
Reminiscences on Influential Papers

This issue’s contributors cover the impact of pay-
ing attention to the low-level implementation de-
tails, a paradigm shift in the way we approach stream
processing, and the value of combining theoreti-
cal analysis with experimental evaluation. Further-
more, one of our contributors, rather than picking
one paper, highlights the importance of putting the
time to practice reading, reviewing, and learning
from papers, not only from one’s own field of in-
terest but also from other fields. VLDB, similar
to some systems conferences, launched a Shadow
Program Committee for this purpose following the
VLDB 2026 (Vol 19) submission cycles1. We wish
to continue this e↵ort in the future VLDB cycles.
Enjoy reading!

While I will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pınar Tözün, editor
IT University of Copenhagen, Denmark
pito@itu.dk

Viktor Leis
Technical University of Munich
leis@in.tum.de

Stephen Tu, Wenting Zheng, Eddie Kohler, Bar-
bara Liskov, and Samuel Madden.

Speedy Transactions in Multicore In-Memory

Databases.

In Proceedings of the Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2013.

1https://vldb.org/2026/shadow-pc.html

In 2013, as I was starting my PhD, the database
community was in the middle of an in-memory DBMS
wave. Projects like H-Store [12], HANA [6], and
HyPer [7] were rethinking architecture for abun-
dant main memory and many-core processors. H-
Store championed a shared-nothing, partitioned de-
sign with single-threaded execution per partition –
a beautifully simple approach when workloads par-
tition cleanly. Silo [13] took a di↵erent path: a
shared-everything single-node system in which any
thread can access any data, a choice many consid-
ered ine�cient and unscalable at the time.

The paper presents an in-memory transactional
database optimized for modern multi-core CPUs.
Its organizing principle is to minimize coordination
among threads. Silo’s key contribution is an OCC-
based commit protocol that lets read-only transac-
tions avoid shared-memory writes, relying on ver-
sion checks rather than read latches for safety. Trans-
actions perform writes locally and synchronize only
at commit. To avoid deadlocks, Silo sorts the write
set and acquires locks in that order; conflicts simply
trigger aborts.

What stood out to me was the care in low-level
implementation. Each record carries a 64-bit TID
word that encodes the commit timestamp plus lock
/ status bits, enabling a thread to lock and update
a version in one atomic operation. Silo also ad-
dresses phantoms without heavy locking: leveraging
Masstree’s [9] node versioning, a transaction records
the nodes it scanned and, at commit, aborts if any
of those node versions changed – preventing range
anomalies while still avoiding next-key locks.

Silo scaled extraordinarily well on a 32-core ma-
chine, reaching 700K TPC-C transactions per sec-
ond – much higher throughput than prior reports
at the time. The experiments were unusually thor-
ough, including ablations that explain why it per-
forms well, and the open-source code allowed others
to learn from and build upon their implementation.

The paper strongly influenced my approach to

22 SIGMOD Record, September 2025 (Vol. 54, No. 3)



systems research. It taught me that co-designing
DBMS components often considered in isolation –
such as concurrency control, latching, and index-
ing – can yield dramatic performance gains. It also
showed me that on modern hardware, seemingly
small low-level implementation choices can have out-
sized performance implications.

Anja Gruenheid

Microsoft Gray Systems Lab, Switzerland

anja.gruenheid@microsoft.com

In this column, I do not want to single out one pa-
per but rather share a few experiences that helped
me grow as a researcher by reading classic, influen-
tial works as well as learning to engage with and
review ongoing research from others. During my
Ph.D., I was fortunate to be part of activities that
encouraged us to step outside our narrow focus and
explore ideas from di↵erent corners of systems re-
search. Looking back, those moments, reading pa-
pers from areas intersecting with databases, dis-
cussing them openly, and later practicing reviewing
in a low-stakes setting, taught me lessons no formal
course ever could. They showed me that many skills
we often take for granted as researchers, like forming
opinions about a paper and giving constructive feed-
back, do not simply emerge on their own. They need
space, practice, and above all, a mindset that values
understanding over judgment. As I started engag-
ing more with research beyond my immediate area,
I realized how much we can learn simply by look-
ing closely at work that is di↵erent from our own.
It is easy to assume that writing a paper equips
us to judge another, but in reality, the real benefit
of reading broadly is not about evaluation alone, it
is about perspective. Systems research is wonder-
fully diverse, as databases intersect with distributed
systems, networking, hardware, and now machine
learning. Every paper reflects choices shaped by
these contexts, and appreciating those choices re-
quires us to step outside our familiar ground. This
felt challenging early in my career as parts of a pa-
per would sometimes seem only partly within reach.
Over time, though, I came to see these moments not
as obstacles but as opportunities to expand my un-
derstanding of the field. That broader view, in turn,
makes both research and reviewing richer and more
thoughtful. These are not skills that appear auto-
matically, they develop through deliberate practice
and above all, a willingness to approach unfamiliar
ideas with curiosity.

That realization brings me to the experiences that
shape such habits of mind. Early in my Ph.D., I
had the good fortune to be part of an e↵ort that
explicitly allowed us students to learn from classic
research papers and sharpen our reviewing skills at
the same time. The professors in my group rec-
ognized that the ability to review well stems from
perspective, an understanding not only of technical
details but of the broader landscape and its his-
tory. To that end, they curated a list of about
twenty papers spanning databases, operating sys-
tems, networking, and distributed systems, works
that had left a lasting imprint on the field. I remem-
ber learning how statistics like histograms and sam-
pling play a vital role in query plan generation and
indexing strategies through the work of Chaudhuri
and colleagues, which provided fascinating insights
into how DBMS actually leverage these techniques.
I also encountered Lamport’s work on Paxos, a pa-
per whose ideas, to my surprise, I would see surface
in di↵erent guises again and again as a reviewer.
And then there were papers on topics such as mi-
crokernels, which I have not really crossed paths
with since, yet they opened my eyes to the rigor and
elegance of fundamental research in adjacent com-
munities. Despite several attempts, I have not been
able to locate the original list. In hindsight, though,
the specific papers mattered less than the way we
engaged with them. For each paper, we organized
a discussion session. A graduate student, chosen at
random, would present the work, explain its contri-
butions, and lead the conversation. We would ask
what problem the paper was trying to solve, why
that problem mattered in its original context, what
conceptual leap the authors had made, and to what
extent their ideas influenced the systems that came
after. The element of randomness was important,
as it meant that any of us could be the presenter
for any given paper, which in turn meant that all
of us needed to come well prepared. Skimming was
not an option. At the time, this felt demanding.
After all, each of us had our own work, deadlines to
chase, and code to debug. Spending hours poring
over a decades-old paper on distributed operating
systems when your own work was on data integra-
tion might seem like an indulgence. But this was no
indulgence, it was, in retrospect, a gift. Those ses-
sions pushed us beyond the confines of our chosen
topics. They taught us intellectual humility and
curiosity, a desire to appreciate the reasoning be-
hind design decisions, algorithmic choices, and ex-
periments crafted under very di↵erent assumptions
about hardware and software than those that dom-
inate today.

SIGMOD Record, September 2025 (Vol. 54, No. 3) 23



Looking back, I see several reasons why this ex-
perience mattered so much. It instilled habits of
critical thought, yes, but also modeled a tone for
that critique, one that aimed to understand rather
than dismiss. And perhaps without our noticing at
the time, it established a standard for clarity, as we
began to see that the most influential papers were
often those that told their story with simplicity and
precision even when the underlying idea was subtle
or complex. Above all, it showed us a truth that ex-
tends beyond any one field, that breadth is not the
enemy of depth but its complement, and that the
discipline of engaging seriously with ideas outside
one’s immediate path strengthens one’s ability to
make meaningful contributions within it. Of course,
not every group can replicate this exact format, and
not every advisor has the time to lead such sessions
regularly. But if we agree that good reviewing mat-
ters and by extension, that the quality of dialogue
in our conferences and journals matters, then we as
a community must think creatively about how to
o↵er similar opportunities. The responsibility does
not rest with advisors alone. We all have a shared
stake in this process because the benefits ripple out-
ward, strong reviewers make for stronger feedback,
which makes for stronger papers, which makes for
a stronger field. Finding practical ways to create
such learning experiences is not always straightfor-
ward but it is possible.

One mechanism I have come to value deeply in
recent years is the shadow program committee. For
those unfamiliar, a shadow PC runs in parallel with
the o�cial review process of a conference. Its mem-
bers read and review the same papers, often fol-
lowing the same guidelines, and later compare their
assessments with the real decisions. When I was a
student, I joined a EuroSys shadow PC and found
the experience transformative. Until then, I had
thought of reviewing as a mostly solitary act, you
read, you form an opinion, you write it down. What
I saw instead was the collective e↵ort that under-
lies every acceptance and rejection. I saw reviewers
with di↵erent backgrounds weigh novelty in di↵er-
ent ways. I saw discussions wrestle with incomplete
evaluations, ambiguous claims, or competing intu-
itions about practicality versus elegance. And I saw
how much thought goes into o↵ering feedback that
is both candid and constructive. In addition to Eu-
roSys, we also organized an internal shadow PC in
our group for SoCC papers to practice good review-
ing practices, and that too left an enduring impres-
sion. Together, these experiences made me not only
a better reviewer but also a better author. Under-
standing the questions reviewers routinely ask, such

as What gap does this work fill? What prior work
does it build upon or overlook? How do the exper-
iments support the claims? helped me anticipate
and address them in my own submissions. Shadow
PCs o↵er a rare opportunity, they involve students
in real decisions without real stakes and demystify
a process that can otherwise feel opaque. In doing
so, they reinforce a message we should all embrace,
reviewing is a craft, and like any craft, it can be
taught, practiced, and improved.

What stayed with me most from those early exer-
cises was not just the specific ideas in any single pa-
per but the habit of grappling with work outside my
immediate comfort zone. Reading and truly trying
to understand papers that fell well beyond the of-
tentimes narrow boundaries of my research opened
my eyes to the sheer diversity of questions and ap-
proaches that systems research embraces. It taught
me that there is no single mold for what constitutes
important or elegant work, di↵erent subfields prize
di↵erent virtues, and appreciating those di↵erences
deepens both our perspective as researchers and our
fairness as reviewers.

Paris Carbone

KTH Royal Institute of Technology & RISE Re-
search Institutes of Sweden, Sweden

parisc@kth.se

Tyler Akidau, Robert Bradshaw, Craig Cham-
bers, Slava Chernyak, Rafael J. Fernández-Moctezuma,
Reuven Lax, Sam McVeety, Daniel Mills, Frances
Perry, Eric Schmidt, and Sam Whittle.

The Dataflow Model: A Practical Approach

to Balancing Correctness, Latency, and Cost

in Massive-Scale, Unbounded, Out-of-Order

Data Processing.

In Proceedings of the VLDB Endowment, 2015.

In the summer of 2015, beneath the tropical skies
of the Kohala Coast, the conference room at Hilton
Waikoloa Village was packed with anticipation. There,
Tyler Akidau and fellow engineers took the stage,
unveiling Google’s ambitious quest to harmonize the
realms of batch and streaming. VLDB 2015 was
my very first exposure to the data management
community as a fresh graduate student. Among a
packed schedule that summer, three sessions stood
out: Michael Stonebraker’s journey at his turing
award seminar, Peter Bailis’ inspiring talk of co-
ordination avoidance, and most captivating of all,

24 SIGMOD Record, September 2025 (Vol. 54, No. 3)



Google’s kaleidoscopic presentation 2 of “The Data-
flow Model” [2]. This column reflects on why the
latter mattered so much then and why, even after
ten years, it continues to shape our thinking.

What Tyler and colleagues called for, was a much-
needed paradigm shift: streaming should subsume

batch. Their model reads more like a manifesto for
out-of-order processing; every element is stamped
with its event-time, and windowing can be applied
uniformly across both bounded and unbounded in-
puts. A bounded dataset is thus treated as a special
case of an unbounded one. Dataflow discourages the
runtime-specific terms “streaming” and “batch” in
favor of the more precise“unbounded”and“bounded”
datasets. The model evolved from two existing Google
systems: FlumeJava [4] and MillWheel [1]: their
lower-abstraction level dataflow runtime. Dataflow
featured a somewhat overly lean unified program-
ming abstraction based on two primitives: ParDo
for parallel processing functions and GroupByKey
for keyed grouping. These behave identically in
both batch and streaming settings. The subsequent
release of Apache Beam as the open source incar-
nation of Dataflow reinforced the sense that this
was the product of a determined engineering team
rather than a traditional industrial research group.

When the first bold statements by Tyler hit the
stage the reactions were polarized. One could tell
that from the diverse facial expressions of the au-
dience. The Q&A session confirmed some of my
own initial concerns. To some, naming the model
“Dataflow” felt like appropriation. Dataflows in-
deed have a long history. Others highlighted that
the model was restrictive and o↵ered nothing fun-
damentally new. From a purist point of view the
dataflow model deliberately ignored a wide set of
complex data stream window types researchers have
been building towards for decades. Yet, to younger
me the simplicity was a revelation. I had just spent
my first PhD year wrestling with ad-hoc window se-
mantics, experimenting with every imaginable com-
bination of complex windows. Google’s model ex-
plicitly limited this proliferation: fixed, sliding and
session windows were the canonical choices. Be-
sides, “time” was the only dimension that mattered
for correctness, beautifully captured using water-
marks, triggers and accumulation modes. Person-
ally, I remember feeling equal parts relieved and ir-
ritated: relieved to see a coherent framework for

2The introductory slide deck for Google Dataflow is of-
ten remembered as a communication marvel in its own
right: dark-mode, flashy, with precise animations that
built up complex data processing ideas in a simple, un-
derstandable, and slightly “trippy” way.

reasoning about time and correctness, and mildly
irritated that much of the prior work on richer win-
dow types seemed destined to take a back seat.

Where the Dataflow model positioned itself was
at the intersection of long-standing database theo-
ries and the pragmatic demands of cloud-scale ap-
plications. It was not a matter of industry ver-
sus research, but of industry distilling a favored set
of research ideas into products that would endure.
Much of the “Dataflow Model” drew on the influen-
tial contributions of David Mayer et al. [8] in stream
processing. The model also built on the sophisti-
cated MillWheel/Dataflow runtime [1], which deliv-
ered unprecedented performance for transactional,
stateful streaming workloads. This combination left
little room for competition; convergence, it seemed,
was inevitable and just over the horizon.

How these ideas reshaped systems and research
became evident in the evolution of Apache Flink,
Kafka Streams, Spark Streaming, and their peers.
Several experimental Flink window types that fel-
low committers and I had added only months earlier
had to be rewritten or removed to conform to the
deterministic semantics championed by Dataflow.
In retrospect, this process resembled what Schum-
peter described as creative destruction in “Capital-
ism, Socialism and Democracy” [11]; tearing down
existing designs was painful at the time, yet it cleared
the way for a stronger and more coherent founda-
tion for stream processing. The shift spread through
research and industry like a major wave of innova-
tion: Ververica (then Data Artisans) launched its
“out-of-order” alignment mission, and shortly after
Databricks and Confluent adopted similar princi-
ples in Structured Streaming and Kafka Streams re-
spectively. Within just a year, the community’s vo-
cabulary and expectations had converged on event
time, watermarks, and bounded versus unbounded
data as the universal frame of reference. This was
a truly impressive impact feat on its own. Apache
Flink emerged as a popular runner of Apache Beam,
Google’s open incarnation of the Dataflow model,
and this alignment greatly accelerated its industry
adoption. At the same time, because the Dataflow
model did not prescribe how a runtime should op-
erate internally, much of the foundational work we
had done on Flink, such as state checkpointing, re-
mained not only relevant but essential, and contin-
ues to be so today [3, 10].

A decade later, the waters remain calm, perhaps
too calm. No shift since has reshaped cloud data
processing as profoundly as the Dataflow model. As
for the runtimes, disaggregated state is now making
a comeback with Flink 2.0 [10], an architecture el-

SIGMOD Record, September 2025 (Vol. 54, No. 3) 25



ement already present in the very first version of
Millwheel.

Eleni Tzirita Zacharatou
Hasso Plattner Institute & University of Pots-

dam, Germany
eleni.tziritazacharatou@hpi.de

Chee-Yong Chan and Yannis E. Ioannidis.
Bitmap Index Design and Evaluation.

In Proceedings of the International Conference on
Management of Data (SIGMOD), 1998.

I first encountered this paper [5] in 2013 dur-
ing the exploratory phase of my PhD, when I was
searching for a research direction as a newcomer
to the database field. Although I ultimately did
not work much in the area of bitmap indexing, this
study of bitmap indexes left a lasting impression
during those formative first months of my PhD jour-
ney as I began to understand the landscape of data-
base research. Beyond its significant technical con-
tributions, Chan and Ioannidis’s paper served as a
model for how I approach problems, structure my
research methodology, and communicate my find-
ings. Essentially, their work was instrumental in
shaping my understanding of what constitutes high-
quality database research.

In today’s research taxonomy, Chan and Ioanni-
dis’s paper would be classified as an Experiments
and Analysis (E&A) study, but one that goes well
beyond conventional experimental evaluation by in-
corporating both analytical modeling and novel al-
gorithmic contributions. The work presents a com-
prehensive framework for understanding the design
space of bitmap indexes, systematically investigat-
ing key design dimensions including attribute value
decomposition and encoding approaches, selection
query algorithms, and compression and caching tech-
niques. Their analysis identified four critical points
in the space-time tradeo↵ curve – ranging from space-
optimal to time-optimal configurations – and pro-
vided what they described as “a first set of guide-
lines for physical database design using bitmap in-
dexes.” In subsequent years, bitmap indexes be-
came widely adopted in commercial systems like Or-
acle for data warehousing, were a core component
in early column stores, and powered specialized li-
braries such as FastBit.

What stood out to me was the paper’s e↵ective
combination of theoretical analysis and practical
evaluation. This inspired me early in my research

career to always strive for principled analysis along-
side thorough experimental validation. But more
fundamentally, this paper taught me an important
research philosophy: the value of taking a step back
before moving forward. Chan and Ioannidis demon-
strated that truly understanding the current land-
scape, identifying existing trade-o↵s, and systemat-
ically mapping the design space are essential tools
for guiding innovation. The elegance of their frame-
work lies not just in organizing existing knowledge,
but in articulating the underlying design principles
in a way that reveals previously unconsidered alter-
natives.

Perhaps most profoundly, the paper illustrated
the power of abstraction and decomposition in re-
search. By breaking bitmap indexing into its funda-
mental elements, the authors enabled new composi-
tions and revealed hidden trade-o↵s. This taught
me that understanding complex systems requires
first decoupling their components, and that this de-
coupling process itself often illuminates the path
forward.

The combination of theoretical analysis and prac-
tical evaluation in the paper is evident not only in
its content but also in its structure. Rather than
grouping all experiments in a separate section, as
is standard practice today, Chan and Ioannidis in-
terleave experimental validation with analytical in-
sights throughout the paper. This structure creates
a more coherent reading experience, as each theoret-
ical result is immediately supported by relevant ex-
perimental evidence, allowing readers to follow the
argument without having to switch between di↵er-
ent sections.

In conclusion, I believe this paper demonstrates
that a careful analysis of trade-o↵s in physical data-
base design is essential to database research. For
anyone looking to understand bitmap indexing, or
more importantly, to learn how to conduct a sys-
tematic design space exploration, this paper is an
excellent guide.

REFERENCES
[1] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu,

Slava Chernyak, Josh Haberman, Reuven Lax,
Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. MillWheel: Fault-Tolerant
Stream Processing at Internet Scale. Proc.
VLDB Endow., 6(11):1033–1044, August
2013.

[2] Tyler Akidau, Robert Bradshaw, Craig
Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam
McVeety, Daniel Mills, Frances Perry, Eric

26 SIGMOD Record, September 2025 (Vol. 54, No. 3)



Schmidt, and Sam Whittle. The Dataflow
Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in
Massive-Scale, Unbounded, Out-of-Order
Data Processing. Proc. VLDB Endow.,
8(12):1792–1803, August 2015.

[3] Paris Carbone, Stephan Ewen, Gyula Fóra,
Seif Haridi, Stefan Richter, and Kostas
Tzoumas. State Management in Apache
Flink®: Consistent Stateful Distributed
Stream Processing. Proc. VLDB Endow.,
10(12):1718–1729, August 2017.

[4] Craig Chambers, Ashish Raniwala, Frances
Perry, Stephen Adams, Robert R. Henry,
Robert Bradshaw, and Nathan Weizenbaum.
FlumeJava: Easy, E�cient Data-Parallel
Pipelines. In Proceedings of the 31st ACM

SIGPLAN Conference on Programming

Language Design and Implementation, PLDI
’10, page 363–375, New York, NY, USA, 2010.
Association for Computing Machinery.

[5] Chee-Yong Chan and Yannis E. Ioannidis.
Bitmap Index Design and Evaluation. In
Proceedings of the 1998 ACM SIGMOD

International Conference on Management of

Data, SIGMOD ’98, page 355–366, New York,
NY, USA, 1998. Association for Computing
Machinery.

[6] Franz Färber, Sang Kyun Cha, Jürgen
Primsch, Christof Bornhövd, Stefan Sigg, and
Wolfgang Lehner. SAP HANA Database:
Data Management for Modern Business
Applications. SIGMOD Rec., 40(4):45–51,
January 2012.

[7] Alfons Kemper and Thomas Neumann.
HyPer: A Hybrid OLTP&OLAP Main
Memory Database System Based on Virtual
Memory Snapshots. In Proceedings of the

2011 IEEE 27th International Conference on

Data Engineering, ICDE ’11, page 195–206,
USA, 2011. IEEE Computer Society.

[8] Jin Li, Kristin Tufte, Vladislav Shkapenyuk,
Vassilis Papadimos, Theodore Johnson, and
David Maier. Out-of-Order Processing: A
New Architecture for High-Performance
Stream Systems. Proc. VLDB Endow.,
1(1):274–288, August 2008.

[9] Yandong Mao, Eddie Kohler, and
Robert Tappan Morris. Cache Craftiness for
Fast Multicore Key-Value Storage. In
Proceedings of the 7th ACM European

Conference on Computer Systems, EuroSys
’12, page 183–196, New York, NY, USA, 2012.
Association for Computing Machinery.

[10] Yuan Mei, Rui Xia, Zhaoqian Lan, Kaitian
Hu, Lei Huang, Paris Carbone, Yanfei Lei,
Vasiliki Kalavri, Han Yin, and Feng Wang.
Disaggregated State Management in Apache
Flink® 2.0. Proc. VLDB Endow.,
18(12):4846–4859, September 2025.

[11] Joseph A. Schumpeter. Capitalism, Socialism

and Democracy. Routledge: London, UK,
1976.

[12] Michael Stonebraker, Samuel Madden,
Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The End of an
Architectural Era: (It’s Time for a Complete
Rewrite). In Proceedings of the 33rd

International Conference on Very Large Data

Bases, VLDB ’07, page 1150–1160. VLDB
Endowment, 2007.

[13] Stephen Tu, Wenting Zheng, Eddie Kohler,
Barbara Liskov, and Samuel Madden. Speedy
Transactions in Multicore In-Memory
Databases. In Proceedings of the

Twenty-Fourth ACM Symposium on

Operating Systems Principles, SOSP ’13, page
18–32, New York, NY, USA, 2013.
Association for Computing Machinery.

SIGMOD Record, September 2025 (Vol. 54, No. 3) 27


