
substantial per-query overhead incurred in the scanner and parser.

Even when running identical queries on identical relations, ADT-
INGRES runs more slowly for several reasons. First, each time the
scanner encounters an unquoted character string in a query, it must
search the "adtoperator" relation to check if the string is
actually the name of an ADT operator. The "adt" and "adtoperator"
caches were designed to minimize the average successful search time
for an "adt" or "adtoperator" tuple. Instead, the average search
time for all retrievals, successful and unsuccessful, should have
been minimized.

One solution would be to load the "adt" and "adtoperator" relations
into a hashed table in the INGRES address space. Although this
method would greatly speed access to ADT and ADT operator
information, it would also limit the practical sizes of the "adt"
and "adtoperator" relations. Another solution would be to restrict
the set of names an ADT operator may legally have. This would
allow INGRES to eliminate most character strings as potential ADT
operators without accessing the "adtoperator" relation.

Second, ADT-INGRES runs more slowly because the overloading of
operator names complicates the parsing of queries. The ADT
faciYity allows names of arithmetic operators (e.g., "+", "*") and
relational operators (e.g., "<", "!=") to be legal ADT operator
names. To support this capability, the INGRES parser must be able
to pattern match a query expression such as:

R.fieldl e R.field2

to determine from context whether the "~" operator is a standard
INGRES arithmetic operator or an ADT operator.

4.2 Performance of ADT-INGRES When Running an ADT Query

The second comparison measured the relative speeds of the programs
when ADT-INGRES utilized ADTs to execute a simpler but functionally
equivalent query. Thus, the executions times of Standard-INGRES
running Query-A were compared with execution times of ADT-INGRES
running Query-B:

QUERY-B : RANGE OF C IS ComplexNums
RETRIEVE (Magnitude (C.fieldl))

WHERE C.Complex = "<const>,<const>"

Here, "Magnitude" is the ADT operator described above that returns
the magnitude of a complex number.

Execution of queries containing ADTs and ADT operators causes ADT-
INGRES to incur overhead when accessing user-written functions that
support the ADT operators and ADT conversion functions. ADT-INGRES
uses a simple but inefficient dynamic linker that overlays a user-
written object file into a buffer area within the INGRES address
space when needed. If a query references a function stored in a
file not resident in the buffer area, INGRES must open the required
object file, read it into the buffer area, read the file's symbol
table to locate the needed function, and then close the file.

Thus, the performance of ADT-INGRES greatly depends upon whether or
not the buffer already contains theneeded user-written functions.
We measured ADT-INGRES's execution time when running Query-B in two
situations. Query-B(fast) is a best case where the buffer always
has the required functions at the start of the query. Query-
B(slow) is a pessimistic case where the object file must be read
into the buffer area for each query. Tables Two and Three present
these results.

8

Standard-INGRES/Query-A vs. ADT-INGRES/Query-B(slow)

Access StanWarW-INGRES Times (secs) ADT-INGRES Times (secs)
Me thod User Sys tern Elapsed User Sys tern Elapsed

Hashed 0.67 0.16 0.85 I 0.91 0.30 1.72
Indexed 0.72 0.19 0.98 1 0.98 0.36 2.04
Heap 28.34 2.88 33.17 35.66 2.98 44.40

Table Two

Access
Method

Standard-INGRES/Query-A vs. ADT-INGRES/Query-B(fast)

Standard-INGRES Times (secs) ADT-INGRES Times (secs)
User System Elapsed User System Elapsed

Hashed 0..67 0.16 0.85
Indexed 0.72 0.19 0.98
Heap 28.34 2.88 33.17

Table Three

0.79 0.32 2.01
0.81 0.36 1.52

35.46 2.96 41:40

Query-B(slow) consumes an additional one or two tenths of a second
of CPU time as compared with Query-B(fast). This difference is due
to the additional work needed to load in a user-written object file
and dynamically link the functions.

ADT-INGRES running Query-B(fast) is about 15 percent slower than
Standard-INGRES running Query-A for heap relations. Since a query
on a heap storage structure causes the "Magnitude" operator to be
applied to every tuple in relation ComplexNums, we expect that this
performance degradation is caused by inefficient access to
dynamically-linked, user-written functions. Because there exist
many possibilities for optimizing ADT-INGRES, we expect that
judicious tuning can largely erase its performance penalty.

5. FUTURE WORK

This section proposes several extensions to the INGRES abstract
data facility that would increase its power and performance.

5.1 Integrating ADTs into INGRES Query Processing

The INGRES ADT facility does not support the indexing of ADT fields
except for the special case of the equality operator. Moreover,
query processing heuristics cannot effectively optimize multi-
relation commands containing ADT operators. Two classes of
extensions to the ADT facility would overcome these drawbacks.

The first extension would allow the user to control the sorting of
tuples in indexed relations. INGRES currently sorts tuples in

indexed relations into collating sequence. However, this ordering
may or may not be useful. For example, consider a possible ADT
called "timeOfDay" which stores precise time of day values using
the following internal representation:

hour - 2 byte integer
minute - 2 byte integer
second - 4 byte float

Sorting these fields in collating sequence will not result in
chronological order for events occurring within the same second, so
a user-supplied sorting function is needed.

More generally, it would be desirable to support the inclusion of
new access methods appropriate for user-defined types. For
example, in spatial applications, two-dimensional access methods
such as KDB trees [ROBB 81] and bin structures may be reasonable.

The second class of extensions concerns multi-relation query
processing heuristics. For example, consider a new operator "'"
which operates on a pair of complex numbers and returns true if one
is the negative of the other. For example, (3,4i) is the negative
of (-3,-4i). One could find all pairs of numbers in ComplexNums
which are negatives of each other as follows:

Range of C is ComplexNums
Range of C2 is ComplexNums
Retrieve into W (C.fieldl, C2.fieldl) where

C.fieldl " C2.fieldl

Two extensions are required to process multi-relation commands.
First, one must make an estimate of the size of W. This is
required for three-way joins in order to evaluate the cost of
alternate processing orders. Current algorithms (e.g., [SELI 79])
have built-in functions to compute such sizes. One needs to call a
user-defined function to obtain this information for ADT operators.
A possible syntax would be to extend the DEFINE ADTOP command with
an additional field:

statistics is my-star

where the function my-star could optionally be defined for any
binary operator which had a boolean result type. When passed a
constant, it would return the selectivity of the clause:

... where C.field op constant

Alternatively when passed nothing, it would return the selectivity

i0

of the clause

... where C1.fieldl op C2.fieldl

The second required extension concerns merge-sort. It is always
possible to process the above query by iterative substitution; it
is sometimes possible to use merge-sort. To use merge-sort with
the conventional equality operator, one must first sort each
relation into collating sequence using the operator "<". For the
operator "^" there is an ordering compatible with the merge-sort,
and it is defined by the operator

C1.fieldl << C2.fieldl iff

abs (C1.realPart) abs (C2.realPart)
<

abs (C1.imagPart) abs (C2.imagPart)

Here "abs" takes the magnitude of a floating point' number. The
second extension to the DEFINE ADTOP command is an optional clause:

merge-sort is <<

With this additional information, a heuristic optimizer can make an
intelligent choice of plans.

5.2 Hierarchies o f ADTs

It would be very useful to be able to specify that a data type
inherit the characteristics of a previously defined data type
[STON 82]. This capability would allow ADT-A to be defined as a
subset of ADT-B, thereby inheriting all of ADT-B's operators.
ADT-B would then be the "superset ADT" of ADT-A, and ADT-A would be
one of the "subset ADTs" of ADT-B. For example, assume that ADT
"dog" has been defined to be a subset of the ADT "mammal." An ADT
operator such as "age-of", originally defined upon ADT "mammal",
would then be applicable to values of type "dog."

Hierarchies of ADTs would require INGRES to maintain another system

II

relation that stores subset-ADT/supersetrADT pairs. For example:

Relation: ADT Hierarchies

Superset-ADT

Mammal
Mammal
Dog

Subset-ADT

Dog
Cat
Poodle

This relation would be searched by the INGRES routines to type-
check ADT operator expressions within queries. For example, if ADT
operator-A has been defined on ADT-A, this operator may be applied
to a value defined as an instance of ADT-B if and only if:

I. ADT-A is identical to ADT-B, or

2. ADT-B is in the transitive closure of SUBSET-OF ADT-A.

User-written functions that implement ADT operators could be
correctly applied to subset-ADT values because INGRES calls these
functions with pointers to the operands. To insure that the
function operates correctly on the subset ADT values, the first n
bytes of all subset-ADT internal representations must have the same
format as the superset's n-byte internal representation. For
example, assume that ADT "mammal" possesses an n-byte internal
representation, ADT "dog" possesses an n+m byte representation, and
ADT operator "age-of" has been defined to return a mammal~s age
given the mammal's n-byte internal representation. ADT operator
"age-of" may be correctly applied to values of type "dog" if the
first n bytes of types "dog" and "mammal" have the same format.

6. CONCLUSIONS

This paper has discussed the user-view, implementation, and
performance of abstract data types within the relational database
system INGRES. Our implementation allows a user to register
abstract data types and abstract data type operators with the run-
time database manager. Column values of a relation may be defined
as instances of abstract data types, and ADT operators may be
applied to these values. Some possible extensions were proposed to
extend the power and performance of the INGRES ADT facility.

REFERENCES

[BUNE 79]

[FOGG 82]

Bune, P. et. al., FQL - A Functional Query Language,
Dept. of Computer and Information Science, University
of Pennsylvania, Philadelphia, PA. 1979.

Fogg, D., Implementation of Domain Abstraction in the
Relational Database System INGRES, Master of Science

iZ

[GUTT 77]

[HUNG 823

[LISK 74]

[MUEL 823

[ONG 82]

[OVER 81]

[ROBB 81]

[ROWE 793

[ROWE 82]

[SELI 79]

[SHIP 82]

[STON 76]

Report, Dept. of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA.,
September 1982.

Guttag, J., "Abstract Data Types and the Development of
Data Structures," EACH, June 1977.

Hung, D., Using a Relational DBMS to Store Symbol Table
Information for Separate Compilation, Master of Science
Report, Dept. of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA.,
August 1982.

Liskov, B. and Zilles, S., "Programming with Abstract
Data Types," ACD-SIGPLANNotices, April 1974.

Mueller, F., Artificial Intelligence and Data Base
Applications, Master of Science Report, Dept. of
Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA., September
1980.

Ong, J. C., Implementation of Abstract Data Types in
the Relational Database System INGRES, Master of
Science Report, Dept. of Electrical Engineering and
Computer Sciences, University of Califoknia, Berkeley,
CA., September 1982.

Overmyer, R., A Time Expert for INGRES, Master of
Science Report, Dept. of Electrical Engineering and
Computer Sciences, University of California, Berkeley,
CA., July 1981.

Robinson, J. T., "The K-D-B-Tree: A Search Structure
for Large, Multi-dimensional, Dynamic Indices," Proc.
1981AEM SIGMOD Annual Conference on the Management of
Data, Ann Arbor, Mich., May 1981.

Rowe, L. et. al., Data Abstraction, Views and Updates
in RIGEL, Electronics Research Laboratory, University
of California, Berkeley, CA., Memo 79/5, January 1979.

Rowe, L., et. al., Rigel Language Specification, Dept.
of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA., August 1981.

Selinger, P. et. al. "Access Path Selection in a
Relational Database Management System, 'i Proc. 1979 ACH
SIGMOD Annual Conference on Management of ~ata, Boston,
Mass., May 1979.

Shipman, D., "The Functional Data Model and the Data
Model DAPLEX," ACM-rODS 6, I, pp. 140-173, March 1981.

Stonebraker, M. et. al., "The Design and Implementation
of INGRES," ACM-TODS 1,3, September 1976.

\

13

[STON 82]

[STON 833

[WASS 81J

Stonebraker, M., Application of Artificial Intelligence
Techniques to Database Systems, Electronics Research
Laboratory, University of California, Berkeley, CA.,
Memo 82/31, May 1982.

Stonebraker, M. et. al. Application of Abstract Data
Types and Abstract Indices to CAD Data Bases, Proc.
1983 ACM-IEEE Data Base Week, San Jose, CA. May 1983.

Wasserman, A. et. al., Revised Report on the
Programming Language PLAIA', Laboratory of Medical
Information Science, University of California, San
Francisco, CA., Technical Report #42, January 1981.

14

