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ABSTRACT 

This paper discusses the design and implementation of an abstract 
data type (ADT) Zacility which was added to the INGRES database 
manager. Our implementation of ADTs allows a user to register ADTs 
and ADT operators with the run-time database manager, declare 
column values of relations to be instances of ADTs, and formulate 
queries containing references to ADTs and ADT operators. The user 
view, implementation, performance, and possible extensions to this 
new facility are described. 



I. INTRODUCTION 

In recent years, much attention has been paid to the feasibility of 
adding data abstraction capabilities to a database manager. Many 
database query languages such as RIGEL [ROWE 79,81], PLAIN [WASS 
81], DAPLEX [SHIP 81], FQL [BUNE 79], and INGRES [OVER 813 already 
support some type of data abstraction facility. 

This paper will d i s c u s s  the design and implementation of an 
abstract data ~vpe (ADT) facility which was added to the INGRES 
database manager. ADTs have been explored extensively in a 
programming language context [LISK74, GUTT773. Basicakly, an ADT 
i s  an encapsulation of a data structure and a set of associated 
operators that may access the data structure. Because the 
implementation details of the data structure and the operators are 
hidden, the user may write implementation-independent code which 
references high-level, user-defined data objects that are specific 
to the application. 

Our implementation of ADTs allows a user to register ADTs and ADT 
operators with the run-time database manager, declare column values 
of relations to be instances of ADTs, and formulate queries 
containing references to ADTs and ADT operators. This paper will 
discuss the user view, implementation, performance, and possible 
extensions to this new facility. 

2. USER VIEW 

Before a user can enter queries containing ADTs and ADT 
he must first: 

o p e r a t o r s ,  

• Register the ADTs and ADT operators with the database manager, 

• Code and compile the user-written functions and operators 
associated with the ADTs, and 

• Declare columns of a relation to store instances of the 
defined ADTs. 

2.1 R e g i s t r a t i o n  o f  ADTs 

Each ADT possesses an internal representation and an external 
representation. The internal representation is a user-defined data 
structure that represents the ADT value when i t  is stored and 
manipulated in the database system. The external representation is 
a character str ing that represents the AI)T value in a form that is 
easi ly understood by a person. INGRES displays ADT values to the 
user in th is form. Conventional data types also possess two 
representations: for example, the internal representation of an 
integer on a VAX is a 32-bit two's complement format while the 
external representation is a character str ing of d ig i t s .  



As an example, we created an ADT called "complex" so that complex 
numbers could be treated as a data type. The internal 
representation was sixteen bytes long; eight bytes each were used 
to store the real and imaginary parts in double precision floating 
point format. The external representation consisted of two 
character strings representing the two values, separated by a 
comma. Therefore, a valid external representation of the complex 
value 3+4i could be "3,4". 

To convert between internal representations and external 
representations, the definer of an ADT must supply two conversion 
routines. INGRES invokes the external-to-internal conversion 
routine to translate ADT values entered by the user into internal 
representations. In addition, INGRES invokes the internal-to- 
external conversion routine when displaying the results of a query 
to a user. 

To register an ADT with INGRES, the names of these two 
must be supplied in a DEFINE ADT command. The 
specification of an ADT includes the following: 

routines 
complete 

• The name of the ADT (TYPENAME), 

• The maximum length of the internal (byte) representation in 
bytes (BYTESIN), 

• The maximum length of the external (string) representation in 
bytes (BYTESOUT), 

• The name of the user-written C function that converts external 
representations to internal representations (INPUTFUNC), and 

• The name of the user-written C function that converts internal 
representations to external representations (OUTPUTFUNC), 

• The name of the file that contains the conversion functions 
(FILENAME). 

Type "complex" was defined by entering: 

DEFINE ADT (TYPENAME 
BYTESIN 
BYTESOUT 
INPUTFUNC 
OUTPUTFUNC 
FILENAME 

IS "complex", 
IS 16, 
IS 27, 
IS "tointernal", 
IS "toexternal", 
IS "/ja/guest/fogg/complex") 

An UNDEFINE ADT command  w a s  a l s o  a d d e d  t o  u n r e g i s t e r  a n  ADT f r o m  
t h e  d a t a b a s e  m a n a g e r .  



2.2 Declaration of ADT Attributes 

Once-the ADT has been registered, a user may define columns of a 
relation to contain ADT values. For example, to CREATE a relation 
called "ComplexNum" with fields of type "complex" and float, one 
may enter : 

CREATE ComplexNums (fieldl = ADT:complex, field2 = f4) 

where "ADT:" specifies that the field is an instance of an abstract 
data type, and "complex" specifies the name of the ADT. 

2.3 Registration of ADT Operators 

The INGRES ADT facility supports unary and binary ADT operators. 
The operands and result may be standard INGRES data types (e.g., 
integers, floats, character strings) or user-defined data types 
(e.g., ADT "complex"). Thus, one may use the INGRES ADT facility 
to define new operators on standard INGRES data types as well as 
operators on new types. For example, INGRES does not support a 
built-in cube-root function, so a user could add one using the ADT 
facility. 

Each ADT operator possesses a name and a precedence level. The 
name is used to reference an operator within a query. For 
instance, the addition operator has the name "+". The precedence 
level specifies how queries with multiple operators should be 
interpreted. For example, the precedence of "*" is automatically 
higher than that of "+", so the expression a + b * c is interpreted 
as a + (b ~ c). All ADT operators must be given a precedence 
level. 

Each operator is implemented by a user-written C function. When 
INGRES needs to apply an ADT operator to its operands, it calls the 
function and passes pointers to the operands and to the buffer 
where the result value should be placed. The user-written function 
must be designed to accept this communication protocol. 

Consequently, the following information must be entered into INGRES 
to define an ADT operator: 

• The operator name as it appears in a query (OPNAME), 

• The name of the user-written C function that implements the 
operator (FUNCNAME), 

• The name of the file containing the C function (FILENAME), 

• The types and lengths of the operands (ARGI and ARG2) and the 
result (RESULT). 

• The precedence of the operator - (PRECLEVEL) if binary. This 
may be any of the four precedence levels used by built-in 



INGRES operators. Unary operators are assumed to have the 
highest precedence. 

The DEFINE ADTOP command was added to allow a user to register an 
ADT operator with INGRES. For example, the declaration of a binary 
ADT operator that returns the complex product of two numbers might 
be written as: 

DEFINE ADTOP (OPNAME IS "*" 
FUNCNAME IS "complexProduct", 
FILENAME IS "/ja/guest/fogg/complex", 
RESULT IS ADT:complex, 
ARGI IS ADT:complex, 
ARG2 IS ADT:complex, 
PRECEDENCE LIKE "*") /* like INGRES * */ 

The declaration of a unary ADT operator that yields the magnitude 
of a complex number might be written as: 

DEFINE ADTOP (OPNAME IS "Magnitude", 
FUNCNAME IS "magnitude", 
FILENAME IS "/ja/guest/fogg/complex", 
RESULT IS fS, 
ARGI IS ADT: complex) 

The name of an ADT operator may be unique, or it may be the same as 
a built-in INGRES operator. 

2.4 Use of ADT Expressions Within Queries 

After the above steps have been completed, queries may be 
formulated to execute operations on ADT values. For example, a 
query which retrieves all complex numbers whose magnitude is 
greater than the magnitude of the complex number 3+4i may be 
written as : 

RANGE OF C IS ComplexNums 
RETRIEVE (C.fieldl) 

WHERE Magnitude C.fieldl > Magnitude "3,4" 

where "Magnitude" is the ADT unary operator defined above. Because 
"Magnitude" accepts an operand of type "complex", "3,4" is 
interpreted as the external representation of an ADT rather than as 
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a character string. Execution of the above query might yield: 

3.000000e+00, 5.000000e÷00 

I -4. O00000e+00, -4. 000000e+00 

3. IMPLEMENTATION 

A copy of INGRES was modified in fourteen man-weeks to support 
abstract data types. CHanges were needed primarily in the scanner, 
the parser, and the One-Variable Query Processor (OVQP). 

The scanner and parser accept a query entered by the user and 
generate a tree which INGRES uses internally to represent a parsed 
query. The scanner and parser modules were modified to generate 
trees for queries containing references to ADTs and ADT operators. 
A multi-relation query is decomposed into a sequence of one- 
relation commands by module DECOMP. This module required no 
changes. Module OVQP accepts a one-relation query tree and 
executes all retrievals and modifications to the relation 
specified. OVQP was modified to accept and execute query trees 
containing references to ADTs and ADT operators. 

Moreover, two new system relations, "adt" and "adtoperator", were 
created to store information about user-defined ADTs and ADT 
operators. INGRES frequently accesses information stored in these 
relations when processing each query, so LRU software caches were 
created to speed up the access time. Four utilities were written 
to support the commands DEFINE ADT, UNDEFINE "ADT, DEFINE ADTOP, and 
UNDEFINE ADTOP described in section 2. 

Application of ADT operators requires INGRES to invoke the 
appropriate user-written C functions. Several possibilities for 
providing access to these C functions were considered. Static 
linking of the functions with the INGRES program was rejected 
because it would require INGRES to be re-linked each time an ADT 
operator is registered. The size of INGRES would also continue to 
grow with the addition of each new ADT. Running the user-written 
functions as separate processes was rejected because of the high 
overhead incurred when passing arguments and result values via 
inter-process communication. As a result, a simple dynamic linker 
was written to provide run-time access to user-written routines. 

4. PERFORMANCE 

In this section, the original copy of the INGRES program will be 
referred to as "Standard-INGRES", and the modified copy will be 
referred to as "ADT-INGRES." 



4.1 P e r f o r m a n c e  o f  ADT-INGRES When R u n n in g  a S t a n d a r d  Query 

For the first comparison, both programs executed: 

Query-A: RANGE OF R is RealpImagp 
RETRIEVE (SQRT(R.Realpee2 + R.Imagpee2)) 

WHERE R.Realp = <const> 
AND R. Imagp = <const> 

where relation "RealpImagp!' contained 25,600 tuples, each with two 
8-byte floating point attributes, "Realp" and "Imagp". This query 
computes the magnitude of a complex number when stored as two 
floating point numbers using standard INGRES data types. Table One 
presents the results. 

Access 
Method 

Standard-INGRES/Query-A vs. ADT-INGRES/Query-A 

Standard-INGRES Times (secs) ADT-INGRES Times (secs) 
User System Elapsed User System Elapsed 

Hashed 0.67 0.16 0.85 I 1.10 0.36 1.57 
Indexed 0.72 0.19 0.98 1 1.14 0.36 1.52 
Heap 28.34 2.88 33.17 30.16 2.69 35.73 

Table One 

Table One shows that ADT-INGRES consumes nearly twice the CPU time 
required by STANDARD-INGRES when running QUERY-A for hashed 
relations, but consumes only about 5 percent more when running the 
same query for heap relations. Thus, ADT-INGRES appears to have a 
substantial per-query overhead incurred in the scanner and parser. 

Even when running identical queries on identical relations, ADT- 
INGRES runs more slowly for several reasons. First, each time the 
scanner encounters an unquoted character string in a query, it must 
search the "adtoperator" relation to check if the string is 
actually the name of an ADT operator. The "adt" and "adtoperator" 
caches were designed to minimize the average successful search time 
for an "adt" or "adtoperator" tuple. Instead, the average search 
time for all retrievals, successful and unsuccessful, should have 
been minimized. 

One solution would be to load the "adt" and "adtoperator" relations 
into a hashed table in the INGRES address space. Although this 
method would greatly speed access to ADT and ADT operator 
information, it would also limit the practical sizes of the "adt" 
and "adtoperator" relations. Another solution would be to restrict 
the set of names an ADT operator may legally have. This would 
allow INGRES to eliminate most character strings as potential ADT 
operators without accessing the "adtoperator" relation. 



Second, ADT-INGRES runs more slowly because the overloading of 
operator names complicates the parsing of queries. The ADT 
faciYity allows names of arithmetic operators (e.g., "+", "*") and 
relational operators (e.g., "<", "!=") to be legal ADT operator 
names. To support this capability, the INGRES parser must be able 
to pattern match a query expression such as: 

R.fieldl e R.field2 

to determine from context whether the "~" operator is a standard 
INGRES arithmetic operator or an ADT operator. 

4.2 Performance of ADT-INGRES When Running an ADT Query 

The second comparison measured the relative speeds of the programs 
when ADT-INGRES utilized ADTs to execute a simpler but functionally 
equivalent query. Thus, the executions times of Standard-INGRES 
running Query-A were compared with execution times of ADT-INGRES 
running Query-B: 

QUERY-B : RANGE OF C IS ComplexNums 
RETRIEVE (Magnitude (C.fieldl)) 

WHERE C.Complex = "<const>,<const>" 

Here, "Magnitude" is the ADT operator described above that returns 
the magnitude of a complex number. 

Execution of queries containing ADTs and ADT operators causes ADT- 
INGRES to incur overhead when accessing user-written functions that 
support the ADT operators and ADT conversion functions. ADT-INGRES 
uses a simple but inefficient dynamic linker that overlays a user- 
written object file into a buffer area within the INGRES address 
space when needed. If a query references a function stored in a 
file not resident in the buffer area, INGRES must open the required 
object file, read it into the buffer area, read the file's symbol 
table to locate the needed function, and then close the file. 

Thus, the performance of ADT-INGRES greatly depends upon whether or 
not the buffer already contains theneeded user-written functions. 
We measured ADT-INGRES's execution time when running Query-B in two 
situations. Query-B(fast) is a best case where the buffer always 
has the required functions at the start of the query. Query- 
B(slow) is a pessimistic case where the object file must be read 
into the buffer area for each query. Tables Two and Three present 
these results. 
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Standard-INGRES/Query-A vs. ADT-INGRES/Query-B(slow) 

Access StanWarW-INGRES Times (secs) ADT-INGRES Times (secs) 
Me thod User Sys tern Elapsed User Sys tern Elapsed 

Hashed 0.67 0.16 0.85 I 0.91 0.30 1.72 
Indexed 0.72 0.19 0.98 1 0.98 0.36 2.04 
Heap 28.34 2.88 33.17 35.66 2.98 44.40 

Table Two 

Access 
Method 

Standard-INGRES/Query-A vs. ADT-INGRES/Query-B(fast) 

Standard-INGRES Times (secs) ADT-INGRES Times (secs) 
User System Elapsed User System Elapsed 

Hashed 0..67 0.16 0.85 
Indexed 0.72 0.19 0.98 
Heap 28.34 2.88 33.17 

Table Three 

0.79 0.32 2.01 
0.81 0.36 1.52 

35.46 2.96 41:40 

Query-B(slow) consumes an additional one or two tenths of a second 
of CPU time as compared with Query-B(fast). This difference is due 
to the additional work needed to load in a user-written object file 
and dynamically link the functions. 

ADT-INGRES running Query-B(fast) is about 15 percent slower than 
Standard-INGRES running Query-A for heap relations. Since a query 
on a heap storage structure causes the "Magnitude" operator to be 
applied to every tuple in relation ComplexNums, we expect that this 
performance degradation is caused by inefficient access to 
dynamically-linked, user-written functions. Because there exist 
many possibilities for optimizing ADT-INGRES, we expect that 
judicious tuning can largely erase its performance penalty. 

5. FUTURE WORK 

This section proposes several extensions to the INGRES abstract 
data facility that would increase its power and performance. 

5.1 Integrating ADTs into INGRES Query Processing 

The INGRES ADT facility does not support the indexing of ADT fields 
except for the special case of the equality operator. Moreover, 
query processing heuristics cannot effectively optimize multi- 
relation commands containing ADT operators. Two classes of 
extensions to the ADT facility would overcome these drawbacks. 

The first extension would allow the user to control the sorting of 
tuples in indexed relations. INGRES currently sorts tuples in 



indexed relations into collating sequence. However, this ordering 
may or may not be useful. For example, consider a possible ADT 
called "timeOfDay" which stores precise time of day values using 
the following internal representation: 

hour - 2 byte integer 
minute - 2 byte integer 
second - 4 byte float 

Sorting these fields in collating sequence will not result in 
chronological order for events occurring within the same second, so 
a user-supplied sorting function is needed. 

More generally, it would be desirable to support the inclusion of 
new access methods appropriate for user-defined types. For 
example, in spatial applications, two-dimensional access methods 
such as KDB trees [ROBB 81] and bin structures may be reasonable. 

The second class of extensions concerns multi-relation query 
processing heuristics. For example, consider a new operator "'" 
which operates on a pair of complex numbers and returns true if one 
is the negative of the other. For example, (3,4i) is the negative 
of (-3,-4i). One could find all pairs of numbers in ComplexNums 
which are negatives of each other as follows: 

Range of C is ComplexNums 
Range of C2 is ComplexNums 
Retrieve into W (C.fieldl, C2.fieldl) where 

C.fieldl " C2.fieldl 

Two extensions are required to process multi-relation commands. 
First, one must make an estimate of the size of W. This is 
required for three-way joins in order to evaluate the cost of 
alternate processing orders. Current algorithms (e.g., [SELI 79]) 
have built-in functions to compute such sizes. One needs to call a 
user-defined function to obtain this information for ADT operators. 
A possible syntax would be to extend the DEFINE ADTOP command with 
an additional field: 

statistics is my-star 

where the function my-star could optionally be defined for any 
binary operator which had a boolean result type. When passed a 
constant, it would return the selectivity of the clause: 

... where C.field op constant 

Alternatively when passed nothing, it would return the selectivity 
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of the clause 

... where C1.fieldl op C2.fieldl 

The second required extension concerns merge-sort. It is always 
possible to process the above query by iterative substitution; it 
is sometimes possible to use merge-sort. To use merge-sort with 
the conventional equality operator, one must first sort each 
relation into collating sequence using the operator "<". For the 
operator "^" there is an ordering compatible with the merge-sort, 
and it is defined by the operator 

C1.fieldl << C2.fieldl iff 

abs (C1.realPart) abs (C2.realPart) 
< 

abs (C1.imagPart) abs (C2.imagPart) 

Here "abs" takes the magnitude of a floating point' number. The 
second extension to the DEFINE ADTOP command is an optional clause: 

merge-sort is << 

With this additional information, a heuristic optimizer can make an 
intelligent choice of plans. 

5.2 Hierarchies o f  ADTs 

It would be very useful to be able to specify that a data type 
inherit the characteristics of a previously defined data type 
[STON 82]. This capability would allow ADT-A to be defined as a 
subset of ADT-B, thereby inheriting all of ADT-B's operators. 
ADT-B would then be the "superset ADT" of ADT-A, and ADT-A would be 
one of the "subset ADTs" of ADT-B. For example, assume that ADT 
"dog" has been defined to be a subset of the ADT "mammal." An ADT 
operator such as "age-of", originally defined upon ADT "mammal", 
would then be applicable to values of type "dog." 

Hierarchies of ADTs would require INGRES to maintain another system 
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relation that stores subset-ADT/supersetrADT pairs. For example: 

Relation: ADT Hierarchies 

Superset-ADT 

Mammal 
Mammal 
Dog 

Subset-ADT 

Dog 
Cat 
Poodle 

This relation would be searched by the INGRES routines to type- 
check ADT operator expressions within queries. For example, if ADT 
operator-A has been defined on ADT-A, this operator may be applied 
to a value defined as an instance of ADT-B if and only if: 

I. ADT-A is identical to ADT-B, or 

2. ADT-B is in the transitive closure of SUBSET-OF ADT-A. 

User-written functions that implement ADT operators could be 
correctly applied to subset-ADT values because INGRES calls these 
functions with pointers to the operands. To insure that the 
function operates correctly on the subset ADT values, the first n 
bytes of all subset-ADT internal representations must have the same 
format as the superset's n-byte internal representation. For 
example, assume that ADT "mammal" possesses an n-byte internal 
representation, ADT "dog" possesses an n+m byte representation, and 
ADT operator "age-of" has been defined to return a mammal~s age 
given the mammal's n-byte internal representation. ADT operator 
"age-of" may be correctly applied to values of type "dog" if the 
first n bytes of types "dog" and "mammal" have the same format. 

6. CONCLUSIONS 

This paper has discussed the user-view, implementation, and 
performance of abstract data types within the relational database 
system INGRES. Our implementation allows a user to register 
abstract data types and abstract data type operators with the run- 
time database manager. Column values of a relation may be defined 
as instances of abstract data types, and ADT operators may be 
applied to these values. Some possible extensions were proposed to 
extend the power and performance of the INGRES ADT facility. 
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