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Michael	Stonebraker	and	Lawrence	Rowe	(2015);	Martin	Kersten	(2016);	Richard	Hipp	(2017);		
Jeff	 Hammerbacher,	 Ashish	 Thusoo,	 Joydeep	 Sen	 Sarma;	 Christopher	 Olston,	 Benjamin	 Reed,	 and	 Utkarsh	
Srivastava	(2018);	Xiaofeng	Bao,	Charlie	Bell,	Murali	Brahmadesam,	James	Corey,	Neal	Fachan,	Raju	Gulabani,	
Anurag	Gupta,	Kamal	Gupta,	 James	Hamilton,	Andy	 Jassy,	Tengiz	Kharatishvili,	 Sailesh	Krishnamurthy,	Yan	
Leshinsky,	 Lon	 Lundgren,	 Pradeep	Madhavarapu,	 Sandor	Maurice,	 Grant	McAlister,	 Sam	McKelvie,	 Raman	
Mittal,	Debanjan	 Saha,	 Swami	 Sivasubramanian,	 Stefano	 Stefani,	 and	Alex	Verbitski	 (2019);	Don	Anderson,	
Keith	 Bostic,	 Alan	 Bram,	 Grg	 Burd,	Michael	 Cahill,	 Ron	 Cohen,	 Alex	 Gorrod,	 George	 Feinberg,	Mark	Hayes,	
Charles	 Lamb,	 Linda	Lee,	 Susan	LoVerso,	 John	Merrells,	Mike	Olson,	 Carol	 Sandstrom,	 Steve	 Sarette,	David	
Schacter,	David	Segleau,	Mario	Seltzer,	and	Mike	Ubell	(2020);	Michael	Blanton,	Adam	Bolton,	Bill	Boroski,	Joel	
Brownstein,	Robert	Brunner,	Tamas	Budavari,	Sam	Carliles,	Jim	Gray,	Steve	Kent,	Peter	Kunszt,	Gerard	Lemson,	
Nolan	Li,	Dmitry	Medvedev,	 Jeff	Munn,	Deoyani	Nandrekar-Heinis,	Maria	Nieto-Santisteban,	Wil	O’Mullane,	
Victor	Paul,	Don	Slutz,	Alex	Szalay,	Gyula	Szokoly,	Manu	Taghizadeh-Popp,	Jordan	Raddick,	Bonnie	Souter,	Ani	
Thakar,	Jan	Vandenberg,	Benjamin	Alan	Weaver,	Anne-Marie	Weijmans,	Sue	Werner,	Brian	Yanny,	Donald	York,	
and	the	SDSS	collaboration	(2021);	Michael	Armbrust,	Tathagata	Das,	Ankur	Dave,	Wenchen	Fan,	Michael	J.	
Franklin,	 Huaxin	 Gao,	Maxim	Gekk,	 Ali	 Ghodsi,	 Joseph	 Gonzalez,	 Liang-Chi	 Hsieh,	 Dongjoon	Hyun,	 Hyukjin	
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Ion	Stoica,	Takuya	Ueshin,	Shivaram	Venkataraman,	Gengliang	Wang,	Yuming	Wang,	Patrick	Wendell,	Reynold	
Xin,	Takeshi	Yamamuro,	Kent	Yao,	Matei	Zaharia,	Ruifeng	Zheng,	and	Shixiong	Zhu	(2022);	Aljoscha	Krettek,	
Andrey	 Zagrebin,	 Anton	 Kalashnikov,	 Arvid	 Heise,	 Asterios	 Katsifodimos,	 Jiangji	 (Becket)	 Qin,	 Benchao	 Li,	
Bowen	Li,	Caizhi	Weng,	ChengXiang	Li,	Chesnay	Schepler,	Chiwan	Park,	Congxian	Qiu,	Daniel	Warneke,	Danny	
Cranmer,	 David	 Anderson,	 David	 Morávek,	 Dawid	 Wysakowicz,	 Dian	 Fu,	 Dong	 Lin,	 Eron	 Wright,	 Etienne	
Chauchot,	Fabian	Hueske,	Fabian	Paul,	Feng	Wang,	Gabor	Somogyi,	Gary	Yao,	Godfrey	He,	Greg	Hogan,	Guowei	
Ma,	 Gyula	 Fora,	 Haohui	Mai,	 Henry	 Saputra,	 Hequn	 Cheng,	 Igal	 Shilman,	 Ingo	 Bürk,	 Jamie	 Grier,	 Jark	Wu,	
Jincheng	 Sun,	 Jing	 Ge,	 Jing	 Zhang,	 Jingsong	 Lee,	 Junhan	 Yang,	 Konstantin	 Knauf,	 Kostas	 Kloudas,	 Kostas	
Tzoumas,	Kete	(Kurt)	Young,	Leonard	Xu,	Lijie	Wang,	Lincoln	Lee,	Lungu	Andra,	Martijn	Visser,	Marton	Balassi,	
Matthias	 J.	Sax,	Matthias	Pohl,	Matyas	Orhidi,	Maximilian	Michels,	Nico	Kruber,	Niels	Basjes,	Paris	Carbone,	
Piotr	Nowojski,	Qingsheng	Ren,	Robert	Metzger,	Roman	Khachatryan,	Rong	Rong,	Rui	Fan,	Rui	Li,	Sebastian	
Schelter,	Seif	Haridi,	Sergey	Nuyanzin,	Seth	Wiesman,	Shaoxuan	Wang,	Shengkai	Fang,	Shuyi	Chen,	Sihua	Zhou,	
Stefan	 Richter,	 Stephan	 Ewen,	 Theodore	 Vasiloudis,	 Thomas	Weise,	 Till	 Rohrmann,	 Timo	Walther,	 Tzu-Li	
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(Gordon)	Tai,	Ufuk	Celebi,	Vasiliki	Kalavri,	Volker	Markl,	Wei	Zhong,	Weijie	Guo,	Xiaogang	Shi,	Xiaowei	Jiang,	
Xingbo	Huang,	Xingcan	Cui,	Xintong	Song,	Yang	Wang,	Yangze	Guo,	Yingjie	Cao,	Yu	Li,	Yuan	Mei,	Yun	Gao,	Yun	
Tang,	Yuxia	Luo,	Zhijiang	Wang,	Zhipeng	Zhang,	Zhu	Zhu,	Zili	Chen	(2023);	Zhaojing	Luo,	Beng	Chin	Ooi,	Wei	
Wang,	Meihui	Zhang,	Qingchao	Cai,	Shaofeng	Cai,	Gang	Chen,	Tien	Tuan	Anh	Dinh,	Jinyang	Gao,	Qian	Lin,	Shicong	
Lin,	Kee	Yuan	Ngiam,	Gene	Yan	Ooi,	Moaz	Reyad,	Kian-Lee	Tan,	Anthony	K.	H.	Tung,	Sheng	Wang,	Yuncheng	Wu,	
Zhongle	Xie,	Naili	Xing,	Rulin	Xing,	Wanqi	Xue,	Sai	Ho	Yeung,	James	Yip,	Lingze	Zeng,	Zhaoqi	Zhang,	Kaiping	
Zheng,	Lei	Zhu,	Ji	Wang	(2024);	 	James	C.	Corbett,	 Jeffrey	Dean,	Michael	Epstein,	Andrew	Fikes,	Christopher	
Frost,	 Sanjay	 Ghemawat,	 Andrey	 Gubarev,	 Christopher	 Heiser,	 Peter	 Hochschild,	 Wilson	 Hsieh,	 Sebastian	
Kanthak,	Alexander	Lloyd,	Sergey	Melnik,	David	Mwaura,	Sean	Quinlan,	Lindsay	Rolig,	Yasushi	Saito,	Michal	
Szymaniak,	Christopher	Taylor,	Ruth	Wang,	Dale	Woodford,	David	F.	Bacon,	Shannon	Bales,	Nico	Bruno,	Brian	
F.	Cooper,	Adam	Dickinson,	Campbell	Fraser,	Milind	Joshi,	Eugene	Kogan,	Rajesh	Rao,	David	Shue,	Marcel	van	
der	Holst,	Cliff	Frey,	Damian	Reeves,	Steve	Middlekauff,	Mert	Akdere,	Ben	Vandiver,	Dan	Glick,	David	Ziegler,	
Alex	Khesin,	Dave	Weissman,	Todd	Lipcon,	Sean	Dorward,	Eric	Veach	(2025).	
	
SIGMOD	Contributions	Award		
For	 significant	 contributions	 to	 the	 field	 of	 database	 systems	 through	 research	 funding,	 education,	 and	
professional	services.	Recipients	of	the	award	are	the	following:		

Maria	Zemankova	(1992)	 	 	 Gio	Wiederhold	(1995)	 	 	 Yahiko	Kambayashi	(1995)		
Jeffrey	Ullman	(1996)	 	 	 Avi	Silberschatz	(1997)	 	 	 Won	Kim	(1998)		
Raghu	Ramakrishnan	(1999)	 	 Michael	Carey	(2000)	 	 	 Laura	Haas	(2000)		
Daniel	Rosenkrantz	(2001)	 	 Richard	Snodgrass	(2002)		 	 Michael	Ley	(2003)		
Surajit	Chaudhuri	(2004)			 	 Hongjun	Lu	(2005)		 	 	 Tamer	Özsu	(2006)		
Hans-Jörg	Schek	(2007)	 	 	 Klaus	R.	Dittrich	(2008)	 												 	 Beng	Chin	Ooi	(2009)		
David	Lomet	(2010)																											 Gerhard	Weikum	(2011)	 	 	 Marianne	Winslett	(2012)	
H.V.	Jagadish	(2013)	 	 	 Kyu-Young	Whang	(2014)		 	 Curtis	Dyreson	(2015)	
Samuel	Madden	(2016)	 	 	 Yannis	E.	Ioannidis	(2017)	 	 Z.	Meral	Özsoyoğlu	(2018)	
Ahmed	Elmagarmid	(2019)																							Philipe	Bonnet	(2020)		 	 	 Juliana	Freire	(2020)	
Stratos	Idreos	(2020)	 	 	 Stefan	Manegold	(2020)		 	 	 Ioana	Manolescu	(2020)	
Dennis	Shasha	(2020)	 	 	 Divesh	Srivastava	(2021)	 	 	 Christian	S.	Jensen	(2022)	
K.	Selcuk	Candan	(2023)	 	 	 Sihem	Amer-Yahia	(2024)		 	 	
Hector	Munoz-Avila	&	Sylvia	Spengler	(2025)	
		
SIGMOD	Jim	Gray	Doctoral	Dissertation	Award		
SIGMOD	has	established	the	annual	SIGMOD	Jim	Gray	Doctoral	Dissertation	Award	to	recognize	excellent	
research	by	doctoral	candidates	in	the	database	field.		Recipients	of	the	award	are	the	following:		

§ 2006	Winner:	Gerome	Miklau.	Honorable	Mentions:	Marcelo	Arenas	and	Yanlei	Diao	
§ 2007	Winner:	Boon	Thau	Loo.	Honorable	Mentions:	Xifeng	Yan	and	Martin	Theobald	
§ 2008	Winner:	Ariel	Fuxman.	Honorable	Mentions:	Cong	Yu	and	Nilesh	Dalvi	
§ 2009	Winner:	Daniel	Abadi.		Honorable	Mentions:	Bee-Chung	Chen	and	Ashwin	Machanavajjhala	
§ 2010	Winner:	Christopher	Ré.	Honorable	Mentions:	Soumyadeb	Mitra	and	Fabian	Suchanek	
§ 2011	Winner:	Stratos	Idreos.	Honorable	Mentions:	Todd	Green	and	Karl	Schnaitterz	
§ 2012	Winner:	Ryan	Johnson.	Honorable	Mention:	Bogdan	Alexe	
§ 2013	Winner:	Sudipto	Das,	Honorable	Mention:	Herodotos	Herodotou	and	Wenchao	Zhou	
§ 2014	Winners:	Aditya	Parameswaran	and	Andy	Pavlo.	
§ 2015	Winner:	Alexander	Thomson.	Honorable	Mentions:	Marina	Drosou	and	Karthik	Ramachandra	
§ 2016	Winner:	Paris	Koutris.	Honorable	Mentions:	Pinar	Tozun	and	Alvin	Cheung	
§ 2017	Winner:	Peter	Bailis.	Honorable	Mention:	Immanuel	Trummer	
§ 2018	Winner:	Viktor	Leis.	Honorable	Mention:	Luis	Galárraga	and	Yongjoo	Park	
§ 2019	Winner:	Joy	Arulraj.	Honorable	Mention:	Bas	Ketsman		
§ 2020	Winner:	Jose	Faleiro.	Honorable	Mention:	Silu	Huang	
§ 2021	Winner:	Huanchen	Zhang,	Honorable	Mentions:	Erfan	Zamanian,	Maximilian	Schleich,	and	Natacha	

Crooks	
§ 2022	Winner:	Chenggang	Wu,	Honorable	Mentions:	Pingcheng	Ruan	and	Kexin	Rong	
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§ 2023	Winner:	Supun	Nakandala,	Honorable	Mentions:	Benjamin	Hilprecht	and	Zongheng	Yang	
§ 2024	Winner:	Daniel	Kang,	Honorable	Mentions:	Wei	Dong,	Jialin	Ding,	and	Yisu	Remy	Wang	

A	complete	list	of	all	SIGMOD	Awards	is	available	at:	https://sigmod.org/sigmod-awards/		

[Last	updated:	June	1,	2025]	
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 Editor’s Notes 
	

Welcome	to	the	June	2025	issue	of	the	ACM	SIGMOD	Record!		

This	issue	starts	with	the	Database	Principles	column	presenting	an	article	by	Atserias	and	Kolaitis	
on	the	topic	of	consistency	of	database	relations.	The	authors	consider	two	types	of	consistency:	lo-
cal	consistency,	in	which	each	pair	of	relations	in	the	given	collection	of	relations	agrees	on	the	val-
ues	of	their	shared	attributes,	and	global	consistency,	in	which	there	exists	a	single	“universal”	rela-
tion	such	that	all	the	relations	in	the	given	collection	are	its	projections.	Such	a	relation	is	referred	
to	as	a	consistency	witness	for	the	relation	collection.	The	article	is	the	first	to	study	in	depth	the	no-
tion	of	consistency	witnesses	for	relations.	The	framework	of	annotated	relations	and	the	results	
presented	by	the	authors	cover	(among	other	cases)	both	standard	relational	databases	and	bag	da-
tabases,	which	makes	the	article	relevant	to	both	theory	and	practice	of	relational	databases.		

In	the	Vision	column,	a	contribution	by	Mohammed	and	colleagues	puts	forward	the	goal	of	devel-
oping	effective	and	efficient	assessment	procedures	for	each	data-quality	dimension	in	the	context	
of	a	given	data	set	and	use	case.	Toward	achieving	this	vision,	they	propose	a	new	perspective	on	
data-quality	research,	which	isolates	and	studies	facets	responsible	for	appropriate	assessment	
procedures	across	data-quality	dimensions.	This	perspective	brings	to	life	a	cross-community	
agenda	aiming	at	integrating	technologies	for	data-quality	assessment	through	the	lens	of	these	fac-
ets.	While	the	article	focuses	on	structured	data,	the	authors	posit	that	their	vision	can	also	be	ex-
tended	to	semi-structured	and	unstructured	data.		

The	Surveys	column	features	an	article	by	Khan	and	colleagues	that	provides	an	overview	of	syner-
gies	between	graph	data	management	and	graph	machine	learning.	The	article	focuses	both	on	how	
graph	data	management	enhances	graph	machine	learning,	as	well	as	on	how	graph	machine	learn-
ing	aids	in	graph	data	management,	with	a	focus	on	applications	such	as	query	answering	over	
knowledge	graphs	and	data-science	tasks.	The	authors	discuss	open	problems	and	delineate	im-
portant	directions	for	research	in	this	space.		

The	Reminiscences	on	Influential	Papers	column,	edited	by	Pınar	Tözün,	presents	contributions	by	
Zoi	Kaoudi,	Fatemeh	Nargesian,	and	Niv	Dayan.		
	
The	Advice	to	Mid-Career	Researchers	column	presents	a	contribution	by	Sihem	Amer-Yahia,	who	
shares	her	thoughts	and	experiences	on	a	number	of	issues,	including	mid-career	choices	and	respon-
sibilities,	learning	from	senior	and	junior	colleagues,	rethinking	time	management,	working	on	and	
moving	on	from	relationships,	learning	from	your	failures,	and	understanding	the	meaning	of	your	
success.	The	article	provides	advice	on	many	aspects	of	the	mid-career	stage	of	life,	and	points	out	
rewards	of	the	journey	in	your	best	job	in	the	world.			
	
The	DBrainstorming	column,	whose	goal	is	to	discuss	new	and	potentially	controversial	ideas	that	
might	be	of	interest	and	benefit	to	the	research	community,	features	an	article	by	Ana	Klimovic	that	
considers	challenges	and	opportunities	in	programming	cloud-native	applications.	The	article	points	
out	that	today’s	cloud-programming	model	captures	little	about	the	resource	requirements	and	data-
access	patterns	of	individual	applications.	This,	in	turn,	gives	rise	to	a	major	optimization	obstacle	in	
this	space.	The	author	calls	for	rethinking	the	cloud-programming	model	by	adopting	a	new	paradigm	
in	which	users	could	develop	applications	that	explicitly	separate	pure-compute	functions	with	I/O	
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functions,	and	talks	about	the	current	exploration	of	these	ideas	in	a	new	Dandelion	serverless	plat-
form.		
	
The	Distinguished	Profiles	column	features	an	interview	with	Themis	Palpanas,	Distinguished	Pro-
fessor	of	Computer	Science	at	Université	Paris	Cité,	Senior	Fellow	of	the	French	University	Institute	
(IUF),	Head	of	the	Computer	Science	Department	at	the	Université	Paris	Cité,	and	Director	of	the	Data	
Intelligence	Institute	of	Paris	(diiP).	In	the	interview,	Themis	discusses	interactions	between	time	
series	and	data	management,	comparative	advantages	of	LLMs	and	alternative	technologies	in	ad-
dressing	research	problems,	and	his	work	on	entity	recognition	and	data	integration.	He	also	shares	
his	perspective	on	collaborations,	setting	up	and	managing	the	DiiP	institute,	and	on	working	with	
students.	 	 In	 the	 context	of	his	 life	experience,	Themis	 talks	about	his	experiences	 in	 the	various	
places	he	has	been	to,	his	photography	and	snowboarding	hobbies,	and	foodie	secrets	from	Paris.	
	
The	Reports	column	features	two	contributions.	The	first	article,	by	Khan	and	colleagues,	presents	
outcomes	of	the	LLM+KG	workshop	that	was	co-located	with	VLDB	2024	in	Guangzhou,	China.	The	
workshop	focused	on	data-management	challenges	and	opportunities	arising	from	effective	interac-
tions	between	LLMs	and	knowledge	graphs.	The	report	outlines	perspectives	and	approaches	pre-
sented	by	speakers	during	the	workshop.		
	
The	second	contribution,	by	Bikakis	and	colleagues,	reports	on	the	results	of	responses	by	experts	in	
the	field	to	the	survey	conducted	by	the	organizing	committee	of	the	International	Workshop	on	Big	
Data	Visual	Exploration	and	Analytics	(BigVis)	held	in	2024.	The	prespectives	gained	from	the	survey	
responses	shed	light	on	challenges,	emerging	topics,	and	opportunities	stemming	from	human-data	
interaction	and	visual	analytics	in	the	AI	era.		
 
The	issue	closes	with	an	Open	Forum	column,	which	presents	an	article	by	Bhowmick	and	Srivastava.	
The	authors	examine	the	review-board	characteristics	of	four	major	data-management	conferences	
across	four	diversity	dimensions	over	time.	The	article	sets	the	goal	of	creating	more	diverse	and	
balanced	review	boards,	and	advocates	for	the	development	of	tools	to	support	this	process.	
	
On	behalf	of	the	SIGMOD	Record	Editorial	board,	I	hope	that	you	enjoy	reading	the	June	2025	issue	
of	the	SIGMOD	Record!		
	
Your	submissions	to	the	SIGMOD	Record	are	welcome	via	the	submission	site:	
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ABSTRACT
The study of local consistency vs. global consistency of
database relations received considerable attention in the
early days of relational database theory. In a recent pa-
per, we investigated the notions of local consistency and
global consistency for annotated relations, where the an-
notations come from a positive commutative monoid.
One of the differences from the classical case is that the
join of two consistent annotated relations need not al-
ways be a witness of their consistency. Here, we bring
to center stage the notion of a consistency witness func-
tion for annotated relations, investigate the properties of
consistency witness functions, and provide a new per-
spective to understanding the interplay between local
and global consistency for annotated relations.

1 Introduction
During the past two decades, there has been a growing
body of research on annotated databases, i.e., databases
in which each fact is annotated with a value from some
algebraic structure. This framework generalizes both
standard relational databases, where the annotations are
1 (true) and 0 (false), and bag databases, where the an-
notations are non-negative integers denoting the multi-
plicity of a fact in the database. Much of the work in this
area uses annotations from the universe of some fixed
semiring K = (K,+,×, 0, 1), where the addition oper-
ation + is used to model “alternative” information (e.g.,
disjunction or existential quantification), while the mul-
tiplication operation × is used to model “joint” informa-
tion (e.g., conjunction or universal quantification). For
this reason, the term semiring semantics is often used to
refer to the work in this area. Database provenance was
the first extensively studied topic in this framework [8,
10, 4]. Subsequent studies focused on conjunctive query
containment for annotated databases [7, 12], semiring
semantics for first-order logic [6], and evaluation of Dat-
alog programs under semiring semantics [11].

Since the early days of the relational database model,
the study of consistency of relations has received signif-
icant attention [9, 3, 5]. By definition, a collection of

relations R1, . . . , Rm is globally consistent if there is a
relation T such that the projection of T on the attributes
of Ri is equal to Ri, for each i = 1, . . . ,m. We call such
a relation T a consistency witness for R1, . . . , Rm. It is
well known that if the collection R1, . . . , Rm is globally
consistent, then the join R1 1 · · · 1 Rm is a consis-
tency witness for R1, . . . , Rm; in fact, it is the largest
such consistency witness (see, e.g., [9]). As pointed out
in [1], however, the state of affairs is different for bags,
since there are two bags that are consistent but their
join is not a consistency witness for them; moreover,
no largest consistency witness for these bags exists.

In [2], we carried out an investigation of the consis-
tency of annotated relations. Since the definition of con-
sistency of annotated relations involves only the projec-
tion operation on relations and since projection is de-
fined using only addition +, we considered annotated
relations in which the annotations come from a monoid
K = (K,+, 0). The main focus of that investigation
was the interplay between local consistency and global
consistency, that is, under what conditions a collection
of pairwise consistent relations R1, . . . , Rm is globally
consistent. In particular, we identified a condition on
monoids, called the transportation property, and showed
that a positive monoid K = (K,+, 0) has the trans-
portation property if and only if every acyclic hyper-
graph H has the local-to-global consistency property for
K-relations, which means that every pairwise consistent
collection of K-relations over H is globally consistent.
This finding generalizes results about local vs. global
consistency for standard relations in [3], as well as re-
sults about local vs. global consistency for bags in [1].

In this paper, we bring to front stage the notion of
a consistency witness function on a positive monoid K,
that is to say, a function W that, given two K-relations
R and S, returns a K-relation W (R,S) that is a con-
sistency witness for R and S, provided that R and S
are consistent K-relations. While the notion of a consis-
tency witness function on K underlies much of the work
in [2], it has not been studied in its own right thus far.
Our goal is to make the case that this is a fundamental
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notion whose study is well deserved.
After presenting some basic properties of consistency

witness functions on K, we introduce the two notions
of a c-join-expression and a monotone c-join expression
for a consistency witness function on K. These no-
tions extend the notions of join expression and mono-
tone join expressions for the standard join 1 operation
and for standard relations in [3, 5]. We then establish
that the transportation property of a positive monoid K
can be characterized in terms of properties of monotone
c-join expressions. Furthermore, we argue that the no-
tion a consistency witness function provides a new per-
spective to the proofs of the main results in [2]. We elab-
orate on this new perspective here and, along the way,
we discuss methods for defining or constructing consis-
tency witness functions for different types of monoids.
Finally, we present some observations concerning the
existence of “largest” consistency witness functions for
annotated relations. In particular, we point out that a
positive monoid being idempotent is a sufficient, but not
necessary, condition for the existence of “largest” con-
sistency witness functions for relations annotated with
elements from that monoid.

2 Preliminaries
Monoids A commutative monoid is a structure K =
(K,+, 0), where + is a binary operation on the universe
K of K that is associative, commutative, and has 0 as
its neutral element, i.e., p + 0 = p = 0 + p holds for
all p ∈ K. A commutative monoid K = (K,+, 0) is
positive if for all elements p, q ∈ K with p+ q = 0, we
have that p = 0 and q = 0. From now on, we assume
that all commutative monoids considered have at least
two elements in their universe.

As an example, the structure B = ({0, 1},∨, 0) with
disjunction ∨ as its operation and 0 (false) as its neutral
element is a positive commutative monoid. Other exam-
ples of positive commutative monoids include the struc-
ture N = (Z≥0,+, 0), and R≥0 = (R≥0,+, 0), where
Z≥0 is the set of non-negative integers, R≥0 is the set of
non-negative real numbers, and + is the standard addi-
tion operation. In contrast, the structure Z = (Z,+, 0),
where Z is the set of integers, is a commutative monoid,
but not a positive one. Two examples of positive com-
mutative monoids of different flavor are the structures
T = (R ∪ {∞},min,∞) and V = ([0, 1],max, 0),
where R is the set of real numbers, and min and max
are the standard minimum and maximum operations. Fi-
nally, if A is a set and P(A) is its powerset, then the
structure P(A) = (P(A),∪, ∅) is a positive commuta-
tive monoid, where ∪ is the union operation on sets.

K-relations and their marginals An attribute A is a
symbol with an associated set Dom(A) as its domain.

If X is a finite set of attributes, then we write Tup(X)
for the set of X-tuples, i.e., Tup(X) is the set of func-
tions that take each attribute A ∈ X to an element of its
domain Dom(A). Note that Tup(∅) is non-empty as it
contains the empty tuple, i.e., the unique function with
empty domain. If Y ⊆ X is a subset of attributes and t
is an X-tuple, then the projection of t on Y , denoted
by t[Y ], is the unique Y -tuple that agrees with t on Y .
In particular, t[∅] is the empty tuple.

Let K = (K,+, 0) be a positive commutative monoid
and let X be a finite set of attributes. A K-relation
over X is a function R : Tup(X) → K that assigns a
value R(t) in K to every X-tuple t in Tup(X). We will
often write R(X) to indicate that R is a K-relation over
X , and we will refer to X as the set of attributes of R.
These notions make sense even if X is the empty set of
attributes, in which case a K-relation over X is simply a
single value from K that is assigned to the empty tuple.
Clearly, the B-relations are just the standard relations,
while the N-relations are the bags or multisets, i.e., each
tuple has a non-negative integer associated with it that
denotes the multiplicity of the tuple.

The support Supp(R) of a K-relation R(X) is the set
of X-tuples t that are assigned non-zero value, i.e.,

Supp(R) := {t ∈ Tup(X) : R(t) ̸= 0}. (1)

We will often write R′ to denote Supp(R). Note that R′

is a standard relation over X . A K-relation is finitely
supported if its support is a finite set. In this paper,
all K-relations considered will be finitely supported, and
we omit the term; thus, from now on, a K-relation is a
finitely supported K-relation. When R′ is empty, we say
that R is the empty K-relation over X .

If Y ⊆ X , then the marginal R[Y ] of R on Y is
the K-relation over Y such that for every Y -tuple t, we
have that

R[Y ](t) :=
∑

r∈R′:
r[Y ]=t

R(r). (2)

The value R[Y ](t) is the marginal of R over t. In what
follows and for notational simplicity, we will often write
R(t) for the marginal of R over t, instead of R[Y ](t). It
will be clear from the context (e.g., from the arity of
the tuple t) if R(t) is indeed the marginal of R over t
(in which case t must be a Y -tuple) or R(t) is the ac-
tual value of R on t as a mapping from Tup(X) to K
(in which case t must be an X-tuple). Note that if R
is a standard relation (i.e., R is a B-relation), then the
marginal R[Y ] is the projection of R on Y .

The proof of the next basic proposition follows easily
from the definitions.

PROPOSITION 1. Let K be a positive commutative
monoid and let R(X) be a K-relation. Then the fol-
lowing hold:
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1. For all Y ⊆ X , we have R′[Y ] = R[Y ]′.

2. For all Z ⊆ Y ⊆ X , we have R[Y ][Z] = R[Z].

If X and Y are sets of attributes, then we write XY
as shorthand for the union X ∪ Y . Accordingly, if x is
an X-tuple and y is a Y -tuple such that x[X ∩ Y ] =
y[X ∩Y ], then we write xy to denote the XY -tuple that
agrees with x on X and on y on Y . We say that x joins
with y, and that y joins with x, to produce the tuple xy.

A schema is a sequence X1, . . . , Xm of sets of at-
tributes. A schema can also be identified with a hy-
pergraph H having X1, . . . , Xm as its hyperedges. We
will use the terms schema and hypergraph interchange-
ably. A collection of K-relations over such a schema
is a sequence R1(X1), . . . , Rm(Xm) of K-relations so
that Ri(Xi) is a K-relation over Xi, for i = 1, . . . ,m.

3 Consistency and Consistency Witnesses
Let K = (K,+, 0) be a positive commutative monoid.

We say that two K-relations R(X) and S(Y ) are con-
sistent if there is a K-relation T (XY ) such that T [X] =
R and T [Y ] = S. Such a K-relation T is called a con-
sistency witness for R and S.

A consistency witness function on K is a binary func-
tion W that takes as arguments two K-relation R(X)
and S(Y ), and returns as value a K-relation W (R,S)
over XY such that if R and S are consistent K-relations,
then W (R,S) is a consistency witness for R and S. For
example, the join 1 of two standard relations is a con-
sistency witness function on the Boolean monoid B.

We say that a collection R1(X1), . . . , Rm(Xm) of K-
relations over a schema X1, . . . , Xm is globally con-
sistent if there is a K-relation T (X1 . . . Xm) such that
T [Xi] = Ri, for i with 1 ≤ i ≤ m. Such a K-relation
T is called a consistency witness for R1, . . . , Rm.

It is easy to see that if R1(X1), . . . , Rm(Xm) is a
globally consistent collection of K-relations, then these
relations are pairwise consistent. Indeed, if T is a con-
sistency witness for R1(X1), . . . , Rm(Xm), then for all
i and j with 1 ≤ i, j ≤ m, we have that the K-relation
T [XiXj ] is a consistency witness for Ri and Rj , be-
cause

Ri = T [Xi] = T [XiXj ][Xi]

Rj = T [Xj ] = T [XiXj ][Xj ]

where, in each case, the first equality follows from the
definition of global consistency and the second equality
follows from Proposition 1.

The converse is known to fail, even for standard rela-
tions, i.e., there are standard relations that are pairwise
consistent but not globally consistent. The main result
by Beeri et al. [3] characterizes the schemas for which
the pairwise consistency of a collection of standard re-
lations implies that they are globally consistent. Later

on in this paper, we will see how this result extends to
K-relations over positive monoids satisfying a condition
we call the transportation property.

We are interested in obtaining global consistency wit-
nesses by using consistency witnesses for two relations.
To this effect, we introduce certain syntactic expressions,
which, under some additional hypotheses, will give rise
to global consistency witnesses. In what follows, 1c is
a binary function symbol, which will be interpreted by
some consistency witness function.

Assume that X1, . . . , Xm is a schema.
The collection of c-join expressions over X1, . . . , Xm

is the smallest collection of strings that contains each
Xi and has the property that if E1 and E2 are in the
collection, then also the string (E1 1c E2) is in the
collection.

The collection of sequential c-join expressions over
X1, . . . , Xm is the smallest collection of strings that con-
tains each Xi and has the property that if E in the col-
lection and X is one of the Xi’s, then also the string
(E 1c X) is in the collection.

A c-join expression over X1, . . . , Xm is called read-
once if each Xi appears exactly once in the expression.
We write E[X1, . . . , Xm] to denote the read-once se-
quential c-join-expression on X1, . . . , Xm where the Xi

appear in the indicated order; in the sequel, we refer
to E[X1, . . . , Xm] as the read-once sequential c-join-
expression associated with the ordering X1 . . . , Xm. In
symbols, we have that E[X1, . . . , Xm] is the c-join ex-
pression

(· · · ((X1 1c X2) 1c X3) 1c · · · 1c Xm).

Clearly, the string ((X1 1c X2) 1c X3) is a sequen-
tial c-join-expression, while the string

((X1 1c X2) 1c (X3 1c X4))

is a c-join expression, but not a sequential one. Fur-
thermore, both these strings are read-once c-join expres-
sions, while ((X1 1c X2) 1c (X3 1c X1)) is not.
From now on we drop the outermost parentheses.

The notion of a c-join expression is a syntactic one.
We will now assign semantics to c-join expressions.

Let X1, . . . , Xm be a schema and let E be a c-join-
expression over X1, . . . , Xm. If W is a consistency wit-
ness function on K and R1(X1), . . . , Rm(Xm) is a col-
lection of K-relations, we write E(W,R1, . . . , Rm) to
denote the K-relation over X1 · · ·Xm obtained by eval-
uating E when 1c is interpreted by W and each Xi is
interpreted by Ri for i = 1, . . . ,m.

We say that E is monotone with respect to W and
R1, . . . , Rm if for every sub-expression E1 1c E2 of E,
we have that the K-relations E1(W,R1, . . . , Rm) and
E2(W,R1, . . . , Rm) are consistent.
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According to the next proposition, monotone c-join-
expressions give rise to global consistency witnesses.

PROPOSITION 2. Let E be a c-join expression over
X1, . . . , Xm, let W be a consistency witness function on
K, and let R1(X1), . . . , Rm(Xm) be K-relations. If E
is monotone with respect to W and R1, . . . , Rm, and ev-
ery Xi occurs in E, then E(W,R1, . . . , Rm) is a global
consistency witness for the K-relations R1, . . . , Rm.

This proposition is proved by induction on the con-
struction of c-join expressions.

The base case is trivial, since in this case E is Xi for
some i with 1 ≤ i ≤ n, hence E(W,Ri) = Ri, which
is a consistency witness for Ri.

For the inductive step, assume that E is E1 1c E2,
where E1 and E2 are c-join expressions for which the
inductive hypothesis holds. To simplify the notation, let
us put R = (R1, . . . , Rm); furthermore, we put R1 =
(Ri : i ∈ I1) and R2 = (Ri : i ∈ I2), where I1
and I2 are the sets of indices i such that Xi occurs in
E1 and in E2, respectively. In this case, we have that
E(W,R) = W (E1(W,R1), E2(W,R2)).

Since E is monotone with respect to W and R, we
have that the K-relations E1(W,R1) and E2(W,R2)
are consistent, hence W (E1(W,R1), E2(W,R2)) is a
consistency witness for E1(W,R1) and E2(W,R2). We
must show that W (E1(W,R1), E2(W,R2))[Xi] = Ri

holds, for every i such that Xi occurs in E. Consider
such an Xi. Since Xi occurs in E, it must occur in at
least one of E1 and E2. Let’s assume that Xi occurs in
E1; the case in which it occurs in E2 is entirely similar.
If Y is the set of attributes of E1(W,R1), then Xi ⊆ Y .
Furthermore, the property of an expression being mono-
tone with respect to a witness function and a collection
of relations is inherited by its subexpressions, so E1 is
monotone with respect to W and R1. By induction hy-
pothesis, E1(W,R1) is a global consistency witness of
all relations Rj occurring in it, hence

E1(W,R1)[Xi] = Ri. (3)

Also, since W (E1(W,R1), E2(W,R2)) is a consistency
witness for E1(W,R1) and E2(W,R2), we have that

W (E1(W,R1), E2(W,R2))[Y ] = E1(W,R1). (4)

By putting everything together, we have that

W (E1(W,R1), E2(W,R2))[Xi]

= W (E1(W,R1), E2(W,R2))[Y ][Xi]

= E1(W,R1)[Xi]

= Ri,

where in the first equality we used Proposition 1 and the
fact that Xi ⊆ Y , in the second we used (4), and the
third is (3). This completes the proof of Proposition 2.

4 The Transportation Property
We consider several different properties of monoids and
establish that they are equivalent to each other.

Let K = (K,+, 0) be a positive commutative monoid.
If m and n are positive integers, we say that K has the

m × n transportation property if for every column m-
vector b = (b1, . . . , bm) ∈ Km with entries in K and
every row n-vector c = (c1, . . . , cn) ∈ Kn with entries
in K such that b1 + · · · + bm = c1 + · · · + cn holds,
there is an m × n matrix D = (dij : i ∈ [m], j ∈
[n]) ∈ Km×n with entries in K whose rows sum to b
and whose columns sum to c, i.e., di1 + · · ·+ dim = bi
for all i ∈ [m] and d1j + · · ·+ dmj = cj for all j ∈ [n].

We say that K has the transportation property if K has
the m× n transportation property for every pair (m,n)
of positive integers.

We now consider a number of properties of monoids
that involve K-relations.

Two K-relations R(X) and S(Y ) are inner consistent
if R[X∩Y ] = S[X∩Y ]. Using Proposition 1, it is easy
to verify that if R and S are consistent K-relations, then
they are also inner consistent. The converse, however,
is not true for all positive commutative monoids. We
single out the ones for which inner consistency implies
consistency (consequently, for such monoids, these two
notions are equivalent).

We say that K has the inner consistency property if
whenever two K-relations are inner consistent, then they
are also consistent.

We say that a schema X1, . . . , Xm has the local-to-
global consistency property for K-relations if every col-
lection R1(X1), . . . , Rm(Xm) of pairwise consistent K-
relations is also globally consistent.

Let E be a c-join-expression over X1, . . . , Xm. We
say that E is monotone on K if E is monotone with
respect to every consistency witness function W on K
and every collection R1(X1), . . . , Rm(Xm) of pairwise
consistent K-relations.

Finally, we say that a schema X1, . . . , Xm admits a
monotone c-join expression on K if there is a c-join-
expression E over X1, . . . , Xm that is monotone on K
and, furthermore, every Xi occurs in E.

THEOREM 1. The following statements are equiva-
lent for a positive monoid K:

1. K has the 2× 2 transportation property.

2. K has the transportation property.

3. K has the inner consistency property.

4. Every acyclic hypergraph admits a monotone read-
once sequential c-join-expression on K.

5. Every acyclic hypergraph admits a monotone read-
once c-join-expression on K.
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6. Every acyclic hypergraph admits a monotone c-
join-expression on K.

7. Every acyclic hypergraph has the local-to-global
consistency property for K-relations.

The proofs of the implications (1) ⇒ (2) and (2) ⇒
(3) are given in [2]. A new perspective on these proofs
will be presented in Section 6. Here, we sketch the
proofs of the remaining implications in a round-robin
fashion.

We begin with the implication (3) ⇒ (4). As shown
in Beeri et al. [3], if H is an acyclic hypergraph, then H
has the running intersection property, which means that
there is an ordering X1, . . . , Xm of the hyperedges of
H so that for every j ≤ m, there is some i ≤ j− 1 such
that (X1∪· · ·∪Xj−1)∩Xj ⊆ Xi. Let E[X1, . . . , Xm]
be the read-once sequential c-join-expression associated
with this ordering, i.e., E[X1, . . . , Xm] is

(· · · ((X1 1c X2) 1c X3) 1c · · · 1c Xm).

Using the inner consistency property of K, it is not hard
to show that E[X1, . . . , Xm] is monotone on K. The
implications (4) ⇒ (5) and (5) ⇒ (6) are trivial. The
implication (6) ⇒ (7) uses Proposition 2 and, of course,
the definitions.

Finally, we prove (7) ⇒ (1). We are given a 2 × 2
instance of the transportation problem on K: four el-
ements b1, b2, c1, c2 ∈ K such that b1 + b2 = c1 +
c2. Consider the following three K-relations where e =
b1 + b2 = c1 + c2:

AB BC CD
1 0 : b1 0 0 : e 0 1 : c1
2 0 : b2 1 1 : e 0 2 : c2
1 1 : c1 1 1 : b1
2 1 : c2 1 2 : b2

It is easy to see that these are pairwise consistent, and
the schema is acyclic as it is the path of length three.
By (7) the three K-relations are also globally consistent.
Let W (ABCD) be a witness of global consistency. Set-
ting dij = W (i00j) or dij = W (j11i) we get a solution
to the 2× 2 instance, which completes the proof.

Beeri et al. showed that a hypergraph H is acyclic if
and only if H has the local-to-global consistency prop-
erty for standard relations (i.e., for B-relations, where
B is the Boolean monoid). In [2], we showed that if K
is an arbitrary positive monoid and H is a hypergraph
that has the local-to-global consistency property for K-
relations, then H must be acyclic. We also showed that
there are positive commutative monoids K and acyclic
schemas H that do not have the local-to-global consis-
tency property for K-relations. Thus, acyclicity is a
necessary, but not sufficient, condition for H to have
the local-to-global consistency property for K-relations.

Theorem 1, however, implies that acyclicity is both nec-
essary and sufficient, provided K has the transportation
property. Thus, we have the following generalization of
the main result in Beeri et al. [3].

THEOREM 2. Assume that K is a positive commu-
tative monoid that has the transportation property. For
every hypergraph H , the following statements are equiv-
alent:

1. H is acyclic.

2. H admits an ordering X1, . . . , Xm of its hyper-
edges so that the sequential c-join expression as-
sociated with X1, . . . , Xm is monotone on K.

3. H admits a monotone c-join-expression on K.

4. H has the local-to-global consistency property for
K-relations.

Naturally, in Theorem 2 we can also add as equiva-
lent statements that H admits a sequential monotone c-
join-expression on K, as well as a read-once sequential
monotone c-join-expression on K. Recall that this last
condition is equivalent to the statement that there is an
ordering X1, . . . , Xm of the hyperedges of H so that the
sequential c-join expression E[X1, . . . , Xm] associated
with X1, . . . , Xm is monotone on K.

5 Defining Consistency Witnesses
By definition, every consistency witness function for a
positive commutative monoid K produces a consistency
witness W = W (R,S), given two consistent K-relations
R(X) and S(Y ). But how can such a consistency wit-
ness function be defined? Are there general ways of
constructing a consistency witness function?

For several specific monoids of interest, the consis-
tency witness can be found via an explicit expression or
via a procedural method. For example, for the Boolean
monoid B, the standard join R 1 S of standard rela-
tions is an explicit consistency witness function. More
generally, if K = (K,∨, 0) is the join semilattice of
a bounded distributive lattice (K,∨,∧, 0, 1) (the same
way the Boolean monoid B is the join semilattice of the
2-element Boolean algebra), then setting

W (t) = R(t[X]) ∧ S(t[Y ]) (5)

for every XY -tuple t gives an explicit expression that
defines a consistency witness function for every two con-
sistent K-relations R(X) and S(Y ).

Similarly, if K = (K,+, 0) is the additive monoid of
a semifield (K,+,×, /, 0, 1), (the same way the posi-
tive monoid R≥0 of non-negative reals with addition is
the additive monoid of the semifield of non-negative real
numbers with addition and multiplication), then an ex-
plicit expression for a consistency witness is given by

SIGMOD Record, June 2025 (Vol. 54, No. 2) 11



setting

W (t) = R(t[X])×S(t[Y ])/D(t) (6)

where D(t) = R(t[X ∩ Y ]) = S(t[X ∩ Y ]) with the
convention that 0/0 = 0. Note that the equality in the
definition of D(t) follows from the assumption that R
and S are consistent; indeed, if U witnesses their con-
sistency, then

R[X∩Y ] = U [X][X∩Y ] = U [Y ][X∩Y ] = S[X∩Y ],

where the middle equation follows from Proposition 1.
The expressions in (5) and (6) are called respectively

the standard join of the distributive lattice, which is de-
noted by R 1K S, and the Vorobe’v join of the semifield,
which is denoted by R 1VK S.

When it comes to the bag monoid N = (N,+, 0),
it turns out that the standard join of bags is not a valid
consistent witness function. For example, the two bags
R(X) = {a:1, b:1} and S(Y ) = {c:1, d:1} are con-
sistent via the witness {ac:1, bd:1} or {ad:1, bc:1}, but
their bag join is the bag {ac:1, ad:1, bc:1, bd:1}, which
projects to {a:2, b:2} on X and to {c:2, d:2} on Y , thus
it is not a witness of their consistency. Nonetheless, the
bag monoid does admit an explicit consistency witness
function, which can be defined via a procedure called
the Northwest Corner Method. As explained in [2], the
inspiration for this procedure came from linear program-
ming, simplifying an earlier method from [1]. In Sec-
tion 7 we provide an alternative perspective to it.

We refer the reader to Section 5 of [2] for an ample
discussion of specific monoids and classes of monoids
for which a consistency witness can be explicitly defined
by an expression or by a procedural method, such as the
Northwest Corner Method.

In the next section, we discuss a more general prob-
lem, which is implicit in the validity of the implica-
tions (1) ⇒ (2) ⇒ (3) of Theorem 1. The problem can be
stated as follows: How can the transportation property
alone be used to construct consistency witnesses in full
generality? First we discuss how a direct interpretation
of the proof of the implication (2) ⇒ (3) in Theorem 1
gives a way to construct consistency witnesses by solv-
ing explicit but typically large systems of equations over
the monoid. Then we argue that the proof of the impli-
cation (1) ⇒ (2) in Theorem 1 indeed gives a way to
construct witnesses from just solving 2× 2 systems.

This is a rather remarkable phenomenon that enables
the construction of consistency witnesses by repeatedly
solving many but tiny 2 × 2 systems of equations over
the monoid. This phenomenon is akin to the fact that the
standard join of standard relations can be computed very
efficiently (in terms of the output size) by scanning the
pairs of tuples in the two relations in a carefully chosen
order. As we will see, in the general case of positive

commutative monoids with the transportation property,
it suffices to scan not pairs of tuples (i.e., 1× 1 systems)
but pairs of pairs of tuples (i.e., 2 × 2 systems), also in
some suitable order.

We begin our discussion by recalling the aforemen-
tioned standard and efficient method for computing joins
of standard relations.

6 From 2 × 2 Systems to Witnesses
For relational databases, the Sort-Merge Join algorithm
is a well-known method to compute the join of two rela-
tions R(X) and S(Y ); e.g., see Section 12.5.2 in [13].
The algorithm works as follows.

First sort the tuples in R and S in the two relations
lexicographically by the entries of the tuples on the com-
mon attributes Z = X ∩ Y , i.e., sort all tuples r ∈ R by
r[Z] and sort all tuples s ∈ S by s[Z]. Then, scan the
two sorted lists in parallel to find a tuple t ∈ Tup(Z)
on the common attributes that appears in both lists. For
each such t found, scan all pairs of tuples r ∈ R and
s ∈ S such that r[Z] = t and s[Z] = t, produce the
join tuple rs in the output W (XY ), and proceed to the
next common t in the sorted lists. Since the join of two
consistent standard relations is a witness of their con-
sistency, this algorithm computes a consistency witness
function for the Boolean monoid B.

When the positive monoid K has the transportation
property, there is a natural analogue of the Sort-Merge
Join algorithm that produces consistency witnesses for
consistent K-relations R(X) and S(Y ). Again, first sort
all tuples r ∈ R′ and all tuples s ∈ S′ in the supports
R′ and S′ of R and S lexicographically by the entries of
the tuples on the common attributes Z = X ∩ Y . Then,
scan the sorted lists to find the first tuple t ∈ Tup(Z)
that appears in both lists. For such t, form a system of
equations over K. For each r ∈ R′ and s ∈ S′ such
that r[Z] = s[Z] = t, the system has one variable xr,s;t.
The system has equations

∑

s∈S′:
s[Z]=t

xr,s;t = br and
∑

r∈R′:
r[Z]=t

xr,s;t = cs

for each r ∈ R′ with r[Z] = t and br = R(r) in the first
equation, and each s ∈ S′ with s[Z] = t and cs = S(s)
in the second equation.

Now note that by the assumption that R(X) and S(Y )
are consistent, we have

∑
r br =

∑
s cs. By the trans-

portation property of K, the system has a solution in K,
say by setting xr,s;t to ar,s;t. Finally, use this solution
to produce the annotated tuple rs:ar,s;t in the output
W (XY ) for each considered r and s, and proceed to
the next common t in the sorted lists. The fact that the
resulting K-relation W (XY ) is a consistency witness
for R and S is an immediate consequence of the defi-
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nitions and the way the system of equations was set up.
This construction is also what goes behind the scenes in
the proof of the implication (2) ⇒ (3) in Theorem 1. We
refer the reader to [2] for more details on this proof.

An important point about the Sort-Merge Join algo-
rithm of the previous paragraph is that it involves solv-
ing systems of equations of many different sizes, and
often very big ones. Concretely, if for a tuple t that
appears in both lists we have mt tuples r ∈ R′ such
r[Z] = t and nt tuples s ∈ S′ such that s[Z] = t, then
the system associated to tuple t has mt × nt variables
and mt + nt equations. Since mt and nt could in gen-
eral be quite big, solving each such system for each tuple
t individually could be computationally expensive. This
should be compared with the explicit and usually effi-
ciently computable expressions of Equation (5) for the
standard join of a distributive lattice, and Equation (6)
for the Vorobe’v join of a semifield. In contrast to these
explicit expressions, if all we know about the monoid is
that it has the transportation property, then no such ex-
plicit expression may be available; thus, it looks like we
are stuck with the daunting task of solving potentially
huge mt × nt systems of equations for each t.

Or are we?
Interestingly, the implication (1) ⇒ (2) in Theorem 1

asserts that the 2 × 2 transportation property alone al-
ready implies the m× n transportation property for ev-
ery positive integers m and n. At least in principle, this
means that in order to solve the mt×nt systems of each
t it should suffice to solve perhaps many but tiny 2 × 2
systems. In the rest of this section we explain how the
proof of the implication (1) ⇒ (2) in Theorem 1 can
be leveraged to reduce the task for solving the mt × nt

systems within the context of the Sort-Merge Join algo-
rithm to that of solving many but tiny 2× 2 systems.

To discuss this, let us first examine one possible im-
plementation of the inner loop in the Sort-Merge Join
algorithm for standard relations. The method we sug-
gest below is almost certainly not what would be im-
plemented in practice because, for practical implemen-
tations, iterative methods are preferred over recursive
ones. However, it is conceptually useful to explain the
method as a recursive algorithm to see how it general-
izes to the case of K-relations over monoids that have
the transportation property.

Within the Sort-Merge Join algorithm for standard re-
lations, let’s say we are in the situation where we have
detected a tuple t ∈ Tup(Z) that appears in both sorted
lists of the tuples of R(X) and S(Y ). The subroutine
that we are about to describe produces all join-tuples rs
for r ∈ R and s ∈ S such that r[Z] = s[Z] = t.

Let the sorted lists of such tuples be r1, . . . , rm and
s1, . . . , sn, respectively. If m = 1, then we output
the join tuples r1sj for j = 1, . . . , n and we are done.

Symmetrically, if n = 1, then we output ris1 for i =
1, . . . ,m and we are done again. Suppose then that
m ≥ 2 and n ≥ 2. If m > n, then we split the problem
into a base case with the singleton list rm and a recur-
sive case with the reduced list r1, . . . , rm−1. In both
cases the other list remains s1, . . . , sn. Symmetrically,
if m < n, then we split the problem into a base case
with the singleton list sn, and a recursive case with the
reduced list s1, . . . , sn−1. Again, in both cases the other
list remains r1, . . . , rm. In case m = n, we just break
ties arbitrarily and go with one of the two. Since m ≥ 2
and n ≥ 2, the recursive calls made in this subroutine
call always make progress in reducing the sizes of the
lists and we end up producing all pairs risj , as required.

What we need to answer now is why we cannot just
do the same for the variant of the Sort-Merge Join algo-
rithm for consistent K-relations. The base cases m = 1
and n = 1 can certainly be handled the same way, using
the annotations ar1,sj ;t = S(sj) for the tuples r1sj in
the case m = 1, and the annotations ari,s1;t = R(ri)
for the tuples ris1 in the case n = 1. The problem is
with the subroutine call in the inductive case m ≥ 2
and n ≥ 2: the recursive call with the reduced list does
not interact at all with the call with the singleton list,
so it is hard to believe that the two calls will magically
produce a solution ari,sj ;t that satisfies the equations of
the consistency requirement. These equations impose
global conditions that involve the full lists r1, . . . , rm
and s1, . . . , sn; therefore, they require some kind of co-
ordination between calls. It is here where it is useful to
upgrade the kind of processing that the algorithm does
from handling pairs of tuples to handling pairs of pairs
of tuples (i.e., 2× 2 systems). Let us see how to do this.

As a reminder, it is useful to keep in mind the follow-
ing graphical representation of the system of equations
that we need to satisfy:

x1,1 + · · · + x1,n = b1
+ +
...

. . .
...

+ +
xm,1 + · · · + xm,n = bn
q q
c1 cn

(7)

where for simplicity we wrote xi,j instead of xri,sj ;t and
bi and cj instead of R(ri) and S(sj).

The solution to the problem of non-interacting calls
can be discovered by examining how we would manu-
ally handle the next limiting cases after the base cases.
Let’s say m = 2, so the first list of tuples is r1, r2 and the
column vector in the right-hand side of the system (7) is
b1, b2, and the second list of tuples is s1, . . . , sn with
n ≥ 2. If we were able to solve any 2×2 instance of the
transportation problem, then we could split the problem
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of solving the system (7) in the special case m = 2 as
follows. First we solve the 2 × 2 system given by the
equations

y1 + x1,n = b1
+ +
y2 + x2,n = b2
q q
c cn

where y1, y2 are two new variables and c = c1 + · · · +
cn−1. Observe that c+ cn = b1 + b2, as required by the
transportation property. Once this is solved, we go on
recursively to solve the 2× (n− 1) system given by the
equations

x1,1 + · · · + x1,n−1 = y1
+ +
x2,1 + · · · + x2,n−1 = y2
q q
c1 cn−1

Observe that c1+ · · ·+ cn−1 = c = y1+y2, as required
by the transportation property. Note also how the part
y1, y2 of the solution to the first system is used to define
the right-hand side of the second system, so the two calls
of the subroutine now do interact. A simple inspection
shows that the concatenation of the solutions of the two
systems gives a solution to the global m× n system (7)
in the special case m = 2.

This analysis takes care of the case m = 2 and n ≥ 2.
To take care of the case m ≥ 2 and n = 2, we proceed
symmetrically exchanging rows and columns. Finally,
for the case m ≥ 3 and n ≥ 3, we can use the cases
2×n and m×2 that we just discussed as base cases. We
split an m×n system as in (7) into a 2×n system and an
(m− 1)× n system if m > n, or into an m× 2 system
and an m × (n − 1) system if m < n, breaking ties
arbitrarily if m = n. This completes the description and
the analysis of the recursive algorithm. The inductive
argument that proves its correctness is also what goes
behind the scenes in the proof of the implication (1) ⇒
(2) in Theorem 1, as presented in [2].

The bottom line of this section is that the Sort-Merge
Join algorithm for computing joins of standard relations,
and hence consistency witnesses of standard relations,
nicely generalizes to an algorithm for computing con-
sistency witnesses of two given consistent K-relations
from just knowing how to solve many but explicit and
tiny 2× 2 instances of the transportation problem.

7 Solving 2 × 2 Systems in Specific Cases
In view of the analysis of the previous section, it is now
natural to revisit the question of solving 2×2 systems for
specific monoids. In this section, we revisit the standard
join and the Vorobe’v join in Section 5 from the perspec-
tive of 2×2 systems. We also give an explicit solution to

the 2 × 2 systems for monoids for which such systems
are solvable using the Northwest Corner Method, also
mentioned in Section 5. As stated there, the most nat-
ural example of this last case is the bag monoid N. By
unfolding the recursive algorithm of the previous sec-
tion, the explicit solution we give in this section gives
an alternative and computationally more explicit defini-
tion of the Northwest Corner Method, as compared to
how it was presented in [2].

Let K = (K,+, 0) be a positive commutative monoid.
We are given b1, b2, c1, c2 such that b1 + b2 = c1 + c2.
We want to solve the following system:

x11 + x12 = b1
+ +
x21 + x22 = b2
q q
c1 c2

We may assume that all b1, b2, c1, c2 are different from
0 as otherwise we can set both variables of the corre-
sponding row or column equation to 0 and reduce the
system to a single trivially satisfiable equation.

Let e = b1+b2 = c1+c2 and note e ̸= 0 by positivity.
If K = (K,∨, 0) is the join semilattice of a bounded

distributive lattice (K,∨,∧, 0, 1), then setting xij = bi∧
cj for i, j = 1, 2 gives a solution. Indeed, xi1 ∨ xi2 =
(bi ∧ c1) ∨ (bi ∧ c2) = bi ∧ (c1 ∨ c2) = bi ∧ e =
bi ∧ (b1 ∨ b2) = bi. An entirely symmetric argument
gives x1j ∨ x2j = cj . Examples include the Boolean
monoid, the power set monoid, and many others.

If K = (K,+, 0) is the additive monoid of a semi-
field (K,+,×, /, 0, 1), then setting xij = (bi × cj)/e
for i, j = 1, 2 gives a solution. Indeed, xi1 + xi2 =
(bi × c1)/e + (bi × c2)/e = bi × (c1 + c2)/e = bi.
Similarly, x1j + x2j = cj . Examples include the non-
negative reals with addition, tropical monoids such as
(R ∪ {−∞},max,−∞) and many others.

Finally we come to the bag monoid N = (Z≥0,+, 0)
and those positive monoids whose instances of the trans-
portation problem can be solved by the Northwest Cor-
ner Method. We need some preliminary definitions.

Every positive commutative monoid K = (K,+, 0)
is canonically preordered by the binary relation x ≤ y
defined to hold between two elements x, y ∈ K if there
exists an element z ∈ K such that x+ z = y. If for any
every two elements x, y ∈ K we have x ≤ y or y ≤ x
(or both), then we say that this preorder is total and that
the monoid is totally canonically preordered. In such a
case, the operation min(x, y), which returns x if x ≤ y
and y otherwise, satisfies the inequalities min(x, y) ≤ x
and min(x, y) ≤ y. Similarly, the operation max(x, y),
which returns y if x ≤ y and x otherwise, satisfies the
inequalities x ≤ max(x, y) and y ≤ max(x, y). We say
that K is weakly cancellative if for every x, y, z, we have
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that x+y = x+z implies that y = z or y = 0 or z = 0.
When a monoid is weakly cancellative, it is natural to
define an operation x −̇ y on pairs x, y. Concretely, if
x ̸≤ y, then we set x−̇y = 0, and if x ≤ y via x+z = y,
then we set x −̇ y = z if x ̸= y and x −̇ y = 0 if x = y.
By weak cancellativity, x −̇ y is well defined because if
both x+z = y and x+z′ = y hold, then x+z = x+z′

so by weak cancellativity we have z = z′, or z = 0
in which case x = y, or z′ = 0 in which case again
x = y. This operation has the property that if x ≤ y,
then x+ (y −̇ x) = y.

Suppose now that K is totally canonically preordered
and weakly cancellative. The typical example is the bag
monoid N, for which min(x, y) and max(x, y) are the
minimum and the maximum operations, and −̇ is the
subtraction operation truncated to 0. In this case, a solu-
tion is given by the Northwest Corner Method, which in
the 2 × 2 case reduces to the following explicit assign-
ment (recall that e = b1+ b2 = c1+ c2 and b1, b2, c1, c2
are different from 0):

x11 = min(b1, c1)
x12 = b1 −̇ x11

x21 = c1 −̇ x11

x22 = e −̇max(b1, c1)

To see that this system satisfies the 2× 2 system first
observe that x11 ≤ b1 and x11 ≤ c1, so x11 + x12 =
x11 + (b1 −̇ x11) = b1 and x11 + x21 = x11 + (c1 −̇
x11) = c1. This already shows that half of the equations
of the 2× 2 system are satisfied. For the remaining two
equations, first we claim that

b2 = (c1 −̇ b1) + c2 if b1 ≤ c1
c2 = (b1 −̇ c1) + b2 if b1 ̸≤ c1.

(8)

Indeed, if b1 ≤ c1 then c1 = b1 + (c1 −̇ b1), so we have
b1+ b2 = c1+ c2 = b1+(c1 −̇ b1)+ c2. The first equal-
ity in (8) then follows from weak cancellativity because
b2 ̸= 0 and c2 ̸= 0, and therefore also (c1 −̇b1)+c2 ̸= 0
by positivity. Similarly, if b1 ̸≤ c1, then we have c1 ≤ b1
because the preorder is total, so b1 = c1 +(b1 −̇ c1) and
we have c1 + c2 = b1 + b2 = c1 + (b1 −̇ c1) + b2.
The second equality in (8) follows then again by weak
cancellativity and positivity. Now we use (8) to show,
by cases, that the remaining two equations of the 2 × 2
system are satisfied.

If b1 ≤ c1, then x12 = b1 −̇b1 = 0 and x21 = c1 −̇b1,
as well as x22 = e −̇ c1 = c2 because c1 + c2 = e and
therefore c1 ≤ e. This shows that x12 + x22 = c2 and
x21 + x22 = b2 by (8). Similarly, if b1 ̸≤ c1, then
x21 = c1 −̇ c1 = 0 and x12 = b1 −̇ c1, as well as x22 =
e −̇ b1 = b2 because b1 + b2 = e and therefore b1 ≤ e.
This shows that x21 + x22 = b2 and x12 + x22 = c2
by (8).

8 Largest Consistency Witnesses
A key fact about standard relations is that if R(X) and
S(Y ) are two consistent standard relations, then there
is a consistency witness W (XY ) for R(X) and S(Y )
that is largest in the sense that every other consistency
witness U(XY ) for R(X) and S(Y ) is included in it,
i.e., U ⊆ W holds. This follows from the basic fact that
if W1(XY ) and W2(XY ) are consistency witnesses for
the standard relations R(X) and S(Y ), then their set-
theoretic union W1 ∪ W2 is also a consistency witness
for R(X) and S(Y ). Therefore, the union of all consis-
tency witnesses for R(X) and S(Y ) is the largest con-
sistency witness for them (and it actually coincides with
the standard join R 1 S).

Assume that K is a positive commutative monoid and
let R(X) and S(Y ) be two consistent K-relations. We
say that a K-relation W (XY ) is a largest consistency
witness for R(X) and S(Y ) if for every consistency wit-
ness U(XY ) for R(X) and S(Y ), we have U ′ ⊆ W ′,
where U ′, W ′ are the supports of U(XY ), W (XY ). In
words, a largest consistency witness for two K-relations
is a consistency witness of largest support.

For arbitrary positive commutative monoids, largest
consistency witnesses need not exist. A case in point
is the bag monoid N = (N,+, 0). Specifically, con-
sider the two bags R(X) = {a:1, b:1} and S(Y ) =
{c:1, d:1}. These two bags are consistent, but their only
two consistency witnesses are W1(XY ) = {ac:1, bd:1}
and W2(XY ) = {ad:1, bc:1}, which have incompara-
ble supports. Consider also the positive commutative
monoid N2 = ({0, 1, 2},⊕, 0), where 1⊕ 1 = 1⊕ 2 =
2 ⊕ 1 = 2 ⊕ 2 = 2, and 0 is the neutral element of ⊕.
The same bags as above, but now viewed as N2-relations
are an example of two consistent N2-relations with no
largest consistency witness. Note that the monoid N2 is
finite, while the monoid N is infinite.

Nonetheless, the property of standard consistent re-
lations having largest consistency witnesses generalizes
to relations over idempotent monoids, where a monoid
K = (K,+, 0) is idempotent if the identity x + x = x
holds, for every x ∈ K.

PROPOSITION 3. Let K be an idempotent and posi-
tive commutative monoid. Then, for every two consistent
K-relations, there is a largest consistency witness.

Let K be such a monoid. If R(X) and S(Y ) are
two consistent K-relations with consistency witnesses
W1(XY ) and W2(XY ), then the K-relation T (XY )
defined by T (t) = W1(t) +W2(t) for every XY -tuple
t is also a consistency witness for R(X) and S(Y ). In-
deed, for every X-tuple r and every Y -tuple s, we have

T (r) = W1(r) +W2(r) = R(r) +R(r) = R(r)
T (s) = W1(s) +W2(s) = S(s) + S(s) = S(s).
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Therefore, T [X] = R and T [Y ] = S, so T is a con-
sistency witness for R and S. We now claim that since
K is positive and since K-relations have (by definition)
finite support, there is a consistency witness W (XY ) of
largest support, which is then a largest consistency wit-
ness for R(X) and S(Y ).

To see why this claim is true, suppose that K is pos-
itive and idempotent and that R(X) and S(Y ) are con-
sistent K-relations. Let N be the number of tuples in the
standard join of the standard relations R′ 1 S′, where
R′ and S′ are the supports of R and S. Since, by pos-
itivity, every consistency witness for R and S has its
support in R′ 1 S′, there are at most 2N possible sup-
ports of witnesses of consistency for R and S. Let M ≤
2N be the number of such different supports and let
W1,W2, . . . ,WM be a collection of witnesses of consis-
tency such that their list of supports W ′

1,W
′
2, . . . ,W

′
M

is the complete enumeration of all supports of witnesses
of consistency. Now, consider the K-relation W (XY )

defined by W (t) =
∑M

i=1 Wi(t) for every XY -tuple t,
where the sum is in K. By the idempotency of K, the
K-relation W is a consistency witness of R and S. And
by the positivity of K, the support W ′ of W contains the
support W ′

i of every Wi, and hence the support of any
consistency witness for R(X) and S(Y ) by the choice
of the enumeration W1,W2, . . . ,WM .

In addition to the Boolean monoid B = ({0, 1},∨, 0),
examples of idempotent monoids include the monoids
T = (R ∪ {∞},min,∞), V = ([0, 1],max, 0), and
P(A) = (P(A),∪, ∅) introduced in Section 2.

Note that, unlike the case of standard relations, largest
consistency witnesses need not be unique for relations
over arbitrary idempotent monoids. To see this, consider
the positive commutative monoid L = (Q≥0,max, 0)
of non-negative rationals with maximum as operation,
and 0 as neutral element, which is idempotent. Consider
also the L-relations R(X) = {a:1, b:1} and S(Y ) =
{c:1, d:1} with disjoint sets of attributes. These two
L-relations are consistent and have largest consistency
witnesses, namely, any L-relation W (XY ) of the form
{ac:1, ad:p, bc:p, bd:1} with p ∈ (0, 1] is a consistency
witness for R and S. Thus, while the largest witnesses
W are “canonical” in terms of support, they need not be
“canonical” when taking the annotations into account.

There is another sense, however, in which idempotent
positive commutative monoids admit canonical-looking
consistency witnesses, in addition to having largest sup-
port. As discussed earlier, for every positive monoid
K = (K,+, 0), there is a partial preorder ≤ on K de-
fined by declaring that x ≤ y holds if and only if there
exists z ∈ K such that x+ z = y. What holds for idem-
potent positive commutative monoids is that for every
two consistent K-relations R(X) and S(Y ) and for ev-
ery finite collection of consistency witnesses U1, . . . , Un

there is a consistency witness W (XY ), still of largest
support among all witnesses of consistency of R and S,
such that Uj(t) ≤ W (t) holds in the preorder ≤ of K,
for every j = 1, . . . , n and every XY -tuple t. For this,
simply ensure that all target witnesses U1, . . . , Un ap-
pear in the enumeration W1,W2, . . . ,WM featuring in
the construction of W of the previous paragraph, per-
haps by taking M to be an additive term n larger than
it was, if necessary. Since by positivity the inequality
Uj(t) ≤ ∑M

i=1 Wi(t) = W (t) holds whenever Uj ap-
pears in the enumeration W1,W2, . . . ,WM , the claim
follows. It is apparent from this argument that, in this
construction, the witness W depends on the finite list
U1, . . . , Un; however, only the annotations depend on
U1, . . . , Un and, therefore, W is still largest (with re-
spect to support). As regards annotations, the set of con-
sistency witnesses is dense: for every finite collection of
consistency witnesses U1, . . . , Un, there is a largest con-
sistency witness W that sits simultaneously above all
of them, point-wise in the preorder ≤, i.e., W satisfies
Ui(t) ≤ W (t) for all i = 1, . . . , n and all XY -tuples t.

Furthermore, there is a case of special interest where
not even the annotations of W need depend on the finite
list U1, . . . , Un. Specifically, if the monoid K is finite,
then not only there is a finite number M ≤ 2N of sup-
ports of consistency witnesses, but there is just a finite
number of consistency witnesses overall. Thus, if in the
construction of W we take M to be the total number
of consistency witnesses and we let W1,W2, . . . ,WM

to be the complete enumeration of these witnesses, then
the resulting W is uniquely determined and sits simul-
taneously above all consistency witnesses.

Finally, we note that idempotency is not a necessary
condition for the existence of largest consistency wit-
nesses. Indeed, let R≥0 = (R≥0,+, 0) be the monoid
of the non-negative real numbers with addition. This
monoid is the reduct of a semifield, namely, the semi-
field of non-negative reals with the standard addition
and multiplication of real numbers, and the standard di-
vision by non-zero real numbers as inverse for the mul-
tiplication. The reduct R≥0 is a positive commutative
monoid that has the transportation property but is not, of
course, idempotent. Now consider two consistent R≥0-
relations R(X) and S(Y ). As with every other positive
commutative monoid that arises from a semifield, their
Vorob’ev join W = R 1V S as defined in Equation (6)
is a consistency witness for R and S. It is easy to check
that if U(XY ) is some other consistency witness, then
W (t) = 0 implies U(t) = 0: indeed, by the absence of
zero-divisors in any semifield, the multiplication in (6)
gives W (t) = 0 only if R(t[X]) = 0 or S(t[Y ]) = 0.
Thus, by combining the positivity of the monoid with
the fact that U [X] = R and U [Y ] = S, we get that
W (t) = 0 only if U(t) = 0. This shows that U ′ ⊆ W ′
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and hence W has largest support. Indeed, in this case
W is even “canonical” in its annotations because they
depend only on R and S.

An open problem arising from the preceding discus-
sion is to characterize the positive commutative monoids
for which largest consistency witnesses always exist.
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ABSTRACT
Data-oriented applications, their users, and even the law
require data of high quality. Research has divided the
rather vague notion of data quality into various dimen-
sions, such as accuracy, consistency, and reputation. To
achieve the goal of high data quality, many tools and
techniques exist to clean and otherwise improve data.
Yet, systematic research on actually assessing data qual-
ity in its dimensions is largely absent, and with it, the
ability to gauge the success of any data cleaning effort.

We propose five facets as ingredients to assess data
quality: data, source, system, task, and human. Tap-
ping each facet for data quality assessment poses its own
challenges. We show how overcoming these challenges
helps data quality assessment for those data quality di-
mensions mentioned in Europe’s AI Act. Our work con-
cludes with a proposal for a comprehensive data quality
assessment framework.

1 The Many Dimensions of Data Quality
Data quality (DQ) has been an important research
topic for the last decades [10, 43, 62], reflecting its
critical role in all fields where data are used to gain
insights and make decisions. A manifold of DQ di-
mensions exists that regard data and their proper-
ties from various perspectives and contribute to un-
derstanding and characterizing the complex nature
of data [10, 62].

The high demand for DQ. Especially in the fast-
moving landscape of artificial intelligence (AI),
where data plays a pivotal role, the significance of
DQ is dramatically increasing, so much so that liter-
ature calls this trend a paradigm shift from a model-
centric view to a data-centric one [64]. Data-centric
AI emphasizes the data and their impact on the un-
derlying model [44, 45, 63]. Literature showed that
DQ, with its various dimensions, significantly influ-
ences prediction accuracy [24, 36, 40, 45]. Domain-
specific particulars provide a context that imposes
specific requirements on DQ assessment, such as

Data, Metadata,
External data

Human Source

Task System

Accuracy

CompletenessRepresentativity

DQ
Assessment

Relevancy

Figure 1: The five facets of DQ assessment and
exemplary characteristics for DQ dimensions.

the Health Insurance Portability and Accountabil-
ity Act (HIPAA), which focuses on privacy but
promotes DQ dimensions, such as accuracy and
completeness for ensuring trust [2].

Such requirements have also become part of reg-
ulation, as in the General Data Protection Regu-
lation (GDPR) [25] and the EU AI Act [22]. For
instance, the AI Act mentions in Article 10 the DQ
dimensions representativity, accuracy (free of errors),
completeness and relevancy [22]. Similar initiatives
to regulate DQ and AI are also being made by the
United States [31] and China [52], which underlines
the international interest in the topic of DQ.

Examining DQ is by no means just an academic
problem [12]. Industry is also concerned about the
impact of DQ on business [53]. Companies have
shifted from internal “data gazing” [37] to hiring
auditing firms for quality assurance. The literature
shows that poor DQ has an enormous economic im-
pact on organizations, either through loss of rev-
enues or through additional internal costs [41, 50].

In addition to recognizing the relevance of DQ
and understanding it in terms of the various dimen-
sions, the goal is to improve DQ by cleaning the
data. Yet, quality cannot be improved if it can-
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not be measured [60]: we need concrete assessment
methods to evaluate DQ in individual dimensions.
Batini et al. [12] define DQ assessment as the mea-
surement of DQ and the comparison with reference
values for diagnosing it. As such, apart from the
pure measurement of DQ, assessment includes clas-
sifying whether the measured quality is sufficient
(or “fit”) for the underlying task. Measuring vs.
judging whether the measured DQ suffices for a task
at hand are challenges of rather different natures.

Vision statement. Given a dataset, a use case (task
specification), a set of DQ dimensions, and their for-
mal definitions, our goal is to develop effective and
efficient assessment procedures for each DQ dimen-
sion. These procedures should compute values that
accurately align with the formal definitions.

Mission statement. To achieve the vision, we want
to identify facets upon which assessment procedures
across DQ dimensions depend. These facets enable
individual dimensions to benefit from solutions to
shared assessment challenges and streamlined im-
plementation of assessment procedures.

Contribution. This paper proposes a new perspec-
tive on DQ research: through the lens of so-called
facets. We discuss five facets of DQ assessment as
potential sources for DQ information. Each facet
presents its own set of challenges and opportunities.
To overcome the challenges and capitalize on the op-
portunities, we identify a wide range of technologies
that require cross-community expertise. We envi-
sion a thorough implementation of these technolo-
gies by different research communities. The ulti-
mate goal is the integration of these technologies
into a robust framework. We advocate for the de-
velopment of a DQ assessment framework to ac-
curately and efficiently measure all dimensions of
the DQ. The framework enables (1) the integra-
tion of deeper data profiling methods [5], (2) com-
pliance with given regulations, (3) enhancement of
data cleaning, as well as (4) judging whether DQ
meets user expectations. While this paper focuses
on structured data, we believe it can also be ex-
tended to semi-structured or unstructured data.

2 Data Quality Assessment by Facets
Data quality assessment in its variety of dimen-
sions [9, 43] poses many definitional, computa-
tional, and organizational challenges. We propose
five facets (see Figure 1) that serve as foundation
for DQ assessment: (i) the data itself, including
metadata and external data; (ii) the source of the
data; (iii) the system to store, handle, and access
the data; (iv) the task to be performed on the data;

and (v) the humans who interact with the data.
These five facets are inspired by the stages of a
typical data life cycle [59]: all relevant components
of each stage can be mapped to one or more facets.

Each facet poses its own challenges and oppor-
tunities for future research. We hypothesize that
addressing these challenges per facet adresses prob-
lems that arise from more than one DQ dimension.
We propose facets as an additional layer to struc-
ture DQ research, allowing all dimensions involved
in the assessment of a specific facet to benefit si-
multaneously from solving these challenges.

In the following, we define and discuss each of the
five facets and their key challenges. We list exem-
plary DQ dimensions (see [39] for definitions) that
specifically benefit from resolving these challenges.

2.1 The Data Facet
Raw data values are intended to represent real-
world concepts and entities. The data facet in-
cludes the data semantics and their digital rep-
resentation. It also includes metadata, such as
schema information and other documentation, and
any assessment-relevant external knowledge (as
data), like a knowledge base (e.g., DBpedia [35])
to validate data. The data facet encompasses all
challenges related to the data being assessed, its
metadata, and external data.

As data occur in different granularity (e.g., val-
ues, records, columns), DQ assessment must iden-
tify the necessary level of detail and devise quality-
metric aggregation methods to cross levels of gran-
ularity. Also, metadata, such as schema and data
types, should be available and of high quality itself.
When external knowledge is needed, challenges arise
in discovering, matching, and assessing the quality
of reference data. If data is encrypted, it cannot
be assessed directly, so DQ assessment must han-
dle encrypted data and, in case of distribution, also
work in a federated setup.

In the following, we highlight two well-known DQ
dimensions (mentioned in the AI Act) where the
data facet is involved in the assessment.

Accuracy: Typical metrics to assess accuracy re-
quire reference data to determine how closely the
data matches the reality.

Completeness: Placeholders represent missing val-
ues, using either obvious placeholders like “NaN”
or less obvious placeholders. The assessment
needs metadata that contains information about
the placeholder representation.

Example DQ Dimensions
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2.2 The Source Facet
The source of data represents a logical perspective.
This facet encompasses evaluating the data gener-
ation and collection processes, as well as assess-
ing the source’s integrity and organizational com-
pliance. The main aspect of the source facet is data
provenance, which includes information on the ori-
gins, providers, and other organizations involved in
creating and transforming the data [29].

One key challenge is ensuring data lineage trace-
ability, including the data origin and its transfor-
mations [26]. Additionally, a process-oriented view
is crucial, which includes evaluating the transfor-
mation process and the credibility of annotating
agents in the DQ assessment. It is also important
to consider the time range for assessing reliability
over time; longer histories provide a more com-
prehensive view, while shorter intervals highlight
recent changes.

Reputation: The assessment requires evaluating a
data source’s credibility and reliability, and thus,
considering historical reliability with data lineage.

Believability: The key challenge is to verify the
data origin (time range), source transformations
(data lineage), and involved entities (process).

Example DQ Dimensions

2.3 The System Facet
The system facet pertains to a physical perspective,
including the infrastructure and technology for stor-
ing, handling, and accessing the data. It also cov-
ers the system’s technical compliance with legal and
regulatory requirements, ensuring adherence to nec-
essary data management standards.

The system facet raises challenges, such as clarity
or auditability. The clarity includes documenting
the system’s architecture, data processing capabil-
ities, interoperability with other systems, security
features, and user interface aspects. Auditability is
crucial to verify compliance with regulations, such
as data deletion and security standards.

Recoverability: Assessing the ability to restore a
prior state of the data requires knowledge about
the file system, backup procedures (clarity) and
long-term storage regulations (auditability).

Portability: The key challenge is to understand
the storage system, including file formats (clar-
ity) and interoperability standards (auditability).

Example DQ Dimensions

2.4 The Task Facet
The task facet pertains to the specific use case and
the context in which the data is employed. Thus, it
inherently aligns with the“fitness for use”definition
of DQ [10, 62]. The task influences which parts of
the data (e.g., columns, tuples) are considered and
how well they represent the real world.

The task facet poses challenges regarding the
relevance of the data, including the identification
of relevant attributes and tuples. Also, the risk of
the task, according to the AI Act, which defines
minimal-, limited-, high- and unacceptable-risk AI
systems, can determine the way DQ is assessed [1].
Higher risk categories require more stringent DQ
assessment methods, including strict validation pro-
cesses and documentation, to ensure compliance.

Timeliness: The key challenge is defining an ac-
ceptable timeframe for tasks and to classify how
long data are considered up-to-date or relevant.

Relevancy: The assessment involves balancing the
need for complete information (relevance) against
the risk of including unnecessary data that can
violate legal requirements (risk).

Example DQ Dimensions

2.5 The Human Facet
The human facet introduces a subjective view, while
including the diverse groups that interact with the
data, perform the task, and interpret the results. It
aligns DQ with the specific needs and contexts in
which users operate. Some DQ dimensions (e.g., rel-
evancy, believability), require user surveys to assess
experiences and challenges in handling the data.
This subjective perspective makes it challenging to
fully automate the assessment. The human facet
presents challenges such as the need to design sur-
veys that capture a range of expertise levels, or
also the consideration of the intent of different user
groups and their perspectives (e.g., developers, cus-
tomers).

Ease of manipulation: Since manipulability can
impact accessibility positively and data integrity
negatively, the assessment must consider the users
intent of manipulation.

Relevancy: Determining relevant data varies by
user perspective (intent). The evolving nature
of relevancy with changing user needs, market
trends, and legal standards complicates maintain-
ing up-to-date assessments (survey design).

Example DQ Dimensions
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3 Facet Application
In the previous section, we listed example DQ di-
mensions per facet, for which the considered facet
is involved in the assessment. Of course, the par-
ticipation of the facets in assessing a DQ dimension
occurs to varying degrees. We use a three-level sys-
tem (“++”, “+”, “-”) to indicate a facets’ participa-
tion: “++” for strong involvement, “+” for medium,
and “-” for low to no involvement. We determined
the involvement of the facets through several dis-
cussion rounds among all authors until we reached
a consensus. When determining the involvement of
facets, we deliberately voted in favor of an objective
and automatic assessment and thus tried to mini-
mize the involvement of the human facet. Although
DQ is often defined as “fitness for use” [62] the task
facet is not necessarily included in the assessment.

In the following, we discuss the facet involvement
and implications with respect to specific technolo-
gies for each DQ dimension from the AI Act: accu-
racy (free of errors), representativity, completeness,
and relevancy [22] (see Figure 1). Additionally, we
include a discussion on accuracy and relevancy as
examples to illustrate why certain facets are not in-
volved in the assessment.

3.1 DQ Dimension: Accuracy
Definition Accuracy describes the correspondence
between a phenomenon in the world and its descrip-
tion as data [10].

Data Source System Task Human
++ + + - -

The data facet is the primary contributor to the
assessment of accuracy. Further aspects from the
source facet (e.g., data provenance) and the sys-
tem facet (e.g., storage technologies) are also rel-
evant. Conversely, the task and human facets are
less relevant: accuracy can be measured on a purely
objective level, considering factual correctness and
alignment with truth.

The literature established several metrics to as-
sess accuracy [12, 28]. Most metrics require refer-
ence data, which corresponds to the data facet. To
address this challenge, the reference data must be
defined (e.g., its level of detail) and collected. Open
data platforms, such as Kaggle [3] or general knowl-
edge bases (e.g., Wikidata [4], DBpedia [35]), are
well suited to collect a variety of data. To make use
of such external data, they must be matched with
the data using schema matching approaches [11, 19,
30, 49], which must handle different formats to pro-
cess reference data from different sources [38]. This

is particularly challenging with data that include
natural language, demanding methods for seman-
tic and syntactic processing, potentially using large
language models [23].

In cases where access to such data platforms is
too expensive or where no relevant data of suffi-
cient quality could be found, semantic web tech-
nologies combined with information retrieval ap-
proaches would allow gathering data from the web,
as external data for assessment [14, 27, 55].

In terms of the source facet, error detection and
cleaning methods, such as NADEEF [18] or Holo-
Clean [51], can be used to identify and correct data
errors. The transformations applied must be clearly
documented in the metadata (see Section 3.3).

The system in which the data is stored might be
responsible for erroneous values caused by system
failures, such as crashes or bugs. Thus, the sys-
tem can lose information when saving new values,
such as decimal points. Consequently, system ro-
bustness, data replication, and recovery processes
must be included in the metadata. These aspects
require a cataloging system to format the metadata
in a machine-readable format (see also Section 3.3).

The system in which the data and metadata are
located must ensure that access to them aligns with
the relevant privacy provisions. If the data owner
grants consent, where the consent information can
also be part of the cataloging system, a partial de-
cryption can be performed. Alternatively, encryp-
tion schemes such as homomorphic encryption can
be used to assess and process the data/metadata
while they are encrypted [6]. Compliance with pri-
vacy provisions is independent of the assessment of
specific DQ dimensions.

3.2 DQ Dimension: Representativity
Definition Representativity aims to ensure that the
characteristics of the reference data are present in
the considered data [17, 33].

Data Source System Task Human

++ - - - -

The data facet is the main contributor to the as-
sessment of representativity.

Similar to accuracy, metrics to assess representa-
tivity require information on the reference data [15,
17]. Thus, the reference data must first be defined
to establish a baseline for comparison in the assess-
ment. In contrast to accuracy, assessing representa-
tivity does not require the complete reference data –
summary statistics, respectively, data distributions
of the attributes, are often sufficient. Depending
on the data source, metadata may already contain
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information about summary statistics and distri-
butions. These metadata must be in a structured
format (e.g., JSON or RDF) to enable automated
access and further processing. Beyond uniform for-
matting, information must follow a uniform schema
and vocabulary across data sources to ensure inter-
operability. The use of an ontology (e.g., Crois-
sant [7] or DSD [21]) would ensure a standardized
schema and vocabulary, improving interoperability.

Still, the data must be matched with the given
data, even if it is in an aggregated format. But,
data matching with less data is an easier task be-
cause there are fewer records and attributes to com-
pare, reducing computational complexity and pro-
cessing time. This simplifies schema matching, data
cleaning, and handling diverse formats, leading to
fewer errors and more straightforward and accu-
rate matching criteria. Nevertheless, if the external
data sources do not provide this information, the
technologies the assessment requires to obtain and
match the reference data overlap with the technolo-
gies mentioned in the context of accuracy.

3.3 DQ Dimension: Completeness
Definition Completeness refers to the extent to
which data, including entities and attributes, are
present according to the data schema [46].

Data Source System Task Human

++ + + - -

When focusing on entry-level completeness, the data
facet is primarily involved in the assessment; the
source and system facets partially.

Since completeness represents the presence of the
data, its assessment requires the measurement of
missing values. While null or conventional place-
holders like“NaN”for missing values are easily iden-
tified, more research is required to also identify so-
called“hidden missing values” like“-99”, “EMPTY”,
or default values [13, 48]. Identifying these hid-
den missing values can either be done through prior
knowledge (in terms of metadata and sophisticated
Data Catalogs [20] or, particularly suited for the
ML context, with Data Cards [47]) or alternatively
learned with ML models taking into account the
context. Placeholders can differ for each data source
or be domain-specific, which is why strict documen-
tation is important. In addition, transformations on
missing values, like deleted records or applied impu-
tation strategies, must also be part of the metadata.

Similar to accuracy, the system in which the data
is located might cause missing values, e.g., due to
hardware failure. In the context of completeness,

the system can lose data or fail to store new values,
again necessitating metadata for recovery processes.

3.4 DQ Dimension: Relevancy
Definition Relevancy describes the extent to which
the data are applicable and helpful for a given
task [62].

Data Source System Task Human

+ - - ++ ++

While the task and the human facet mainly support
the assessment of relevancy, the data facet is also
involved. Conversely, the source and system facets
are less relevant, as relevancy is solely determined
by the data’s usefulness for fulfilling a specific task,
regardless of how or where it was created or stored.

To assess relevancy, stakeholders must define the
given task, requiring domain experts to incorporate
best practices and to understand the task’s intrica-
cies. Given the task, stakeholders and experts have
to assess the relevancy of individual attributes and
tuples. Alternatively, statistical methods can assess
relevancy, e.g., Shapley or LIME calculate the fea-
ture importance to determine each feature’s contri-
bution to an ML model’s prediction [56, 57, 61].
As feature importance is computationally complex,
manual assessment might still be needed.

This manual assessment can be supported with
data profiling [42] methods, comprising several
tasks, such as, the automatic identification of dis-
tributions, functional dependencies, or data types.
Based on the gathered information, experts can
define domain- and task-specific criteria to assess
the relevance of individual attributes and tuples
using a rating system (e.g., Likert scale). Depend-
ing on the underlying task and its criticality, a
larger-scale user study must be conducted to reflect
various stakeholders and their perspectives. These
surveys must follow the principles of good user sur-
vey design principles [34] and their creation should
be independent from a given dataset to ensure an
automated reuse for new or changed datasets.

4 Vision: A DQ Assessment Framework
In previous sections, we explored the challenges as-
sociated with different facets of DQ assessment and
their applications to DQ dimensions. To promote
this fresh look on DQ research, we envision a DQ
assessment framework that implements the assess-
ment methods along the facets. For instance, rele-
vancy and timeliness intersect within the task facet:
the specification of the downstream task (e.g., ML-
based classification) determines whether the data
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Figure 2: DQ assessment for an AI pipeline.

is relevant and also sufficiently up-to-date. The as-
sessment of both dimensions benefits from that task
specification.

Figure 2 shows the DQ assessment framework
in the context of an AI pipeline. As part of this
pipeline, data passes through various stages from
its creation to the final product delivered to the
customer. We can map the facets to these different
stages of the pipeline. Thus, our proposed frame-
work and the concept of facets are integrated into
the AI pipeline: The data, in its digital representa-
tion (data facet) originate from various sources. A
data engineer must prepare them using data prepa-
ration techniques, where all transformations must
be traceable (source facet). The prepared data serve
as training data, used by a data scientist to train
an AI model, constituting a task (task facet). All
these tasks can be deployed in an AI system (system
facet), managed by a product owner, which in turn,
can be part of an AI product that is delivered to
customers. Finally, the various involved individuals
should also be part of the DQ assessment (human
facet). The assessment of each DQ dimension, to-
gether with the facet’s participation, results in a
dedicated assessment procedure.

We conducted an initial analysis of the partici-
pation of the facets per DQ dimension [39]. Apart
from the facet-specific challenges to measure DQ in
its various dimensions, building a framework that
supports DQ measurement and management along
the entire pipeline gives rise to further challenges:

Efficiency. The assessment effort and time should
be low from a user perspective [8]. Data consumers
might be unable or unwilling to wait for assessment
results, and experts might not have much time to
complete questionnaires or help in DQ assessment.

Explainability. Due to their ambiguity [32], assess-
ment results must be explainable to consumers. In
addition, the results should be traceable to their
root cause, enabling measures to improve quality.

Metadata Management. Deploying the DQ assess-
ment procedure requires an effective mechanism to
store and query vast, diverse metadata (see Meta-
data Management System in Figure 2). An example
solution and its challenges are discussed in [58].

5 Related Work
This section discusses representative works on DQ
assessment and compares them to our fresh look
through the lens of facets. Over the last decades,
a number of DQ assessment frameworks have been
proposed [12, 16]. For instance, Stvilia et al. [60]
identified various sources for DQ assessment and
distinguished intrinsic, relational, and reputational
information quality. Batini et al. [12] divide the as-
sessment into different phases and discuss metrics
for DQ dimensions. Pipino et al. [46] present an
approach combining subjective and objective DQ
assessment results. In their vision paper, Sadiq et
al. identify two dimensions to empirical DQ man-
agement [54]: the metric type (intrinsic vs. extrin-
sic) and the method scope (generic vs. tailored).
They encourage the community to regard DQ be-
yond what we call the data facet – this paper follows
that call. Other works [9, 10, 46] discuss challenges
associated with specific DQ dimensions, e.g., the
need for external data to assess accuracy [9].

In summary, many existing works implicitly men-
tion individual facets (e.g., the human or the data
facet) and the impact of their challenges on the as-
sessment of DQ dimensions. However, so far, a uni-
fied view on how to address these different aspects
was missing. We believe that addressing common
DQ challenges per facet enables researchers the ex-
ploration of many DQ dimensions jointly.

6 Conclusion
We propose five assessment facets as foundational
ingredients to assess data quality (DQ) and outline
specific challenges and opportunities for each facet,
highlighting the complexity of DQ assessment. We
suggest how to overcome these challenges for the
DQ dimensions mentioned in the AI Act as exam-
ples. Finally, we envision a DQ assessment frame-
work that implements various methods to assess the
DQ dimension through the lens of the facets.
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ABSTRACT
The ubiquity of machine learning, particularly deep learn-
ing, applied to graphs is evident in applications rang-
ing from cheminformatics (drug discovery) and bioin-
formatics (protein interaction prediction) to knowledge
graph-based query answering, fraud detection, and so-
cial network analysis. Concurrently, graph data man-
agement deals with the research and development of ef-
fective, efficient, scalable, robust, and user-friendly sys-
tems and algorithms for storing, processing, and analyz-
ing vast quantities of heterogeneous and complex graph
data. Our survey provides a comprehensive overview
of the synergies between graph data management and
graph machine learning, illustrating how they intertwine
and mutually reinforce each other across the entire spec-
trum of the graph data science and machine learning
pipeline. Specifically, the survey highlights two cru-
cial aspects: (1) How graph data management enhances
graph machine learning, including contributions such
as improved graph neural network performance through
graph data cleaning, scalable graph embedding, efficient
graph-based vector data management, robust graph neu-
ral networks, user-friendly explainability methods; and
(2) how graph machine learning, in turn, aids in graph
data management, with a focus on applications like query
answering over knowledge graphs and various data sci-
ence tasks. We discuss pertinent open problems and de-
lineate crucial research directions.

1. INTRODUCTION
Graph data, ranging from social and biological net-

works to financial transactions, knowledge bases, and
transportation systems, permeates various domains. In
these graphs, nodes represent entities with distinct fea-
tures, while edges capture relationships between them.
The growing volume of graph data and the increasing
demand to extract value in real applications necessitate
effective graph data management (GDM). Broadly speak-
ing, data management encompasses a suite of algorithms
and systems for acquiring, validating, storing, organiz-
ing, protecting, and processing data so they can be easily

found and queried effectively, efficiently, securely, and
cost-effectively. The principle of data management is to
optimize data usage and comply with regulations, so to
enable fair and responsible decision making, while max-
imizing the utility in downstream tasks. Modern data
management challenges include the three V’s of big data
(volume, velocity, and veracity), dirty data, secure and
distributed data processing, cloud computing, usability,
new data types, emerging applications, etc. While gen-
eral data management focuses on handling structured or
semi-structured data such as tables and logs, graph data
management presents unique challenges due to the inter-
connected nature of graph data. Managing relationships,
traversals, and graph-specific queries (e.g., communities
or reachabilities) demand specialized algorithms and data
structures. Additionally, the irregularity and scale of
graphs introduce challenges in indexing, storage, and
real-time updates that go beyond traditional DM solu-
tions. Specialized graph database management systems
(graph DBMS), e.g., Neo4j, TigerGraph, Microsoft Cos-
mos DB, and Amazon Neptune were developed support-
ing graph transactions, queries, visualization, and di-
verse data models [113].

Machine learning (ML), a subfield of artificial intel-
ligence (AI), uses algorithms to learn knowledge from
data and generalize to unseen cases, often without ex-
plicit programming. Key principles of ML include data
representation, performance evaluation on downstream
tasks, and iterative optimization to improve accuracy.
Based on the above requirements, ML models and sys-
tems are developed and deployed ensuring that they are
effective, efficient, robust, and user-friendly. As ML be-
comes mainstream, there is a growing focus on explain-
ability, transparency, fairness, safety, trust, and ethical
decision-making. Graph machine learning (GML), in
particular, graph neural networks (GNNs) have shown
great promises for graph data-centric applications, such
as classification, link prediction, community detection,
question answering, and recommendation [135].

While data management (DM) and machine learn-
ing (ML) serve distinct purposes, their synergy is es-
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Figure 1: Graph data pipeline in data science and
machine learning applications. Graph embedding
can be task-specific or task-agnostic. Graph neural
network (GNN) training can be end-to-end based on
downstream tasks. We show which phases belong
to GDM and which belong to GML, and can bene-
fit from each other.

sential, as data is foundational to both. First, effec-
tive collaboration between data management and ML
is necessary to unleash the full potential of an orga-
nization’s data. For instance, data management tech-
niques ensure clean, reliable, and up-to-date datasets,
enabling ML models to generate accurate and trustwor-
thy insights. Second, in modern data science applica-
tions, complex data undergo various processes involved
in machine learning to generate the final predictive out-
put, collectively forming a data pipeline [89, 59]. Fig-
ure 1 illustrates a representative graph data pipeline, en-
compassing the early stages of the graph data extrac-
tion, integration, cleaning, acquisition, validation, and
enrichment; intermediate stages dealing with graph em-
bedding, vector data, graph neural network (GNN) train-
ing, AutoML; and concluding stages involving down-
stream tasks and human-in-the-loop interactions, such
as explaining the results of black-box GNN models. Man-
aging effective and efficient data pipelines increases the
need for robust data management solutions. Third, ML
approaches enhance DM functionalities, e.g., ML can
automate data transformation processes and might also
understand a user’s query intent to improve querying
performance. Recent graph systems with ML capabil-
ities [97, 39, 1] highlight the need to explore the syner-
gies between two related fields: GDM and GML. Emerg-
ing technology landscapes such as AI, ML, edge com-
puting, serverless and cloud computing, modern hard-
ware, Internet-of-Things, data lakes, and Large Language
Models (LLMs) are expanding the domain of data-driven
downstream applications and what is feasible including
real-time decision-making capabilities, streamlining in-
tegration, and enhanced security, making the synergy
even more critical.

This survey examines the interplay between GDM and
GML across different stages of the data pipeline de-
picted in Figure 1. We identify three key scenarios to
structure the survey: (a) when GDM benefits GML; (b)

when GML enhances GDM; and finally (c) when GDM
+ GML integration facilitates downstream tasks. For ex-
ample, the initial phase of graph data cleaning is a GDM
task, where we explore GML’s contributions (§3.1). In
contrast, stages like graph embedding, GNN training,
and explainability focus on GML objectives, with GDM
systems improving their efficiency and effectiveness (§3.2,
§3.3, and §3.4). The fourth phase about downstream
tasks benefits significantly from the synergy of GDM
and GML, as discussed in §4.

Motivation: What are new in GDM and GML? With
the rapid advances of graph machine learning (GML)
techniques, such as graph embedding [137], GNNs [136,
155, 77], graph transformers [81], graphGPT [112], foun-
dation models [72], and LLMs for graphs [47, 65], the
role of graph data management (GDM) in the GML life-
cycle has become increasingly vital. This spans all stages
of the data pipeline, including preparation, improvement,
embedding, training, and explanation. Recently, both
academia and industry have emphasized the need for
high-quality, large-scale data and robust, scalable, se-
cure, and explainable models in ML systems [89, 167].
While there exist surveys and tutorials discussing the
synergy between data management and ML – primarily
focusing on relational data and relational database man-
agement systems [14, 59, 89], similar resources about
graph data are comparatively scarce. Both GDM and
GML pose significant challenges as follows.

In terms of GDM, graph data are inherently irregular,
with nodes and edges forming complex, variable-length
connections. This contrasts with the strict schema of
relational data, where rows and columns provide a pre-
dictable structure. Therefore, specialized GDM systems
are often required to quickly navigate and retrieve com-
plex multi-hop neighbors. This places unique demands
on GDM for efficient sampling and traversal strategies.

Due to their interconnected nature, partitioning graph
nodes without disrupting critical structural properties,
such as community boundaries, poses significant chal-
lenges. Unlike traditional data partitioning, where rows
in tables can often be divided without impacting data re-
lationships, graph partitioning must preserve inter-node
dependencies to maintain the graph’s integrity, typically
requiring extensive communication between nodes or
servers. GDM systems have to manage this inter-partition
communication efficiently to support applications at scale
– a challenge that is usually less pronounced in rela-
tional data management where tables can often be pro-
cessed more independently.

Last but not least, graphs can be both high-dimensional
and sparse, especially real-world graphs containing bil-
lions of nodes, but relatively few edges per node. Stor-
ing and efficiently retrieving meaningful patterns from
these sparse yet high-dimensional graphs cause difficul-
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ties that do not typically arise with dense tabular data.
Analogously, GML poses significant challenges due

to the non-IID and unnormalized nature of graph data,
the absence of strict schema, and irregular structures.
Unlike traditional ML, where data samples are often pro-
cessed independently, graph data require interdependent
computations, leading to increased computational costs.
Optimizing GML systems for model training, such as by
supporting distributed training with efficient data load-
ing and caching, is essential but challenging.

GML also generates high-dimensional embeddings for
nodes and edges, which are crucial for tasks like node
classification, link prediction, and similarity search. Man-
aging these embeddings is more demanding than han-
dling traditional ML data with simpler numeric or cat-
egorical features. Efficient storage, indexing, and re-
trieval mechanisms, such as vector databases or hybrid
storage solutions, are essential for managing the large-
volume high-dimensional embeddings produced by GML.

Additionally, reasoning in GML relies heavily on com-
bining intricate feature interactions with graph topology.
Graph data often require advanced feature engineering
based on structural motifs or specific subgraph patterns.
This demands robust support for pattern matching and
subgraph extraction within GML systems, capabilities
that are rarely needed in tabular ML. Scaling these op-
erations for large graphs is particularly challenging and
requires effective indexing and optimization strategies.

Finally, heterogeneity and multimodal graph data (e.g.,
graphs with nodes and edges having text and image-
based features), along with emerging applications be-
yond classification and prediction (e.g., entity resolu-
tion [62], knowledge graphs question-answering [143],
graph combinatorial optimizations [117]), and “black-
box” deep learning approaches introduce further com-
plexities to the deployment of GNNs.

Against this backdrop, our survey covering a set of
the latest solutions that integrate GDM and GML tech-
niques is both timely and relevant. We believe that our
survey will attract and promote interdisciplinary research
that advances scalable and explainable data pipelines for
new data challenges in graph analysis.

Roadmap. In this survey, we demonstrate how graph
data management and machine learning facilitate each
other at different stages in a graph data pipeline. In par-
ticular, we delve into the following topics:
• Benefits of graph data cleaning and augmentation in
improving the GNN performance (§3.1);
• Application of graph data management algorithms and
systems for scalable graph embedding learning (§3.2);
• Vector data management using graph-based indexes
(§3.3);
• GNN explainability methods, focusing on their usabil-
ity and robustness (§3.4);

• Application of graph machine learning in knowledge
graphs query answering (§4.1); and
• Applications of graph-based retrieval augmented gen-
eration (graph RAG) in large language models (LLMs)
for data science tasks (§4.2).

We discuss background and related work in §2 and
§5, respectively, and conclude with future work in §6.

2. BACKGROUND
We introduce background materials on graph neural

networks and graph embeddings.
Graph neural networks (GNNs) are deep learning

models to tackle graph-related tasks in an end-to-end
manner [136]. GNNs have many variants, e.g., graph
convolutional network (GCN) [57], graph attention net-
work (GAT) [116], graph isomorphism network (GIN)
[139], GraphSAGE [36], graph auto-encoder [56], graph
generative adversarial network (GraphGAN) [119], and
APPNP [58], etc. Specifically, graph convolution op-
erations can be categorized as spectral [10] and spatial
[21] approaches. In spectral methods, filters are ap-
plied on a graph’s frequency modes computed via graph
Fourier transform. Spectral formulations rely on the
fixed spectrum of the graph Laplacian, and are suitable
only for graphs with a single structure (and varying fea-
tures on nodes), as well as are computationally expen-
sive. On the other hand, spatial methods are not re-
stricted to a fixed graph structure, as they extract local
information by propagating features between neighbor-
ing nodes. Kipf and Welling [57] also develop a first-
order approximation of the spectral convolution, which
results in propagation between neighboring nodes. In
particular, GCN adopts a general form as follows.

Xk = δ(D̂− 1
2 ÂD̂− 1

2 Xk−1Θk) (1)

Here Â = A+ I, where I represents the identity ma-
trix and A is the adjacency matrix of graph G. Xk indi-
cates node feature representation in the k-th GCN layer,
(with X0 = X a matrix of input node features). D̂ rep-
resents the diagonal node degree matrix of Â, δ(.) is
the non-linear activation function, and Θk represents the
learnable weight matrix for the k-th layer. State-of-the-
art GNNs follow a similar feature learning paradigm:
Update the features of every node by aggregating the
counterparts from its neighbors. The inference cost of
feature propagation-based GNNs is usually polynomial-
time [15, 58]. GNNs have been employed in node and
graph classification (e.g., GCN [57], GAT [116], Graph-
SAGE [36], GIN [139]), link prediction (e.g., LGLP
[12]), and entity resolution (e.g., GraphER [62]), etc.

Graph embedding or representation learning [11,
17] generates low-dimensional representation vectors of
nodes, edges, and graphs that capture the structure and
features of graphs accurately for downstream ML tasks.
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Graph embedding algorithms can be categorized into
three classes. (1) Matrix factorization methods [93] con-
struct feature representations based on the adjacency or
Laplacian matrix, and exploit spectral techniques. (2)
Random-walk methods [32] transform a graph into a set
of random walks via sampling and then employ Skip-
Gram to generate embeddings. (3) Graph neural net-
works (GNNs)-based approaches [36, 116] focus on gen-
eralizing graph spectra into semi-supervised or super-
vised graph learning. They often follow a recursive neigh-
borhood aggregation scheme to generate embeddings.
State-of-the-art matrix factorization and random walk
methods generally work on homogeneous graphs where
nodes and edges share the same type, and the algorithms
consider only graph structures. In contrast, GNN-based
approaches exploit both graph structures and node fea-
tures. They can be end-to-end, implying that the learn-
ing of embeddings is implicit within the GNN model
and computed in a task-dependent manner. Embeddings
of more complex networks such as heterogeneous in-
formation networks [107], relational graphs [102], hy-
pergraphs [5], knowledge graphs [2], uncertain graphs
[40], signed networks [150], dynamic graphs [7], spatio-
temporal networks [105] have been studied.

3. GRAPH DATA MANAGEMENT
FOR GRAPH ML

We discuss applications of graph data management
such as data cleaning and augmentation in improving
the GNN performance, graph algorithms, databases, and
systems for scalable embedding learning, graph indexes
for vector data management, and graph view-based ex-
planation generation to enhance usability.

3.1 Graph Data Cleaning and
Augmentation

Enhancing graph data to improve the performance of
graph learning has seen an increased interest [167]. Ex-
isting data augmentation techniques from computer vi-
sion and natural language processing research cannot be
easily generalized to irregular-shaped graph data. Graph
data augmentation (GDA) [159] specifies enriching graph
data to improve graph learning, which is categorized
into “editing-based” and “representation-based”. Editing-
based methods aim to derive graph editing operations,
such as removal, addition, or modify nodes, edges, fea-
tures, or (sub)graphs [160, 162, 154, 37, 33], to im-
prove the model performance such as graph neural net-
works. These methods may follow a deterministic pro-
cess, learning to derive editing operations, or via a stochas-
tic editing process. Graph sparsification [165], conden-
sation [48], and diffusion [157] are also applied to im-
prove GNN-based analysis.

Instead of deriving graph editing operators, represen-
tation based GDA directly learns to refine graph repre-
sentation to improve follow-up analytical tasks. These
methods train learnable parameters to generate augmented
samples or graph representation and may adopt struc-
ture learning, adversarial training, contrastive learning,
or automated augmentation [169, 161, 109]. Compared
with representation-based approaches, editing-based GPA
may be more interpretable and explainable, by perform-
ing data provenance analysis over the derived editing
operators. On the other hand, representation-based ap-
proaches can be readily streamlined as input for down-
stream (graph) learning tasks, hence, may serve better
in the need of end-to-end learning pipelines.

Error detection and repairing have been studied for
graphs using rules and logic-based solutions, such as
graph dependencies [26] and graph keys [24], neigh-
borhood constraints [49, 68], uncertain edges cleaning
[69]. Graph association rules (GARs) [25] detect miss-
ing links and semantic errors in graphs, while assist-
ing in link prediction. GNNCleaner [138] repairs node
labels to improve GNN robustness against label noise.
Recent work such as SHACTOR [95] extracts validated
shapes (a graph pattern carrying value, topological or
cardinality constraints) with configurable measurements
such as support to detect anomalies in knowledge graphs
for error detection and cleaning. In general, rule-based
error detection treats and deals with each error scenario
in an isolated manner and often falls short of captur-
ing complex scenarios where errors are from multiple
sources with different forms, and may require additional
effort to be adapted for general error detection.

Graph learning has been introduced to improve error
detection and repairing for graphs. Generative adver-
sarial learning and active learning has been exploited to
improve error detection in graphs [33, 34]. For exam-
ple, GALE [34] supports an interactive active, genera-
tive adversarial detection framework for graph error de-
tection. The method applies few-shot learning to learn
an error generation model that best fits a limited number
of examples of different types of errors, and applies the
model to augment the detected errors via a generative
adversarial model to detect more errors. Active learning
is adopted in this process to assist the error generation
in the GAN-based error detection.

Synergy. There are good opportunities to integrate and
interact with machine learning and graph data clean-
ing towards ML-based graph data cleaning systems. (1)
Graph data constraints and rules can be exploited to char-
acterize domain knowledge and context for ML data clean-
ing models. These graph data constraints and rules also
provide a validation mechanism to make ML-based data
cleaning reasonable. For example, graph association
rules [25] or validation shapes [95] can be equipped with
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learnable domain-specific patterns to improve the qual-
ity of domain-specific knowledge graphs. (2) The do-
main knowledge, context, and data constraints may also
be properly featurized for potential training of founda-
tional data cleaning models. The expressive ML mod-
els can be fine-tuned to perform downstream data clean-
ing tasks without conducting isolated, from-scratch data
cleaning pipelines.

On the other hand, learning for graph error detection
still requires a properly large amount of high-quality
annotated examples, which remain a luxury for many
applications such as domain sciences. Scaling ML so-
lutions to large-scale graph cleaning also calls for ef-
ficient graph learning algorithms. Moreover, making
ML-empowered data cleaning explainable with domain
knowledge remains desirable yet a missing feature in
current data systems. These provide opportunities for
emerging needs such as fact checking tools in scientific
knowledge graphs.

3.2 Scalable Graph Embedding
and GNN Training

The surge of billion-scale graphs emphasizes the im-
portance of efficient embedding learning on large graphs,
as well as GNN training with them, such as for link pre-
diction on Twitter with over one billion edges [35], users
and products recommendation at Alibaba [120], etc. To
scale GNNs to large graphs, various sampling strate-
gies, e.g., node-wise sampling, layer-wise sampling, and
graph-wise sampling are adopted [67].

To resolve efficiency and scalability issues with large
graphs, recent works mainly focus on parallel compu-
tation, distributed systems, CPU-GPU hybrid architec-
ture, and new hardware. PANE enables scalable and
attributed networks embedding by measuring node at-
tribute affinity with random walks, embedding compu-
tation via joint matrix factorization, and using multi-
core parallelization [141]. DistGER exploits informa-
tion oriented distributed random walks and distributed
Skip-Gram learning for scalable graph embedding [27].
GraphVite [170] employs a CPU-GPU hybrid architec-
ture, simultaneously performing graph random walks on
CPUs and embedding training on GPUs. Marius [82]
optimizes data movements between CPU and GPU on a
single machine for large KG embedding. Seastar [134]
develops a novel GNN training framework on GPUs with
a vertex-centric programming paradigm. XGNN [111]
designs a multi-GPU GNN training system to fully uti-
lize GPU and CPU memory and high-speed intercon-
nects. Amazon released DistDGL [166], a distributed
graph embedding framework with mini-batch training
using the Deep Graph Library (DGL). Facebook’s Py-
torch Biggraph [61] exploits graph partitioning and pa-
rameter servers to learn large-graph embeddings on mul-

tiple CPUs using PyTorch. ReGNN develops ReRAM-
based architecture for GNN acceleration [71].

Synergy. Both graph embedding and GNN training are
GML tasks. We showcase how GDM techniques can en-
hance them in four major ways: algorithms and systems,
software-hardware co-design, and graph databases.
• Efficient algorithms. To improve efficiency and scala-
bility of GNN training often at the cost of accuracy loss,
mini-batch training and sampling strategies are devel-
oped, which can scale with data parallelism. Parallel and
distributed training algorithms aim at reducing computa-
tion and communication overheads and design effective
graph partitioning methods, all of which deal with ir-
regularity, inter-connectedness, and sparseness in graph
structure. Random walks approximate GNN message
passing (e.g., APPNP [58]) and capture neighborhood
structures for generating graph embedding. Therefore,
improving the effectiveness of random walks, reducing
their numbers and path lengths, as well as distributed
random walk mechanisms have great potentials to im-
prove the efficiency and scalability of GNN training and
graph embedding. Efficient matrix factorization tech-
niques can also gain superior performance and scale to
embeddings of large-scale graphs.
• Scalable systems. Multi-CPU and multi-GPU plat-
forms are widely-adopted scalable systems for distributed
GNN training and graph embedding. Multi-CPU plat-
forms enable distributed GNN training across multiple
machines. Multi-GPU platforms employ CPU-GPU col-
laborative solutions, where GPUs conduct GNN train-
ing/ embedding, whereas CPUs handle computationally
intensive tasks, including sampling, random walks, and
workload partition. Modern hardware, e.g., FPGA, SSD,
and ReRAM enable training larger graphs on a single
machine, while providing accelerations, fault-awareness,
and energy-efficiency.
• Software-Hardware co-design. PyTorch Geometric
(PyG) and Deep Graph Library (DGL) are common soft-
ware paradigms for GNN training. They support CPU
and GPU computing, full-batch and mini-batch training,
also provide APIs and user-defined functions to abstract
computation and communication. Using them, more
advanced software frameworks, e.g., AliGraph [168],
DistGNN [115], and DistDGL [166] are developed which
define user-friendly programming models (e.g., vertex-
centric paradigm) and efficient data structures. They
employ software-hardware co-design to reduce compu-
tation and communication costs via different paralleliza-
tion schemes (e.g., pipeline parallelism), optimization
strategies (e.g., synchronous vs. asynchronous commu-
nication, parameter server), on-chip data reuse, etc.
• Graph databases. Popular graph databases (graph DBs),
e.g., Neo4J, ArangoDB, Amazon Neptune, TigerGraph,
and Kùzu provide data science libraries and ML tools
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to support a number of graph embedding methods and
GNN training [52]. Graph DB’s disk-based storage sys-
tems can be used with PyG remote backend to train a
GNN model on very large graphs that do not fit on the
main memory of a single server 1. While graph DBs cur-
rently provide only basic graph ML functionalities such
as node classification and regression, link prediction, it
would be interesting to seamlessly integrate graph em-
beddings and GNN’s capabilities into graph query pro-
cessing and question answering (QA) (§4.1), also en-
abling vector indexes for efficient similarity search to
facilitate graph RAG paradigm in LLMs (§4.2). These
highlight the potential of graph DBs to be coupled with
ML-based QA systems and LLMs [86, 73].
• Improving graph data pipeline. Finally, efficient graph
embedding and GNN training are key to many down-
stream applications, e.g., graph data cleaning, entity res-
olution, and knowledge graph question answering, en-
suring effective, efficient, and robust graph data pipelines.

3.3 Graph-based Vector Data Indexes
The management of vector data intersects with graph

data management, particularly in systems that support
graph-based machine learning (GML). A prime example
is the use of graph-based vector indices, e.g., HNSW [20,
78, 28] to organize high-dimensional embeddings for re-
trieval tasks. These embeddings often originate from
GML models like Graph Neural Networks (GNNs) [54,
9], where node or graph-level representations are com-
puted for downstream applications. This synergy be-
tween graph-based indices and GML pipelines positions
GDM systems, including Neo4j and TigerGraph, as com-
prehensive platforms for building GML workflows, in-
tegrating data storage, embedding generation, and simi-
larity search functionalities.

Graph-based indices [84] diverge from traditional in-
dexing methods, such as inverted indices [6, 46], locality-
sensitive hashing [3, 114], and tree-based indices [8,
51], which typically partition vectors into buckets. In-
stead, graph-based indices construct proximity graphs,
where nodes represent data points and edges denote neigh-
bor relationships. These graph-based approaches present
unparalleled effectiveness by leveraging semantic sim-
ilarities through the principle that a neighbor’s neigh-
bor is likely to be a neighbor and iteratively expand-
ing neighbors’ neighbors through a best-first search [26,
124]. Recent works substantiate their scalability, posi-
tioning them for handling billion-scale datasets [127].
Unlike traditional graph data structures used for rep-
resenting networked information, these indices are op-
timized for the Approximate Nearest Neighbor Search
(ANNS) [4, 64, 127], a task foundational to many AI-
driven applications. This makes them particularly rele-
1https://blog.kuzudb.com/post/kuzu-pyg-remote-backend/

vant to GDM systems that serve as infrastructure for hy-
brid tasks combining traditional graph analysis and ML-
based embedding retrieval. The implications of such
methods extend beyond ANNS, permeating into the fab-
ric of LLMs [54] and unstructured data management [41,
131], heralding a new era in the intersection of graph-
based data management and real-world applications.

Graph-based vector indices have been subject to a
range of optimizations aimed at improving both the in-
dex structure and search procedures, which can be cate-
gorized into four key areas:

The first major category, graph index optimization,
focuses on diversifying neighbor connections to enhance
graph navigability and capture semantic relationships be-
tween embeddings, such as refining the quality of the
edge set [28], leveraging more sophisticated distance
functions [20], adaptive neighbor selection [88], and hi-
erarchical layouts [78]. These ensure that similar em-
beddings are efficiently connected and easily discover-
able during search. The index graph quality directly im-
pacts downstream GML tasks like node classification
and link prediction, where effective and efficient simi-
larity assessments are critical for model performance.

The second set of optimizations focuses on enhanc-
ing search strategies to reduce traversal overhead while
maintaining high query accuracy. This is particularly
important when scaling graph-based models to larger
datasets, as the cost of inefficient traversal can quickly
overwhelm the benefits of an optimized index. Rout-
ing optimizations address this challenge by refining key
aspects such as entry point acquisition [74, 164], rout-
ing strategy [30, 151, 75, 151], and termination condi-
tions [63, 152]. By combining these strategies, rout-
ing optimization ensures that even in large-scale GML
datasets, searches remain fast and precise, minimizing
the impact of increasing data size on performance.

Building on these search optimizations, the third cat-
egory focuses on scaling solutions through hardware-
aware optimizations, which adapt the index layout and
search strategies to specific hardware capabilities [126].
Graph-based methods have been implemented in exter-
nal memory such as heterogeneous memory (HM) [99]
and solid-state disk (SSD) [45], to scale the system be-
yond traditional memory limitations. A recent work [44]
has adapted graph-based indexes to the cutting-edge com-
pute express link (CXL) architecture. In addition, accel-
eration hardware such as GPUs and FPGAs are utilized
to parallelize vector computation [163, 83, 79] or data
structure maintenance [146], providing an order of mag-
nitude increase in efficiency for both index construction
and search, These innovations exemplify how software-
hardware collaboration enables scalable solutions for
embedding-intensive GML tasks, addressing computa-
tional bottlenecks in GML workflows.
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The fourth line of research integrates additional in-
formation into graph indices to further support more so-
phisticated retrieval scenarios, a critical need for com-
plex graph ML workflows. Techniques such as attribute-
based filtering [123, 31, 87, 171] incorporate structured
attributes directly into the index, enabling hybrid queries
that combine structured and unstructured data. For in-
stance, in multimodal search scenarios, where each en-
tity comprises multiple vectors, multiple graph indexes
may be constructed and scanned to address a multi-vector
query [121, 152]. An innovative approach [122] has
fused multiple embeddings into a unified graph index
with automatic weight learning, enabling efficient and
accurate multimodal queries. These methods have demon-
strated applicability in ML-powered systems, such as
LLM-based online query answering [125], further bridg-
ing the gap between advanced data management and
real-world applications.

Synergy. We illustrate how advancements in graph-based
vector indices, a core GDM technique, significantly con-
tribute to the scalability and efficacy of GML systems.
• Efficient embedding management. Graph indices ex-
cel at managing high-dimensional embeddings gener-
ated by GML tasks, such as node classification and link
prediction. By leveraging optimizations in graph struc-
ture and search procedures, including neighbor diver-
sification, efficient routing, and hardware acceleration,
these indices enable faster and more precise similarity
searches essential for embedding-driven GML workflows.
• Scalable multimodal integration. For multimodal GML
tasks, where nodes or entities are represented by multi-
ple embeddings, graph indices adapt to efficiently han-
dle hybrid and multimodal queries. Techniques like fused
graph indices allow simultaneous processing of multiple
data modalities, directly benefiting use cases like multi-
modal knowledge retrieval and enhanced representation
learning in large-scale systems.
• Hardware acceleration for GML. The alignment of
graph indices with emerging hardware architectures, such
as GPUs, FPGAs, and CXL, drives substantial improve-
ments in computation and memory efficiency. These
optimizations enable graph ML systems to scale effec-
tively, overcoming the limitations of traditional memory-
based approaches for embedding-intensive workloads.
• Enhanced machine learning pipelines. By integrating
attribute filtering, handling incomplete data, and accom-
modating large-scale retrieval, graph indices bolster the
robustness of GML pipelines. This ensures reliable and
efficient data processing for tasks such as hybrid query
answering, anomaly detection, and fair representation
learning. The adaptability of graph indices to evolv-
ing GML requirements demonstrates their critical role
in enabling complex, real-world applications.

3.4 GNN Explainability
To safely and trustfully deploy deep neural models,

it is critical to provide human-intelligible explanations
to end users and domain experts: Which aspects of the
input data drive the decisions of the model? Therefore,
explainability methods for GNNs are becoming popular.

Deriving and comparing GNN explanations are diffi-
cult. (1) There is no unique notion of explainability –
the requirements arise due to many factors, e.g., trust,
causality, transferability, fair decision making, model
debugging, informativeness, etc. [70, 55]. (2) Analo-
gously, several quantitative metrics such as fidelity, spar-
sity, contrastivity, and stability are proposed to evaluate
explanation quality. It may be required to modify these
metrics to capture the complex dependency of structure
and feature in the graph space. For instance, perturbation-
based metrics (e.g., fidelity) can drastically change the
graph’s structure, resulting in data outside the training
distribution. Instead, a standard practice is to consider
“milder” perturbations by removing associated features
of important nodes and edges, while keeping the graph
structure intact [90, 148]. (3) Due to the emerging na-
ture of graph data and downstream tasks, there has been
less qualitative evaluation of GNN explainability (e.g.,
human grounded evaluation) [118, 96]. Lack of real-
world ground-truth explanations, complexity in graph
data, and requirement of expert domain knowledge are
key bottlenecks behind qualitative evaluation. (4) The
output of GNN explainability (e.g., nodes, edges, fea-
tures, subgraphs) and their categories (e.g., factual vs.
counterfactual, instance vs. model-level) are different.
For a holistic evaluation, such factors must be consid-
ered [53]. (5) Other concerns include non-robust GNN
models and training bias [23].

Recently, many explainability methods for GNNs have
been developed, which can be categorized across several
dimensions [148, 50, 53]. Self-explanatory approaches
incorporate explainability directly into GNN models, e.g.,
[18, 156]. Post-hoc methods [144, 29, 76, 147, 101, 118,
149] create a separate model to provide explanations for
an existing GNN. In global explanation methods, users
understand how the model works globally by inspecting
the structures and parameters of a GNN model, or by
generating graph patterns which maximize a certain pre-
diction of the model [147]. In contrast, local methods
examine an individual prediction of a model, figuring
out why the model makes the decision on a specific test
instance [144, 29, 101, 118, 149]. Forward explainabil-
ity methods are GNN model-agnostic by learning evi-
dences about graphs or nodes passed through the GNN.
They can be perturbation-based, that is, masking some
node features and/or edge features and analyzing the
changes when the modified graphs are passed through
GNNs [144]. They might also employ a simple, explain-
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able surrogate model to approximate the predictions of
a complex GNN [118]. In contrast, backward inter-
pretability methods are GNN model-specific and can be
either gradient-based [90] – backpropagating importance
signals backward from the output neuron of the model to
the individual nodes of the input graph, or decomposition-
based [103] – distributing the prediction score in a back-
propagation manner until the input layer. Thus, one
identifies which nodes, edges, and features contribute
the most to the specific output label in the GNN. Fur-
thermore, GNN explainability methods can be classified
as factual (i.e., finding a subgraph whose information
is sufficient – which, if retained, will result in the same
prediction), counterfactual (i.e., finding a subgraph that
is necessary – which, if removed, will result in a differ-
ent prediction), or both [110].

However, existing approaches in this field are lim-
ited to providing explanations for individual instances or
specific class labels. The main focus of these methods is
on defining explanations as crucial input features, often
in the shape of numerical encoding. These methods gen-
erally fall short in providing targeted and configurable
explanations for multiple class labels of interest. Ad-
ditionally, existing methods may return large explana-
tion structures and hence are not easily comprehensible.
These explanation structures often lack direct accessibil-
ity and cannot be queried easily, posing a challenge for
expert users who seek to inspect the specific reasoning
behind a GNN’s decision based on domain knowledge.

A recent work, GVEX [16] proposes a novel two-tier
explanation structure called explanation views. An ex-
planation view (similar to graph view) comprises a col-
lection of graph patterns along with a set of induced
explanation subgraphs. Given a database of multiple
graphs and a specific class label assigned by a GNN-
based classifier, lower-tier subgraphs provide insights
into the reasons behind the assignment of the label by
the classifier. They serve as both factual (that preserves
the result of classification) and counterfactual explana-
tions (which flips the result if removed). On the other
hand, the higher-tier patterns summarize the subgraphs
using common substructures for efficient search and ex-
ploration of these subgraphs. Analogously, RoboGExp
[92] introduces a new class of explanation structures
to provide robust, both counterfactual and factual ex-
planations for graph neural networks. Given a GNN,
a robust explanation refers to the fraction of a graph
that are counterfactual and factual explanation of the re-
sults of the GNN over the graph, but also remains so
for any “disturbance” by flipping up to k of its node
pairs. In particular, such explanation indicates “invari-
ant” representative structures for similar graphs that fall
into the same group, i.e., be “robust” to small changes
of the graphs, and be both “factual” and “counterfac-

tual”. Both GVEX and RoboGExp also emphasize ef-
fective, efficient, and scalable explanation generation by
providing theoretical approximation guarantees and de-
veloping parallel and streaming algorithms.

Synergy. We depict how GDM assists in generating bet-
ter GNN explanations, which is a GML task.
• Useful explanations. First, explanations should not
only dissect the decision-making process of GNN mod-
els, but can also zoom in/out on how certain features,
nodes, or subgraphs contribute to specific classifications,
that is, explanations can be provided across multiple gran-
ularity of concept hierarchy depending on the needs of
end users. Moreover, enhancing the accessibility, con-
figurability, and queryability of explanations is crucial.
Graph view-based two-tier explanations in GVEX [16]
provide the first step in this direction, and a natural ex-
tension might be generating an explanation OLAP cube
that can be drill up/down based on domain-specific re-
quirements. Second, explanations should be presented
in a user-friendly manner, possibly through visualiza-
tions or interactive tools that allow users to explore and
interrogate GNNs’ decisions. These tools could enable
desirable capabilities, e.g., highlighting critical substruc-
tures, providing interactive interfaces, and allowing tun-
able parameters for domain experts to “query” the model
about its decisions. It is paramount to think beyond “ex-
planation of GNN models” and towards “explanations
for users” to enable trust and effective deployment.
• Efficient explanations. Past research on explanation
generation often does not emphasize on efficiency and
scalability, e.g., requiring more than one day to generate
an explanation over large-scale graphs [16]. Real-time
explanations are key to interactiveness, configurability,
queryability, and in-depth exploration of GNNs’ deci-
sion making process. Parallel, streaming, and anytime
algorithms, modern hardware, and software-hardware
co-design have potentials to reduce explanation time.
• Diversified explanations. As stated earlier, several
quantitative metrics, e.g., fidelity, sparsity, contrastivity,
and stability are designed to evaluate explanation qual-
ity; however, no single measure is the best. It is impor-
tant to pursue explanations that optimize multi-objective
quality criteria, while also improving diversity. Con-
cepts from databases, such as Pareto optimality and a
skyline set of explanatory subgraphs can be useful.
• Better explanations to improve data pipeline. Finally,
explanations can reveal unfairness in GNN’s decision
making process, detect anomalies and potential threats,
help in model debugging, and assist organizations in
meeting compliance and regulations, thereby improving
the robustness of graph data pipeline.
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4. GRAPH ML FOR GRAPH
DATA MANAGEMENT

We illustrate applications of graph machine learning
and graph-based LLMs in knowledge graphs query an-
swering and other data science tasks.

4.1 Knowledge Graphs Query Answering
Query answering over datasets is an important data

management task. We consider knowledge graph (KG)
– a graph-based data model to store facts – denoted as
⟨subject, predicate, object⟩ triples, or a large-scale graph
having nodes (subjects and objects) and edges (predi-
cates) [132]. Querying KGs is critical for web search,
semantic search, fact checking, and personal assistants.
However, it is difficult due to their massive volume, het-
erogeneity, incompleteness, and schema flexibility. Ad-
ditionally, a user’s query (e.g., natural language query or
query graph) may not match exactly w.r.t. entities, rela-
tions, and structure of the KG, requiring approximate
matches to retrieve relevant answers [52].

Machine learning assists in (1) inferencing over KGs
to identify missing relations during query answering,
and also (2) finding approximate matches for queries [1,
39, 97]. (3) Natural language queries (NLQs) are se-
mantically parsed to structured queries (e.g., SPARQL
queries over KGs) using neural approaches [94]. (4)
More recent techniques employ sequential models for
end-to-end answering of NLQs over KGs, e.g., KEQA
[42] for simple NLQs and EmbedKGQA [100] for multi-
hop NLQs. (5) KG embedding methods can be useful as
well. Wang et al. [129, 128] decompose multi-hop and
complex queries into smaller subqueries, answer each
subquery via single-hop reasoning with KG embedding,
and then assemble the answers. In contrast, Query2box
[98] and follow-up works train on multi-hop queries –
they embed multi-hop logic queries and their answers
(i.e., entities from a KG) in the same embedding space
to reduce the query processing cost via inference.

Domain-specific knowledge graphs (KGs) [124, 66]
have been curated to host scientific, factual knowledge
rather than generic Web or common knowledge, such
as KGs in material science, healthcare, medicine, ed-
ucation, cybersecurity, biology, and chemistry. While
knowledge curation has been extensively studied, search-
ing domain data remains nontrivial. Domain experts are
still expected to write complex declarative queries (such
as SPARQL), or data scripts to access KGs. There is a
gap between the need of accessing KGs with (domain)
languages and optimized query processing within state-
of-the-art KG data systems. The rise of large language
models (LLMs), such as GPT provides promising capa-
bilities in generating natural language solutions in re-
sponse to users’ prompts. There are efforts on linking
LLMs to KG search and exploration [85], as well as

LLM-based knowledge graph exploratory search [60].
KG-enhanced, LLM-based QA is also studied: QAGNN
[143] and GreaseLM [153] fine-tune a vanilla LM with a
KG on downstream tasks, whereas DRAGON [142] and
JAKET [145] perform self-supervised pre-training from
both text and KGs at scale.

Synergy. Query processing is the bread-and-butter for
the data management community. We highlight how
GML and LLMs assist in KG querying and QA.
• Natural language query processing. Natural language
interfaces to databases (NLIDB) is the holy grail for
query interface to DBs – automatically translating nat-
ural language questions (NLQs) to structured queries
(e.g., SQL) that can be processed by a database manage-
ment system. With the prevalence of graph data (e.g.,
domain-specific KGs) and the standardization of graph
query languages (GQL), there is an emerging need to
covert NLQs to graph queries, e.g., Cypher, SPARQL,
Gremlin, GSQL, PGQL, etc. This is more challenging
due to the complexity and expressivity of graph queries,
coupled with the schema-flexibility and heterogeneity in
graph data. GNNs and LLMs can assist in these tasks
because of their understanding of contexts in conver-
sational QA, background knowledge, and capability of
dealing with natural language text. For instance, Neo4J
recently developed NeoDash2 which leverages LLMs to
interpret user’s input NLQs and generates Cypher queries
based on the provided schema definition.
• Approximate query processing. KGs are schema flexi-
ble, i.e., similar relationships between entity pairs can be
represented in different ways. Therefore, one needs to
construct various query patterns to retrieve all relevant
answers from the underlying dataset, which is challeng-
ing. This necessitates approximate matches w.r.t. users’
queries by understanding the query intent – KG embed-
ding and KG + query embedding approaches can sup-
port approximate matching via inference.
• Query processing over incomplete data. KGs follow
the open-world assumption, i.e., they are incomplete. To
retrieve the complete set of answers for a given query,
one must infer missing relations in KGs. In contrast, re-
lational DBs generally follow the closed-world assump-
tion with the presumption that all relevant knowledge
is explicitly stored within the DB. Additionally, dealing
with missing graph structure is more challenging than
imputing missing feature values. ML-based link predic-
tion and multi-hop inference techniques can be coupled
with graph queries to resolve these problems.
• Multimodal and multilingual data and queries. En-
tities and relations in a KG can have features with dif-
ferent data modalities, e.g., text, images, and multime-
dia data. Analogously, text data in node features and
2https://neo4j.com/labs/neodash/2.4/user-guide/extensions/
natural-language-queries/
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queries can be in different languages. Dense vector em-
bedding of multimodal and multilingual data, obtained
via deep models, provide a unique opportunity to query
such heterogeneous data. Data management techniques
can also contribute in querying vector data with high-
dimensional indexes and join, leveraging modern hard-
ware and geometric data processing.
• Graph databases and query optimization. ML ap-
proaches, e.g., deep learning, reinforcement learning,
and LLMs have shown promises in optimizing database
queries and enhancing database administration functions
such as query optimization, workload management, in-
dexing, and storage layouts. Although there are recent
developments in deep learning methods for graph pat-
tern search and cardinality estimation [158], more work
is needed in AI-facilitated graph databases and query
optimization. Graph ML algorithms could play a piv-
otal role in predicting access patterns, node importance,
learning graph indexes based on query characteristics.
By leveraging historical usage data and graph topology,
these systems can autonomously adapt storage strategies
and retrieval mechanisms to match the evolving needs.

4.2 Graph RAG-based LLMs in Data Sci-
ence Applications

LLMs which are a category of generative AI mod-
els and proficient at generating new text contents, offer
a myriad of opportunities in data science by automat-
ing data analysis, manipulation, querying, and interpre-
tation, as well as in code synthesis, digital assistants,
finance, law, and education. Nevertheless, due to poor
reasoning capacity, outdated or lack of domain knowl-
edge, expensive re-training costs, and limited context
lengths of LLMs, LLM-based data science pipelines of-
ten struggle with complex tasks – they hallucinate, i.e.,
generate factually incorrect, or even harmful contents.
To address these issues, KGs are used as background
knowledge to enhance LLMs for downstream tasks. The
questions are parsed to identify relevant subgraphs from
KGs, then they are integrated and fused with LLMs based
on knowledge integration, prompt augmentation, and re-
trieval augmented generation (RAG). This framework,
known as graph RAG or KG-RAG [140], is increasingly
becoming popular due to its ability to capture the global
context, compared to conventional RAG that retrieves
knowledge from embeddings of textual chunks.

Recent works [80, 38, 130, 133] develop KG-unified
language models in a graph RAG style. They can be
broadly categorized into two groups according to the
roles of KGs: (1) KGs as background knowledge, and
(2) KGs as reasoning guidelines. While the former only
retrieves relevant subgraphs as contexts based on input
questions, the later retrieves the most relevant paths adap-
tively to guide the LLM’s reasoning process [106]. Graph

RAG is further added within LLM-based agent systems
to leverage structured knowledge for enhanced decision-
making and problem-solving capabilities [108].

Synergy. Besides GDM, effective text or vector pro-
cessing may benefit graph RAG. For example, (1) What
is the proper data model to represent and feed the re-
trieved knowledge to the LLM? Options include prompt-
based or embedding-based data model. For the former,
prompt engineering can be explored, such as serializ-
ing subgraphs to token sequences or ⟨subject, predicate,
object⟩ triples, to best exploit LLMs’ ability of text (nat-
ural language) processing. The latter can be better sup-
ported by vector databases (see § 3.3). (2) How to de-
sign indexes, search algorithms, and systems for more
complex and hybrid vector search, including graph traver-
sal with vector retrieval? Those may require unifying
graph DBs and vector DBs as external memory of LLMs.
(3) Graph query optimization, (explanatory) views, and
provenance can help in making graph RAG better grounded
by linking LLM response to factual knowledge at scale.
(4) Last but not least, graph DBs may be used as “se-
mantic caches” of LLMs by indexing previous question-
answer pairs into a graph or vector space, enabling se-
mantic matching with new queries instead of more ex-
pensive LLM API calls. These create new opportunities
for GDM and broader data management techniques to
play critical roles for graph RAG systems.

5. RELATED WORK
The closest to our work are surveys and tutorials on

ML for data management and data management for ML,
emphasizing on relational data and RDBMS [14, 59, 89,
43]. However, graph data result in unique challenges
to both data management and ML (§1), justifying the
importance of our survey.

Additionally, there are related surveys and tutorials
on, e.g., graph representation learning [11, 17], graph
neural networks [136, 155, 77], AI for data prepara-
tion [13], the role of graph data in graph ML [167],
distributed GNN training [104], explainable AI in data
management [91], ML explainability and robustness [19],
LLM+KG [85], and high-dimensional vector similarity
search [22], etc. However, none of them investigate the
synergy of GDM and GML. To the best of our knowl-
edge, ours is the first survey exploring the synergies be-
tween graph data management and graph ML over the
end-to-end graph data pipeline. We hope that our survey
will bridge the gap between these two popular domains
– GDM and GML, and would inspire others to work on
the emerging graph data challenges at their intersection.

6. FUTURE DIRECTIONS
Future work can be in several directions.
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Real-time Graph Learning and Inference. The in-
tegration of spatiotemporal GNNs and dynamic graphs
would enable the real-time decision that can rapidly ex-
plore evolving nodes and links. This calls for adaptive
graph query processing and optimization, online graph
learning, and real-time inference at scale. Graph anal-
ysis in finance, healthcare, security, and manufacturing
will benefit significantly from this capability.

Privacy-preserving Graph ML. As the usage of graph
data expands, so does the concern for privacy and secu-
rity. Future developments in the synergy between graph
machine learning and data management could delve into
advanced privacy-preserving techniques for graph data.
This might involve the integration of federated learn-
ing approaches, differential privacy, or novel encryp-
tion methods tailored to the unique characteristics of
graph structures. Ensuring the confidentiality of sen-
sitive graph information, while still extracting valuable
insights, poses an exciting challenge.

Robust Graph ML. GNNs can be sensitive under a set
of link perturbations or adversarial attacks. ML com-
munities have investigated several approaches on how
to quantify and improve the robustness of graph learn-
ing, e.g., certifiable robustness. Data management tech-
niques such as graph sparsification and cleaning can also
be employed. In the past, data imputation and integra-
tion for graphs have been extensively studied with the
objective of data correctness and completeness, instead
it would be interesting to clean graphs for optimizing the
robustness of graph learning.

Unifying LLMs+KGs+Vector DBs. Knowledge bases
such as KGs and data lakes support holistic integration
for multimodal data arriving from heterogeneous sources,
including tabular, key-value pairs, text, images, and mul-
timedia data. Vector embedding represents each predi-
cate and entity from diverse sources as a low-dimensional
vector, such that the original structures and relations in
the knowledge base are approximately preserved. Query-
ing these vectors are essential for a wide range of appli-
cations, e.g., QA and semantic search. Finally, LLM
pipelines are generally faster than traditional ML lifecy-
cles – thanks to simpler prompt-based interactions with-
out any requirement of re-training, making it easy to
build AI pipelines around LLMs. Thus, the unification
of three modern technologies LLMs, KGs, and vector
DBs seem indispensable. There also remain fundamen-
tal challenges, e.g., how to create a holistic embedding
across multiple modalities? It remains a nontrivial task
to explain the results of LLMs and to incorporate do-
main knowledge – KGs could assist in both following
graph RAG approaches. Analogously, adding human-
in-the-loop and analyzing utility vs. privacy, bias, and
fairness to derive quality solutions are important.
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Reminiscences on Influential Papers

This issue’s contributors cover papers that fo-
cus on different aspects of accessing data: RDFs,
approximate nearest neighbor search, and compact
hash tables. Furthermore, they all highlight the im-
pact of the papers not only on their own research
and career but also for the community in general.
Enjoy reading!

While I will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pınar Tözün, editor

IT University of Copenhagen, Denmark

pito@itu.dk

Zoi Kaoudi

IT University of Copenhagen, Denmark

zoka@itu.dk

Thomas Neumann, Gerhard Weikum.

RDF-3X: a RISC-style engine for RDF.

In Proceedings of the VLDB Endowment, Volume
1, Issue 1, pages 647-659, 2008.

At the time that this paper [7] was published, I
was doing my PhD and I was (feeling) part of the
Semantic Web community. My topic was on dis-
tributed RDF query processing, optimization, and
reasoning, so the paper was quite relevant to my
work. Back then, there had been several propos-
als on different centralized RDF stores mostly from
the Semantic Web community. Then, the RDF-
3X paper appeared at VLDB and it really made
a difference for me (and probably others). Its so-
lution seemed very simple and elegant and its per-
formance on runtime and scalability was remark-
able. Although I continued my PhD by publishing

in Semantic Web conferences, this paper, somehow
subconsiously, played a role into deciding to change
my career after my PhD and become part of the
database community.

The paper proposed RDF-3X, an efficient and
scalable RDF store engine. In contrast to most
of the works so far that were proposing to store
triples by splitting them in one table per property,
it proposed to store the triples into a single gigan-
tic 3-column table. Importantly, RDF-3X used all
possible column permultations as indices together
with dictionary encoding, and compression. This
idea is so simple yet so powerful that made an im-
pression on me. Later on, when I had already joined
the database community, I also heard that the pro-
posal of exhaustive indexing led to many interest-
ing and controversial discussions among database
researchers!

In the paper, the authors showed that having
all these indices stored not only improves data ac-
cess but makes the entire query processing faster.
RDF-3X query processor followed a RISC-style de-
sign philosophy: it relied mostly on merge joins over
sorted index lists. This was made possible thanks
to its exhaustive indexing scheme. RDF-3X also
encompassed a cost-based query optimizer to de-
termine the right join ordering. It achieved very
efficient cardinality estimation by utilizing the ex-
tensive indices and by maintaining an additional set
of RDF-specific statistics for joins. The evaluation
results showed huge performance benefits over sim-
ply loading the RDF data into a column-based or a
row-based relational database. Interestingly, none
of the open-source systems provided by the Seman-
tic Web community could scale to the dataset sizes
used in the experiments.

To conclude, I believe this paper has been very in-
fluencial across two different research communities
(Semantic Web and databases) thanks to its simple
idea and effective results. The fact that the system
was also available to use gave the opportunity to
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many researchers to come up with multiple follow-
up works. I find it very inspiring to see simple ideas
having such large impact in our research communi-
ties. I hope everyone takes that into account when
reviewing papers nowadays.

Fatemeh Nargesian

University of Rochester, NY, USA

fnargesian@rochester.edu

Aristides Gionis, Piotr Indyk, Rajeev Motwani.

Similarity Search in High Dimensions via
Hashing.

In Proceedings of the International Conference on
Very Large Data Bases, pages 518-529, 1999.

When I saw Pınar’s email asking for a couple of
paragraphs for this column, one clear choice came
to mind - and it remained unchanged despite all my
procrastination. This paper [3] belongs to the line
of work on Approximate Nearest Neighbor (ANN)
Search.

The paper introduces the Locality-Sensitive Hash-
ing (LSH) technique for approximate similarity search
in high-dimensional spaces. The motivation is the
inefficiency of traditional nearest neighbor search
methods as dimensionality increases - a phenomenon
known as the curse of dimensionality. The paper
defines a family of hash functions for Euclidean dis-
tance such that the probability of collision is much
higher for closer items than for others. These hash
functions help build small-footprint signatures, con-
sisting of hash values, that are similarity-preserving.
This property enables the efficient retrieval of sim-
ilar items without exhaustive comparisons. LSH
achieves this by mapping fragments of signatures
to buckets using standard hash functions. During
query time, only the subset of buckets that have the
same signatures as the query are searched. This
drastically reduces computation cost. The paper
provides provable guarantees on query time and ap-
proximation quality, specifically targeting (r, c·r)-
nearest neighbor search (i.e., returning a point within
distance c·r if any point exists within r).

I used various nearest neighbor search algorithms
for my PhD research to overcome the scalability and
efficiency challenges of data search in open reposi-
tories. While I always found these algorithms neat
and useful, it was not until the thesis and paper-
writing phase that I truly began to appreciate the
elegance of LSH techniques. And, it was not until
I started teaching the fundamentals of ANN search

to my students that I came to appreciate the knitty
gritty details of this paper and its previous and
follow-up work around it.

Following the body of work that has built upon
and around this paper has taught me a mindset and
connected me to a broader world of practical re-
search problems. While the VLDB’99 paper focuses
on Euclidean space, the family of LSH has been de-
veloped for a variety of similarity measures: Co-
sine, Dot Product, etc. In recent years, indexes for
approximate nearest neighbor search have regained
popularity due to vector databases. More recent
ANN indexes are shown to be more efficient and
scalable in practice. Graph-based techniques, such
as HNSW [6], NSG [2], and DiskANN [5], achieve
search times of (poly/)logarithmic complexity by
building proximity graphs with long-range and short-
range links. The inverted index-based techniques
such as FAISS, build an inverted index on the cen-
troid of data partitions and only search for nearest
neighbors within the partition associated with the
closest centroid. Some of these techniques are in-
memory and some are disk-based; some use prod-
uct quantization and compression to reduce mem-
ory footprint; and, almost all scale to benchmark
datasets of billions of points and are deployed in
industry applications. The main difference, how-
ever, between the LSH family and the new genera-
tion of ANN, as shown by recent studies [4], is in
their worst-case performance. The VLDB’99 paper
shows that LSH has truly sublinear search time de-
pendence on data size. Whereas, almost all others,
with the exception of DiskANN, suffer from worst-
case linear search time. Even DiskANN, which of-
fers an improved worst-case complexity, does so at
the cost of very slow preprocessing.

In the era of transformers and super-fast search
techniques and all that give us great results and
spark our curiosity to ask “why does it work and
when not?”, this paper has remained, for me, an
example to follow in my own research; a reminder
for when settling on an approximation for time-
tradeoff, think about the guarantees of how fast and
approximate our approximation is.

Niv Dayan

University of Toronto, Canada

nivdayan@cs.toronto.edu

John G. Cleary.

Compact hash tables using bidirectional lin-
ear probing.
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In IEEE Transactions on Computers, Volume C-
33, Issue 9, pages 828-834, 1984.

My first encounter with Bloom filters was a love
at first sight. A Bloom filter is a space-efficient
probabilistic data structure that allows you to test
whether a key is definitely not in a set, or possibly
is. By compressing a set of keys into a compact bit
array in memory, Bloom filters enable fast mem-
bership tests that help avoid expensive storage or
network lookups when the key in question is absent.

Originally proposed in 1970, Bloom filters have
become a mainstay in modern systems. Yet, despite
their widespread use, they suffer from two impor-
tant limitations. First, they do not support dele-
tions or dynamic expansion as the dataset grows.
Second, they only support point queries-checking
for the presence of individual keys-but not range
queries, which are essential in many database ap-
plications that need to determine whether an entire
range is empty.

Over the past few years, our lab has been ex-
ploring ways to overcome these limitations. A key
source of inspiration in our journey has been the
paper “Compact Hash Tables Using Bidirectional
Linear Probing” by John G. Cleary from 1984 [1].
This paper presents a compact hash table design
built on four major ideas:

1. Quotienting – storing only the suffix of a key,
inferring the prefix from its location.

2. Robin Hood Hashing – resolving hash colli-
sions by searching sequentially for a nearby
available slot, while keeping colliding entries
adajcent.

3. Dual bitmaps – marking the start and end of
clustered entries that map to the same slot.

4. Prefix sum arrays – aggregating the 1s in the
bitmaps to support efficient navigation and search.

I appreciate this paper not only for its technical
contributions, but also for its clarity—it explains
complex concepts in intuitive, problem-driven terms
without compromising on rigor. Many filter data
structures developed over the past 15 years have
drawn from this framework to provide more memory-
efficient alternatives to Bloom filters that also sup-
port deletions.

These ideas have directly informed our research.
In our InfiniFilter (SIGMOD 2023) and Aleph Fil-
ter (VLDB 2024) papers, we designed filters that
can dynamically expand while maintaining a sta-
ble false positive rate. We achieve this by using

variable-sized fingerprints padded with unary codes.
Supporting this feature required a hash table whose
collision resolution does not depend on the finger-
prints themselves, unlike in Cuckoo filters. The
Cleary data structure was an ideal fit.

Our recent work on range filters has also benefited
from this foundation. Memento Filter (SIGMOD
2025), for instance, stores variable-length payloads
alongside keys—something that’s naturally supported
by Robin Hood hashing, where entries can simply be
pushed and pulled in sequence. Our newest range
filter, Diva (currently under submission to VLDB
2025), goes a step further by encoding key infixes
and relying on the Cleary structure being order-
preserving. Interestingly, the Cleary data structure
wasn’t originally proposed with these use-cases in
mind, yet it turns out to be exactly what we needed
for each of the above projects.

We would also like to acknowledge the influential
paper“A General-Purpose Counting Filter: Making
Every Bit Count” by Pandey et al. from SIGMOD
2017 [8]. This work demonstrated how to search
similar structures using rank and select primitives
implemented efficiently using CPU instructions in-
troduced in Intel’s Haswell line of processors (Bit
Manipulation Instruction Set 2). It also showed how
to succinctly encode counters to allow representing
multisets. We built on top of this excellent design
and its codebase in many of our projects.

Of course, these are just a few highlights among
the many foundational papers that have shaped our
thinking. Our pursuit may be compact data struc-
tures, but the foundation beneath them is anything
but small.
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ADVICE TO MID-CAREER RESEARCHERS 
 

On nurturing doubt and intuition 
 

Sihem AMER-YAHIA , CNRS, Univ. Grenoble Alpes, France
 

When I was 5 growing up in Algiers, my parents took 
me to the music conservatory and asked me which 
instrument I wanted to learn to play. I did not know the 
answer and I said I wanted to sign up for Ballet dancing. 
Since then, dancing has been  central to my life. When 
they asked me what I wanted to do after high school, I 
did not know the answer and I chose computer science 
because I heard my Math teacher say it was the future. 
When my husband asked me to marry him, I literally 
answered “I am hungry, let’s get dinner”. Since then, 
dinner has been a special moment for us. I was in my 
mid-career transition when I moved from NYC to 
Barcelona to Doha and then to Grenoble. I love not 
knowing the answer and yet making great choices. My 
mid-career advice is: nurture doubt, develop intuition, 
and learn to make great choices. 

The biggest change you will experience when entering 
your mid-career phase is a widening of your choices. 
That applies to your collaborators, your academic 
responsibilities, the conferences you will attend, the 
projects you will get involved in as a leader or as a 
partner, the people you want to mentor, the life choices 
you get to make, the grants you will apply for, the topics 
you want to work on, the services you get to complete 
for your research community, and the students and 
collaborators you will interact with on a daily basis. 
Choice is a blessing and a responsibility. 

On choice and responsibility 

I don’t know for you but when I turned 40, about a 
decade ago, I was suddenly faced with a diverse set of 
choices: whether to go to Academia or Industry, the 
country and even the continent to live in and work on, 
my life partner, and many other important decisions, 
such as whether I should continue with classical Ballet 
dancing or switch to softer modern Jazz. I feel like mid-
career transitions are just like that. At this stage in your 
career, you have the luxury of choice. With that, comes 
responsibility. All of a sudden, you become a role 
model. That shift from being a junior-on-the way-to-
senior is so palpable you cannot ignore it. Expect to be 
the senior in the room and when you are, ask yourself 

what piece of advice you can provide to others. Are you 
the role model you want to be? What is the image you 
are projecting? Are you being nice to juniors? How can 
you help them? 

Surround yourself with seniors 

A senior-to-be often attracts juniors in search of role 
models. Being a role model for those juniors is a major 
endeavor you should pursue. At the same time, you need 
to find energy and inspiration in others. It helps to be the 
junior in the room for that. Actively search out mentors 
to learn from, nurture your relationships and enjoy 
learning from them. I find that as I entered my mid-
career phase, my discussions with seniors became more 
open and more in touch with my feelings. I was feeling 
less concerned about what they could think about me 
and I could more easily express my opinions. My 
interactions with seniors became more fruitful from then 
on. Also, remember there will always be smarter people 
around you. Stay humble, listen to others, and do not 
forget you can always learn from them, be they seniors, 
mid-careers, or juniors.   

Don't be afraid to play senior 

Playing senior is not easy for a soon-to-become-senior. 
Seniors know that and they also know that if you’re 
trying hard and if you believe in what you’re doing, their 
role is to help. People who are more senior than you can 
read you. They have been there and they can see bits of 
themselves in you. So, if you want to play senior, don’t 
shy away from asking them for advice.  

All of a sudden, you are the center of attention 

In my experience, the mid-career phase is when you get 
approached by most people: juniors who need support, 
seniors who need your expertise, and value your energy, 
and other seniors-to-be who know you will complement 
their expertise, colleagues who need Associate Editors 
and Editors in Chief, those who seek keynote speakers, 
those looking for support letters, those searching 
members of their hiring committee, those looking for 
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reviewers of PhD theses, those seeking to nominate not-
so-junior and not-senior researchers for awards. That, 
added to the fact that you are expected to take on new 
responsibilities such as project leadership and 
coordination, will require you to rethink time 
management. Simple quantification measures could be 
applied. Quantify the effort you make for each task and 
aim for balance. Think about your more junior 
colleagues who are seldomly invited to be conference 
officers and suggest they get invited instead of you. 

Remain motivated 

Depending on where you live you may become tenured 
as soon as you are hired (it is the case in Academia in 
France), never (it’s the case in Academia in Chile), or 
just now. If you were in France or in Chile you’d have 
asked yourself the motivation question already. In other 
places where you just got tenure, you need to ask 
yourself that question because and assuming it was until 
now, getting tenure is not your motivation anymore. 
What motivates humans? Peer recognition, monetary 
compensation, altruism, challenges, pride. Ask yourself 
what motivates you and how you can keep going. 
Freedom to explore anything is something that has 
always motivated me. 

Remember where you came from and pay attention 
at your surroundings 

It is helpful to remember where you came from and what 
your progression has been and what it took to get there. 
Do you want to continue with the same levers? Do you 
want to make the same sacrifices? And while you’re at 
it, remember those who lifted you, those you are lifting, 
and those who help you do your work. Undeniably, 
some seniors will be jealous because you are still young 
and vibrant and some juniors may try to ride your wave 
with little effort on their part. Learn to cut off toxic 
relationships and move on. I do not have a recipe for that 
and I fell into some hurtful traps. I would have paid 
more attention if I had known. 

It is okay to fail, try understanding why 

You just succeeded in achieving a major step in your 
professional life. Now, you can afford to fail from time 
to time. Failure is a gift and an opportunity to learn 
from. Remember we are competing with very smart and 

hardworking folks, and remember that real life is not 
always fair. Talk to others, explain your failures, and ask 
them their opinion on why some project, research idea, 
paper, application of yours did not make it. We do not 
talk enough about our failures and we can learn so much 
from them. One of my favorite events is the Failed 
Aspirations in Database Systems (FADS@VLDB) 
workshop. I hope that as a community we could hold 
more events like those. I have been working with people 
in other disciplines, medical doctors, economists, law 
professors, and education scientists. It is only after I 
talked to some of them in more relaxed social settings, 
over lunch or dinner, that I understood why some of our 
attempts failed: why did they not promptly share data 
with me after promising to do so? Why could I not get 
them to contribute a paragraph or two when I needed 
that? Why is our student feeling frustrated? Why are we 
not able to converge toward the same goal? More 
freedom undeniably leads to more failures. All you need 
is to learn to deal with your failures.  

Understand what success means to you 

Now that you are a junior senior, you need to think about 
what you are seeking next. If you made it this far it 
means your community recognized you for some work 
and can associate your name to some research topics 
you helped further. You can now work on your right to 
be “forgotten” for that and remembered 5, 10 years from 
now, for something else. That other thing is a 
combination of research and service. It needs to be a 
new research topic because you want to keep 
innovating. I feel very proud of making that shift and 
bringing social computing to the database community 
and I thank TCDE and VLDB for providing me awards 
for that. It also needs to be about service because your 
community would benefit from what you can bring 
(thank you Tamer for running the advice to mid-
careers). I feel very proud of having succeeded to 
establish the diversity equity and inclusion initiative in 
the database community and I thank SIGMOD for 
recognizing my efforts with an award. 

Your network 

As a junior senior, you have probably figured that 
collaborating with others is essential in research. Let me 
argue why it matters even more now. I was told very 
early on in my career that once you find a collaborator 
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who matches your interests, make sure to nurture that 
collaboration. I have been told to learn to see the best 
side in others. I have been lucky to meet amazing 
colleagues. I also believe the harder I work the luckier I 
get. All that forms a magic recipe for fruitful 
collaborations. I firmly believe that being kind to others 
and being generous with one’s time and effort pays off. 
So, my strongest advice is to strive to be kind and 
generous because the more senior you are, which is 
undeniably the path you are set to follow, the scarier you 
become to the younger generation. So, be both nice and 
firm.   

Understand your recovery activities and remember 
to pause and smell the flowers 

How do you recover from effort and refuel for the next 
steps? Hobbies, exercise, family, friends, travels, doing 
nothing, drinking tea, gardening, cooking for hours? 
You may want to think about your current recovery 
activities and if you want to take on new ones. Just like 
starting new research topics, starting new recovery 
activities is a renewal.  

Prepare to face slower times 

All researchers experience a slowdown some time in 
their career. While that may bring some frustration, 
think about how to exploit that moment. Time to 
consider different publication venues? Time to attend 
conferences from other communities? Time to venture 
into new topics? Time to focus more on listening to your 
students and mentees?  

Prepare your future by being attuned to your time 

Every research community has its preferences and 
nurtures them. This will continue to be the case and it 
will help you ride the wave of hot research. As a mid-
career researcher you can start asking yourself what will 
make your research community still relevant in 5, 10 
years and what will make it societally relevant. I find 
this exercise difficult and rewarding. I started working 
on ranking algorithms that accounted for relevance and 
diversity because I wondered how we could make 
Boolean database queries more relevant to people. I 
started working on algorithmic fairness on labor 
platforms because I asked myself the question of how 
people were treated on crowdsourcing platforms. I 

learned how to deploy principled user studies when I 
paid attention to closing the loop between experiments 
and algorithm design. I started working on Education 
because I wondered if people learned anything by 
collaborating with others in solving tasks. All these 
questions led me to expanding my horizons to other 
research communities in Computer Science, SIGIR, 
TWC, and ICWSM, but also other sciences, Law, 
Economics, Education, and Medicine.  

Today, one may ask how their work may contribute to 
inequality reduction, climate protection, and quality 
education. While making that effort you need to 
confront and reject the feeling that you have to be doing 
something big to be doing anything at all. What are the 
smallest steps you could take today, and with whom, to 
make a difference. How many other jobs provide one 
the opportunity to ask themselves such a question? You 
have the best job in the world, a perfect balance of 
doubt, intuition, and continuous learning and 
intellectual effort. Remember that.  

 

A few months ago, I was approached by colleagues from 
our AI institute in Grenoble who work on creative 
thinking and creative design. They suggested we put 
together a project on how data and generative AI could 
impact human creativity. Engaging myself in such a 
project appeared to me as the paroxysm of doubt. At the 
same time, intuitively, it felt like a natural next step in 
my research: after treating humans as mere receivers of 
query results, data producers in online platforms, 
workers on crowdsourcing and labor marketplaces, 
learners on an online education platform, here I am 
asking myself how to help people be more creative. If I 
had allowed myself to think about this rationally, I 
would not have accepted. For the first time I am going 
to start my research by running qualitative and 
quantitative experiments with human subjects to gather 
their interactions with Generative AI as a companion or 
as a tool, before seeking to solve any technical question. 
I feel very excited about that despite not knowing where 
I am heading and not even knowing if it is a great 
choice. One thing I know this time is that the journey 
will be rewarding and that is something we have the 
luxury to afford in our job. 
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The Case for a New Cloud-Native Programming Model
with Pure Functions

Ana Klimovic
ETH Zurich

aklimovic@ethz.ch

Cloud evolution: Over the past two decades, the cloud
has become the dominant platform for running all kinds
of applications, from data analytics to web services. In
the process, cloud platforms have evolved from rent-
ing virtual machines (VMs) on-demand to offering elas-
tic compute and storage services. While the ability
to support legacy applications was critical in the early
days of cloud to ease migration from on-premise, to-
day’s users commonly develop cloud-native applications
by composing cloud storage services (e.g., S3), com-
pute services (e.g., AWS Lambda), data analytics ser-
vices (e.g., BigQuery), machine learning services (Azure
ML), and elastic databases (e.g., Snowflake [4]). With
this approach, users no longer need to explicitly provi-
sion CPU/memory/storage for their applications, as the
elastic services automatically scale-out based on load
and bill users for the resources consumed [7].

Opportunity and obstacle: By abstracting resource
management from users, elastic cloud services have the
potential to optimize resource allocation, task schedul-
ing, and data movement under the hood to improve
overall performance and energy-efficiency. Multi-tenant
cloud services like AWS S3 and Lambda can optimize
resource allocation with a global view across users [8].

However, a major optimization obstacle is that to-
day’s cloud programming model captures very little
about the resource requirements and data access pat-
terns of individual applications, leaving cloud services
with little information to apply optimizations. Despite
new cloud-native models like Functions as a Service
(FaaS), today’s cloud is still built around the princi-
ple of executing opaque1 user applications inside VMs.
For example, FaaS platforms execute a user function
as an opaque unit in a MicroVM [1]. Each server-
less function arbitrarily combines custom computation
logic and calls to external cloud services for data pass-
ing. The platform is not aware of inter-function nor
inter-service dependencies, making it difficult to opti-
mize task scheduling and data prefetching. As a result,
serverless functions often spend a large fraction of their

1Opaque execution refers to execution with no awareness of
application characteristics, such as data dependencies.

execution time blocked on I/O [5]. To avoid idling CPU
cores while functions block, the platform can multiplex
many VMs per core. However, context switching se-
curely between VMs adds latency [2] and comes with a
high memory footprint, as the platform must allocate
the total memory needed for all in-flight VMs.
Rethink the programming model: A promising way to
enable cloud platforms to improve performance and re-
source efficiency is to rethink the cloud-native program-
ming model, such that users develop applications in
ways that provide the cloud platform with key infor-
mation to guide task scheduling and data prefetching
optimizations.

We propose a programming model that strictly sepa-
rates compute tasks (custom user logic) and I/O tasks
(interactions between cloud services). In this new
paradigm, users express applications by composing two
types of functions: 1) pure compute functions, i.e., un-
trusted user code snippets that compute exclusively on
declared inputs and produce declared outputs and 2)
I/O functions, i.e., trusted code implemented by the
platform and exposed to users as a library, enabling in-
teraction with other services, like storage.

Separating compute and I/O has several benefits.
First, it makes application dataflow explicit to the plat-
form, enabling data prefetching and task scheduling op-
timizations [3, 11]. For example, the platform can co-
locate functions that need to exchange data and allocate
CPU cores and memory to functions only when their in-
puts are ready. Second, separating I/O tasks (which re-
quire interaction with the operating system and hence
have a large attack surface) from other user code en-
ables executing user code with more lightweight isola-
tion mechanisms than canonical VMs [9, 10] to improve
performance. Finally, separating computation and I/O
in the programming model simplifies offloading each
type of task to hardware accelerators, as accelerators
are typically specialized for either fast computation or
fast I/O. We are currently exploring these ideas in Dan-
delion [6], a new serverless platform.
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Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community. I’m 
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You have done a lot in the database field. We are eager 
to learn a little bit about your work and your thoughts 
about the field. One topic that immediately comes to 
mind is time series analytics. You’ve been working in 
that for over two decades, so can you talk a little bit 
about the advances for data management in that field? 

Thank you very much for the invitation, Jag. It's an 
honor to be part of this series. 
For the last several years, time series analytics1 has been 
the core focus of the work in my lab, and with my 
collaborators. What is interesting about time series is 
that it includes several different challenging data 
management problems. So this is what got me really 
excited since the first time that I got into this area, and 
I'm still excited to work on this now. 
It's not an easy data management problem for two main 
reasons. One is that we're talking about a special data 
type that is very high dimensional. You can think of a 
time series as a long sequence of real values. This 
sequence can be thought of as a vector, right? So we are 
talking about a high dimensional vector, and it does not 
matter if we're talking about a large collection of small 
vectors or a single, very long series or infinite series. In 
either case, the patterns of interest (the patterns that we 
want to identify and analyze) are in the order of several 
hundreds to several thousands of points. And this 
basically defines the dimensionality of the space in 
which we need to work. So, we have these high 
dimensional spaces of hundreds to thousands of 
dimensions – this is the first challenge. 
The second challenge is that the datasets that we want 
to work with are often very large: they are in the order 
of terabytes, or even petabytes. There are plenty of 
examples of these across all disciplines and domains. To 
give you an idea, I can mention astrophysics. You may 
have heard about the gravitational waves that were 
recently detected for the first time. A gravitational wave 
is nothing else but a time series. What is even more 
interesting is that the machinery that the physicists have 
set up to be able to detect these series is so extensive and 
so complex that it needs to monitor itself to make sure 
that everything works correctly. This machinery 
involves in the order of 10,000 additional streaming 
series produced by sensors, which monitor the 
operational health of the machine that detects 

 
1 Themis Palpanas, Volker Beckmann. Report on the First and 

Second Interdisciplinary Time Series Analysis Workshop 
(ITISA). ACM SIGMOD Record 48(3), 2019. 

2 Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, 
Houda Benbrahim: The Lernaean Hydra of Data Series 
Similarity Search: An Experimental Evaluation of the State 
of the Art. Proc. VLDB Endow. 12(2): 112-127 (2018). 

gravitational waves. Obviously, all these series need to 
be analyzed as fast as possible. In some particular cases, 
we are interested in analyzing these signals in near real-
time, because we may end up detecting some interesting 
signal that would allow us to then turn on another kind 
of telescope, for example, gamma-ray telescopes, 
towards the source that we have identified. There is a 
window of a few minutes when this could be done. So, 
there is a lot of interest in this community in having very 
accurate and also very scalable ways of analyzing all 
these time series. 
In time series analysis, similarity search, clustering, 
classification, frequent patterns, and anomaly detection 
are some of the very interesting and challenging 
problems that the community is working on. Similarity 
search is very often employed in these other kinds of 
analysis as well. For example, k-NN classification is 
based on similarity search.  
If we take a look at similarity search (this has also been 
the main focus of our own work), there are several 
different subproblems2. For example, what happens 
when you are interested in different kinds of distances? 
Some applications may use Euclidean distance. Some 
other applications may use some elastic distance 
measure that allows you to match interesting patterns, 
even if they are not aligned in time (e.g., Dynamic Time 
Warping (DTW)). Having picked our distance, there are 
similarity search flavors depending on the length of the 
(data and query) series. We may have a large collection 
of small series to analyze, or we may have a single long 
series, where we need to look at all its subsequences. 
We need different solutions for each of these cases. Do 
we want to do whole matching (match the entire query 
against some candidates), or do we want to do 
subsequence matching (match part of the query or part 
of the candidate)?  
We also have different kinds of query-answering 
solutions. We can have exact queries, where we always 
return the exact answer with probability one, but we also 
have approximate queries with several different 
flavors3. They range from approximate queries with 
deterministic guarantees –with probability one, return 
answers within an error e of the exact answer–, or we 
can have approximate queries with probabilistic 
guarantees, or even approximate queries with no 
guarantees whatsoever. This last type of similarity 

3 Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, 
Houda Benbrahim: Return of the Lernaean Hydra: 
Experimental Evaluation of Data Series Approximate 
Similarity Search. Proc. VLDB Endow. 13(3): 403-420 
(2019). 
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queries, approximate with no guarantees (ng-
approximate), may initially sound strange, but is widely 
used in practice: the answers that they give back are, 
most of the time, very close to the exact answers, and 
they are much faster than the other flavors of similarity 
search. So, in order to favor speed, several applications 
may drop the quality guarantees. 
Interestingly, as the hardware started changing, we also 
had to look at this dimension as well: study these 
problems related to different hardware configurations. 
What happens when the dataset is in-memory? What 
happens if the dataset cannot fit in main memory? How 
do we parallelize when we are in a single node? How 
can we take advantage of GPUs? What happens if we 
go to a distributed setting?  

There has been lots of work on all these different 
problems in the last twenty years, and these problems 
have been the main focus of the work in my group. 
There now exist algorithms that are pretty efficient for 
all these situations, and we developed several of the 
state-of-the-art solutions for the entire spectrum of these 
problems4. 
In the past 20 years, one particular type of similarity 
search, exact search, has been sped up by 2-3 orders of 
magnitude. What is most interesting is that the progress 
that we have made for this problem was all due to ideas 

 
4 Themis Palpanas. Evolution of a Data Series Index - The 

iSAX Family of Data Series Indexes. Communications in 
Computer and Information Science (CCIS) 1197, 2020. 

5 Ilias Azizi, Karima Echihabi, Themis Palpanas: Elpis: 
Graph-Based Similarity Search for Scalable Data Science. 
Proc. VLDB Endow. 16(6): 1548-1559 (2023). 

6 Jiuqi Wei, Botao Peng, Xiaodong Lee, Themis Palpanas: 
DET-LSH: A Locality-Sensitive Hashing Scheme with 

coming from data management: how to best organize 
and then access the data.  
Note that several different sub-communities are related 
to this problem, including data management, 
information retrieval, time series, and machine learning. 
Personally, I started looking at this problem by studying 
the literature in the time series community. Though, 
remember that, conceptually, time series are vectors. As 
such, all the work that we have done in data 
management in the area of multidimensional points 
(e.g., R-trees, k-d-trees, X-trees, M-trees, LSH) is 
relevant. Recently, another community working on this 
problem proposed a graph representation, the k-NN 
Graphs, and corresponding solutions.  
Just a few years ago, my group conducted the first study 
that looked at the solutions coming from all these 
different communities2,3. What was really surprising for 
me was to actually see that the techniques that we have 
been developing for time series were working extremely 
well for general high-dimensional vectors, as well. It is 
now very interesting that we are at a point where we can 
close the loop, study the solutions from all these 
communities together, compare them, and learn from 
one another. I find this very exciting, and we already 
have high dimensional vector indexes using such cross-
pollinated ideas with very promising results5,6,7. 
This is a crucial observation going forward, because 
general high-dimensional vectors are now used widely 
for indexing and searching large collections of deep 
embeddings. We can now embed any complex object 
(e.g., video or image) into a high dimensional vector, 
and then we can analyze these objects in the embedded 
space, since it is much easier doing similarity search of 
vectors instead of the original videos. Then suddenly, 
this kind of complex analytics with any kind of object 
becomes easier and faster, because they are now based 
on high-dimensional vectors. All the work that we have 
been doing is very relevant to this case as well. 
There are two Special Issues in the IEEE Data 
Engineering Bulletin, in September 20238 and 
September 20249. Whoever is working on this field 
should read this collection of papers. They talk about 
several of these different solutions and how they relate 
to one another. So, I think that is a very exciting area to 
work on, with many real and challenging applications.  

Dynamic Encoding Tree for Approximate Nearest Neighbor 
Search. Proc. VLDB Endow. 17(9): 2241-2254 (2024). 

7 Qitong Wang, Ioana Ileana, Themis Palpanas: LeaFi: Data 
Series Indexes on Steroids with Learned Filters. Proc. ACM 
Manag. Data 3(1): 51:1-51:27 (2025). 

8 http://sites.computer.org/debull/A23sept/issue1.htm  
9 http://sites.computer.org/debull/A24sept/issue1.htm  
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You mentioned a number of technologies that you would 
bring to bear from many different areas, but notably, 
you didn't mention anything about AI, which seems to 
be so much in the news these days. How do you feel 
about neural networks and LLMs? So, for example, 
could you use LLMs to analyze, say, news and correlate 
them with the stock market values or political events, 
you know, things like this?  

Yes, definitely. All these kinds of solutions are now 
extremely popular. It is true that different deep learning 
solutions have been applied to most of these problems, 
especially on the traditional mining learning tasks 
(clustering, classification, forecasting, anomaly 
detection). But it seems that we are not yet at the point 
where we should throw away the traditional solutions. 
In the last couple of years, we have started seeing 
different studies that compare all these methods.  
I think that the overall conclusion is that there is no 
single best solution across a wide range of different data 
sets. But even more importantly, it is not at all certain 
that deep learning is doing better than traditional 
methods. Mind you that deep learning oftentimes needs 
training that some traditional methods do not need; or it 
needs more training than traditional methods. So, I think 
that there is still no final verdict on this. However, I’m 
not against machine learning and deep learning. All 
these techniques come with a certain promise – they can 
adapt to different kinds of data (with a demonstrated 
positive impact on high dimensional vector similarity 
search10 and anomaly detection11). They can also learn 
by themselves, and lead, for example, to anomaly 
detection solutions with no explicit user-specified 
algorithm on how to define or find anomalies.  
Another important point is that deep learning methods 
can naturally handle multivariate data series. Usually, 
when we talk about time series, we have in mind some 
time series where each point in this time series is a 
scalar; it is a single real value. But each one of these 
points can also be a vector of values. We call these series 
multivariate. For example, a sensor that produces 
temperature, humidity, and vibration. Deep learning, in 
particular, is very good at handling multivariate series. 
This is important because going multivariate with 
traditional techniques, for many of them (if not all of 
them), means that the complexity explodes, either time 
complexity or space complexity – usually both. The 
community has started looking at how we can integrate 

 
10 Qitong Wang, Themis Palpanas: SEAnet: A Deep Learning 

Architecture for Data Series Similarity Search. IEEE Trans. 
Knowl. Data Eng. 35(12): 12972-12986 (2023). 

11 Emmanouil Sylligardos, Paul Boniol, John Paparrizos, 
Panos E. Trahanias, Themis Palpanas: Choose Wisely: An 
Extensive Evaluation of Model Selection for Anomaly 

these kinds of ideas in this context, and my group, as 
well12. Once again, I think that this is a very promising 
research direction: it gives us the opportunity to 
inherently process multivariate datasets, and to become 
more data-adaptive, which translates to increased 
efficiency.  

You just said something about the interaction between 
time series and data management and thinking about it 
as two separate things. So, I'd like to understand how 
you feel about the DB community and the kind of work 
that you do and others do on time series data analysis. 
Is it a good relationship? Would you like to change 
things?  

To clarify my point, I do not consider time series 
separate from data management. There are several 
commercial data management products nowadays 
focusing on time series management. These are systems 
that cater to the IoT kind of applications, or to 
operational health monitoring. Though, in the context of 
these systems, there is still lots of research work to be 
done. There is work on building declarative interfaces, 
as well as on the backend of these systems in terms of 
optimizing the operations they need to perform and their 
execution. There are no sophisticated, optimized 
solutions for similarity search; the same for other kinds 
of more complex analytics, including clustering and 
classification. Having said that, it is also true that there 
are other communities that are relevant here, such as 
machine learning and data mining, but this has been true 
in the past as well for the mining and analysis of 
structured data.  
Another point here is that if you observe the different 
data management conferences, there is usually no 
explicit mention to time series. In the list of topics, time 
series papers are treated as papers under the “temporal 
databases” category. However, this is not exactly what 
time series are. There are differences between temporal 
databases and all the methods we use for time series 
analysis. This year, VLDB explicitly mentions both 
“time series” and “high-dimensional vectors” in the list 
of topics, which I feel is very important. 

Besides time series, you have done a lot of work on 
entity recognition and data integration. Would you like 
to talk a little bit about that area?  

Detection in Time Series. Proc. VLDB Endow. 16(11): 
3418-3432 (2023). 

12 Paul Boniol, Mohammed Meftah, Emmanuel Remy, Themis 
Palpanas: dCAM: Dimension-wise Class Activation Map 
for Explaining Multivariate Data Series Classification. 
SIGMOD Conference 2022: 1175-1189. 
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This is another topic on which I have been working for 
more than 10 years, and I have to acknowledge my 
collaborator Dr George Papadakis, who has been the 
main driving force behind this work. In this area, our 
focus has been on scalability in entity resolution13. Just 
to give some context, in entity resolution, we need to 
identify whether or not two entities refer to the same 
real-world object. In general, when we have a collection 
of entities, we need to perform a quadratic number of 
comparisons (all to all), to figure out which of these 
entities are the same. One way of scaling this problem 
is by performing blocking, that is, grouping similar 
entities together so that when we want to compare 
entities, we only compare the entities that belong to the 
same block.  

In this context of blocking, we have developed solutions 
that are scalable and domain-agnostic. One particular 
method that we proposed is Meta-blocking14, which 
takes as input a set of blocks, and transforms it into a 
new set of blocks that drastically reduces the number of 
entity comparisons, while attaining essentially the same 
recall. Meta-blocking is based on the idea of 
representing a blocking solution as a graph (where 
entities are represented as nodes, and edges connect 
entities that share at least one common block in the 
original blocking solution), and then manipulating this 
graph to eliminate superfluous comparisons.  
This technique has been proven extremely efficient for 
different kinds of data, including unstructured data, 
where there are no specific attributes for each entity. It 
has been used in online settings for progressive entity 
resolution15, and has also been extended to supervised 

 
13 George Papadakis, Georgios M. Mandilaras, Luca 

Gagliardelli, Giovanni Simonini, Emmanouil Thanos, 
George Giannakopoulos, Sonia Bergamaschi, Themis 
Palpanas, Manolis Koubarakis: Three-dimensional Entity 
Resolution with JedAI. Inf. Syst. 93: 101565 (2020). 

14 George Papadakis, Georgia Koutrika, Themis Palpanas, 
Wolfgang Nejdl: Meta-Blocking: Taking Entity 
Resolutionto the Next Level. IEEE Trans. Knowl. Data Eng. 
26(8): 1946-1960 (2014). 

15 Giovanni Simonini, George Papadakis, Themis Palpanas, 
Sonia Bergamaschi: Schema-Agnostic Progressive Entity 

meta-blocking16, where you have a machine-learning 
technique that tells you how to prune this meta-blocking 
graph to end up with the final set of blocks.  
The above methods, as well as the related work and 
state-of-the-art techniques are included in a book that 
describes all these solutions: The Four Generations of 
Entity Resolution17.  

We've been talking about the fact that time series is 
interdisciplinary, and you've had different areas in 
which you have worked. You mentioned that the work 
that you were doing on entity resolution was 
collaborative with another person that you gave credit 
to. It appears that you have a lot of collaborations. You 
are able to initiate new ones very easily, given how 
readily you are giving credit to a collaborator. Do you 
care to tell us how you think about collaborations?  

I should start by saying that there are two ingredients 
that are important here. You need quite a bit of patience, 
and you also need some luck. I guess I have had both!  
My starting point is that not all collaborations will be 
fruitful. Nevertheless, I enjoy getting in this kind of 
collaborative work and trying to see where it will lead 
me. To give you one example, I was out with some 
friends for a cup of coffee, when an acquaintance of one 
of my friends arrived. This person was a physicist 
working on the mass spectrometry of apples, and 
mentioned that he had lots of mass spectra of apples. 
Mass spectra data are essentially data series, where the 
x value is not time – it is mass. This is luck: there is this 
guy that has a collection of this kind of data series and 
he wants to perform similarity search, and just out of the 
blue, we started this discussion, which initially led to a 
small prototype for them to use. This allowed us to 
identify some issues with the solutions in the literature, 
and that got the ball rolling, leading to a 15-year 
research effort, with 12 MSc and 8 PhD theses, on the 
problem of data series similarity search! I definitely 
believe that talking to people from other disciplines is 
extremely useful. That's where patience comes into 
play, because when you start this kind of discussions, 
there is always a gap in the vocabulary, in the way that 

Resolution. IEEE Trans. Knowl. Data Eng. 31(6): 1208-
1221 (2019). 

16 Luca Gagliardelli, George Papadakis, Giovanni Simonini, 
Sonia Bergamaschi, Themis Palpanas: GSM: A generalized 
approach to Supervised Meta-blocking for scalable entity 
resolution. Inf. Syst. 120: 102307 (2024). 

17 George Papadakis, Ekaterini Ioannou, Emanouil Thanos, 
Themis Palpanas: The Four Generations of Entity 
Resolution. Synthesis Lectures on Data Management, 
Morgan & Claypool Publishers 2021, ISBN 978-3-031-
00750-7, pp. 1-170 
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people understand, or value things. But given enough 
time, if you reach the point where you can actually 
understand the real problems the other discipline is 
working on and how you can help them, then you can 
build trust, and then it can become a very fruitful 
collaboration. Such interdisciplinary collaborations 
give rise to new questions for the data management 
perspective as well.  

One of the things that also comes out from all of this is 
both the breadth in terms of the range of knowledge that 
you have and that you seek as a goal in itself because 
you enjoy it. Do you think that's a fair characterization 
in terms of you really value breadth?  

I will take this as a compliment! I cannot really 
comment on that. What I can say is that I really enjoy 
working on different problems. For example, I am not 
only interested in core data management problems, but 
also in everything that has to do with analytics, 
including mining and machine learning. By bringing 
them together, you end up with very exciting research 
problems, as well as collaborations. 

Turning to your own institution, you've set up a major 
research institute and built up a very successful 
research group starting from scratch a few years ago. 
Can you talk about your journey there and things that 
led to your great success in that direction?  

You are referring to the Data Intelligence Institute of 
Paris (diiP). What is interesting is that diiP started its 
operations right before the Covid Pandemic, which was 
a little bit challenging. It did not let us have the kind of 
face-to-face interactions that we were hoping for. 
Nevertheless, it survived, and it has now grown into an 
institute that's well-regarded. The goal of diiP is to 
support interdisciplinary projects that are related to data 
science and data intelligence. What we want to do is to 
provide researchers, who are not data intelligence 
experts, with the necessary expertise and the means to 
achieve results when analyzing their data. In the past 
three and a half years, we have supported more than 
sixty interdisciplinary projects, and we have organized 
several workshops, seminars, and hands-on sessions.  

Talking about organizing things, you have organized so 
many things. You're chairing conferences and being 
very active in the community. How do you manage to 
juggle all of these things in terms of how do you manage 
time so successfully?  

Well, I'm not sure that I actually manage my time very 
successfully: I may not be the right person to talk about 
work-life balance! Work has been taking quite a bit of 
time in my life. This has been especially true in the last 

years, after I joined this position in Paris. It turned out 
that the opportunities here were too exciting to pass on. 
I tried to get the most out of them, and this has led me 
to really overwork myself. The answer to your question 
is that I just put too many hours into my work. At the 
same time, I have been blessed with some excellent 
students and collaborators. 

As I was preparing for this interview, your students had 
wonderful things to say about you. Of course, most 
students appreciate their advisor, but I thought it was 
more than that. So, I want to say that you are very much 
appreciated by your students. Do you have any 
comments or any thoughts about why that might be the 
case?  

I am very happy to hear that! It is true that I always try 
to be close to my students, in the sense that we do not 
only meet when we have to discuss work. In general, I 
am trying to foster a sense of community inside our 
group. We often organize outings: sometimes we go for 
lunch in the gardens of the Louvre, which is extremely 
nice; we also do different activities, for example, play 
group games together.  
Another point I wanted to make is that, of course, not all 
students are created equal. I feel that my role is to try to 
push each student a few steps further than the point they 
thought they could reach. I believe that this resonates 
with them: trying to get the best out of each student, and 
trying to make each one of them evolve during this 
journey towards their PhD.  

Moving on to bigger life issues. You have a unique 
perspective, I think, amongst database researchers of 
having lived and worked for substantial periods in 
multiple countries. So I wanted to have a little bit of 
benefit of insight from you in terms of how do you 
compare the various places that you have been to and 
how do you choose to move?  

I did my undergraduate studies in Athens, Greece, and 
my graduate studies in Toronto, Canada. I then moved 
to the Los Angeles area, USA (University of California, 
Riverside). I worked for a couple of years at IBM 
Watson Research Center in New York, USA. I then 
moved to the University of Trento, in Italy, and 
subsequently to the Université Paris Cité, France. So, 
your observation is correct, but honestly, it is not easy 
to move around. It is not just about changing 
workplaces. It is about moving your entire life: you have 
to restart your life in every new place. Moreover, as you 
may imagine, this becomes harder as you grow older. I 
did most of these moves when I was much younger, and 
there was lots of excitement involved in all this. I should 
say that I have no second thoughts about having moved 
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around all these places. I enjoyed a lot working in these 
different places, as well as living in and experiencing 
these places, peoples, and cultures. Each one of these 
places offered very different options. The key in 
enjoying such a journey is to make use of the options 
offered to you. I never moved to a new place expecting 
to live the kind of life that I was living earlier. I always 
try to adapt to the new ways of life, to the new 
opportunities, and this process of adapting is very 
enriching, because you end up discovering new ways of 
finding and appreciating the beauty in life, as well as the 
beauty of life.  

In this context, if you look at the places you have lived, 
you've mentioned Athens, Toronto, New York, LA, and 
now Paris. How does Trento fit in this series? You know, 
with all of these big cities, Trento is a very small place.  

Right, Trento is the outlier here, and (given my work on 
anomaly detection) there had to be one! Trento is an 
interesting story. It happened serendipitously. It was a 
point where I was looking to go back from North 
America to Greece. I was in the process of exploring my 
options at the Greek universities, and preparing 
applications for those. In the middle of this process, 
when I was mentally prepared to leave from North 
America, the Trento opportunity popped up. I decided 
to visit them, without knowing what to expect, and I was 
happily surprised by the research environment and 
mentality. Workwise, it was an environment that I 
appreciated. It was very particular for the Italian 
context, and it definitely helped me take the first steps 
in my academic career, and establish myself. Together 
with Prof. Yannis Velegrakis, we set up the dbTrento 
group; it was a very exciting period of time. Life-wise, 
you can imagine that the Trento experience would be 
extremely different for someone who moved from New 
York. Trento is a city of a hundred thousand people. 
While New York is all about going out in the city and 
meeting up with all sorts of different people from all 
different corners of the world, Trento is all about 
outdoor activities, and I did enjoy those a lot: going to 
the mountains, both during summertime and wintertime, 
doing snowboarding, hiking to (and swimming in) the 
lakes. The Trento area is an extremely beautiful part of 
the world, and very dear to my heart!  

And I believe that Trento has memories of you in the 
form of your photograph collection in the CS 
department in the university, and, in some other places, 
I believe in a nursing home and so on. So, could you say 

 
18https://tinyurl.com/DisiCollection  

a little bit about your photography hobby and how it 
started, and are you still continuing?  

Yes, photography is a very dear hobby. It started when 
I was in the United States, when I got my first digital 
camera. We could maybe say that I am an amateur 
photographer, nothing more than that. While in Trento, 
I tried to pursue this hobby further, so I got involved in 
some group exhibitions, and also organized some 
personal exhibitions. Like you mentioned, two of them 
are permanent. There is a small exhibition at the 
Department of Computer Science at the University of 
Trento, Journey Towards Knowledge18, dedicated to 
PhD students. That was a new building with lots of 
white walls, which I volunteered to decorate. There is 
also another permanent exhibition, Window to the 
World19, at a nursing home near Trento. That was a 
project for bringing life to the walls of a newly 
constructed section for this nursing home.  
If you want to take the next step with any hobby, with 
photography, in this case, you need to invest a 
considerable amount of time. It is not only about taking 
the pictures: you need to process them; you need to build 
up your presence as a photographer in order to be able 
to talk to other people and showcase your work, to 
participate in exhibitions or organize exhibitions; you 
need to have a corresponding CV and website. All this 
really takes lots of time. Unfortunately, during the last 
years, I have not been able to dedicate to photography 
as much time as I would have liked.  

Besides photography, you mentioned snowboarding in 
Trento, and I hear that you're also very good dancer, 
like with Latin dancing and so on. Is there things you'd 
like to tell us about some of your other hobbies? 

This is part of our discussion on how to make the most 
out of the opportunities that a place offers you. The first 
time that I tried snowboarding was in Toronto; well, not 
in Toronto, but in the mountains of Quebec. As a 
graduate student I did not have many opportunities to 
practice snowboarding. I did more of that when I was in 
the United States, and snowboarding became one of my 
prime wintertime activities when I was in Trento: the 

19https://tinyurl.com/ClesCollection  

	I	feel	that	my	role	is	to	try	to	
push	each	student	a	few	

steps	further	than	the	point	
they	thought	they	could	

reach.		
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Dolomites, the mountains that surround Trento, are very 
beautiful. I still try to go back there for snowboarding 
every year. This is something that I enjoy a lot.  
Latin dancing came about in Toronto, where I had 
several friends, fellow students, from South America. 
We were going out to places with latin music, and I very 
much liked the vibe. So, I picked it up in the same way 
that I also tried to pick up Spanish. Then, when I moved 
to Italy, I had to learn Italian; now in France, French is 
necessary. All this variety contributes for a rich life 
experience, which I enjoy tremendously.  

And I really appreciate you for that. So, you're supposed 
to be foodie, is what I've heard. And you're in a city 
where definitely people talk about food, right now. Do 
you have secrets from Paris that you want to share?  

Well, I don't think I have any secrets. There are some 
places that I enjoy going to, and sometimes, I make an 
effort to go to these particular places for different 
reasons: the kind of ambiance, or some particular types 
of food that they are serving. It is really interesting to 
experience the French cuisine in its different flavors, 
and I definitely enjoy contemporary French cuisine. I 
should add that I also like a lot the Italian cuisine: I 
admire the miraculous way in which they use very 
simple ingredients, they put them together with very 
little processing, and the outcome is outstanding. I really 
appreciate the Italian cuisine for that.  

So, Themis, thank you so much for speaking out with us 
today.  

Thank you very much!. 
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ABSTRACT
The unification of large language models (LLMs) and
knowledge graphs (KGs) has emerged as a hot topic.
At the LLM+KG’24 workshop, co-located with VLDB
2024 in Guangzhou, China, the key theme explored was
important data management challenges and opportuni-
ties due to the effective interaction between LLMs and
KGs. The report outlines major directions and approaches
presented by various speakers during the workshop.

1. INTRODUCTION
LLMs, a relatively newer form of generative AI, have

become ubiquitous, revolutionizing natural language pro-
cessing with applications ranging from solving prob-
lems, streamlining workflows, augmenting analytics, code
synthesis, to accessing information via conversational
functionality, e.g., Copilots and digital assistants. LLMs
are skilled at learning stochastic language patterns as
parametric knowledge, and thus predicting next tokens
for the given contexts. However, LLMs may lack con-
sistent knowledge representations. Hence, they experi-
ence hallucinations and generate unreliable or factually
incorrect outputs. KGs can offer external, factual, and
up-to-date knowledge to LLMs via, e.g., retrieval aug-
mented methods, improving the LLMs’ accuracy, con-
sistency, and transparency. On the other hand, LLMs
can also facilitate data curation, knowledge extraction,
KG creation, completion, embedding, and various down-
stream tasks over KGs such as recommendation and ques-
tion answering (QA). Furthermore, the unification of
LLMs and KGs creates new data management opportu-
nities and challenges in consistency, scalability, knowl-
edge editing, privacy, fairness, explainability, data regu-
lations, human-in-the-loop, software-hardware collabo-
ration, cloud-based solutions, and AI-native databases.

The LLM+KG’24 ambition was to provide a unique
platform to researchers and practitioners for presenta-
tion of the latest research results, new technology de-
velopments and applications, as well as outline the vi-
sion for next-generation solutions in the trending topic
of unifying LLMs+KGs. The workshop also aims at dis-

cussing what interesting opportunities are awaiting for
the data management researchers in this greener pasture.

The full-day workshop included 3 keynote talks on
the synergies between LLMs and KGs, 1 industrial in-
vited talk on GraphRAG [31], 9 peer-reviewed research
papers from different countries in North and South Amer-
ica, Europe, Asia, and Africa, and a panel discussion
on the unification of LLMs, KGs, and Vector databases
(Vector DBs). The detailed program is available at [20].

2. KEYNOTES
The program featured three keynotes by Guilin Qi

(Southeast University, China), Haofen Wang (Tongji Uni-
versity, China), and Wei Hu (Nanjing University, China).

2.1 Integrating KGs with LLMs: From the
Perspective of Knowledge Engineering

The first keynote talk on integrating KGs with LLMs
from the knowledge engineering point-of-view was given
by Guilin Qi from Southeast University. Prof. Qi started
with the enlightening question, “What is knowledge?”
and shared a number of interesting perspectives. First,
according to the Oxford Dictiory, knowledge is the in-
formation, understanding, and skills that one gains with
education or experience. Second, informally speaking,
knowledge can be fact-based, description of informa-
tion (e.g., text, image), or skills obtained by practice.
Third, one way to decide whether artificial intelligence
(AI) has human intelligence or not could possibly be by
the AI’s ability to learn and apply knowledge. Fourth,
a Knowledge Base (KB) is a collection of knowledge,
including documents, images, triples, rules, parameters
of neural networks, etc. Fifth, a KG is a data structure
for representing knowledge using a graph. Prof. Qi fur-
ther emphasized ‘KGs as knowledge bases’ as follows:
“Knowledge graphs originated from how machines rep-
resent knowledge, use graph structures to describe rela-
tionships between things, developed in the rise of Web
technologies, and landed in applications such as search
engine, intelligent QA, and recommender systems”.

Next, Prof. Qi introduced the fundamentals of lan-
guage models and whether they can be used as ‘paramet-
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ric knowledge bases’ [36]. He compared the reasoning
capabilities of LLMs and KGs, their advantages and dis-
advantages, and elaborated significant research scopes
and practical values due to the complementary nature
and mutual enhancements between symbolic knowledge
of KGs and parametric knowledge of LLMs.

In the direction of ‘KGs for LLMs’, Prof. Qi dis-
cussed how KGs enhance pre-training [56], fine-tuning
[51], inference [52], prompting [7, 23], retrieval/ knowl-
edge augmented generation [54], knowledge editing [60,
55], knowledge fusion [39], and knowledge validation
[15] of LLMs. In the other direction of ‘LLMs for KGs’,
he mentioned knowledge engineering by LLMs, where
LLMs can act as both resources (e.g., data augmenta-
tion) and enablers (e.g., encoding, reading comprehen-
sion, and QA). He also stated several opportunities such
as LLMs for entity and relation extraction, triple gen-
eration, ontology matching [14], entity alignment [18],
knowledge base QA [43], ontology reasoning [47], and
KG reasoning [33, 58, 46], among others.

Prof. Qi concluded by underlining interesting oppor-
tunities due to LLM+KG integration and the engineer-
ing efforts required to work properly, e.g., OpenKG [4]
and new knowledge platforms to support generalizable,
trustable, and stable knowledge services. His conclud-
ing remark was to look at “Language as the "form",
knowledge as the "heart", and graph as the "skeleton".”

2.2 Industry-level KG Platforms for Large-
scale, Diverse, and Dynamic Scenarios

In the second keynote talk on industry-level knowl-
edge graph platforms, Haofen Wang from Tongji Uni-
versity stated that traditional knowledge semantic frame-
works such as RDF/OWL and labeled property graph
(LPG) have major limitations in knowledge modeling
and management and are often inadequate in modern
business scenarios. Prof. Wang provided examples of
the Ant Group KG applications in the finance sectors.
First, the data sources for KGs have grown tremendously
from text to heterogeneous enterprise data, e.g., semi-
structured/ unstructured user-generated/ professionally
generated contents, structured profiles from business op-
erations, transactions, and logs, requiring to implement
knowledge hierarchies and lightweight alignments of di-
verse sources through programmable methods. Second,
knowledge representations have emerged from binary
static structures to multi-dimensional dynamic associa-
tions in temporal and spatial dimensions, therefore deep
collaborative information from multiple aspects of en-
tities, events, concepts, contexts, etc. are required for
real-world applications such as merchant management
and risk control. In summary, the development of the
KG technology does not match the expectations of the
new paradigm of an industry-scale, unified, automated

knowledge modeling framework for the entire life cy-
cles of businesses, with the ability to evolve and support
continuous business iterations.

Next, Prof. Wang introduced the Semantic-enhanced
Programmable Graph framework (SPG) developed by
the Ant Group and OpenKG [6] that integrates the struc-
tural aspects of LPG with the semantic nature of RDF
– overcoming the semantic complexity of RDF/OWL,
while also retaining the simplicity of LPG and its com-
patibility with the big data systems. The SPG layered ar-
chitecture consists of several modules. (i) SPG-Schema
is responsible for the schema design. (ii) SPG- Program-
ming, a programmable framework, deals with knowl-
edge construction, knowledge evolution, expert experi-
ence projection, and knowledge graph reasoning. (iii)
SPG-Engine is responsible for the execution process of
SPG syntax. (iv) SPG-Controller is the control center
subsystem, taking care of the control framework, com-
mand distribution, and plugin integration. (v) SPG-LLM
interacts with LLMs for natural language understanding.

Prof. Wang concluded by discussing the potentials
of SPG and LLM-guided next-generation industry-level
cognitive engines, as well as building an AI framework
based on the OpenSPG knowledge engine.

2.3 KG-based LLM Fine-tuning
The third keynote talk on KG-enhanced LLM fine-

tuning was given by Wei Hu from Nanjing University.
Prof. Hu emphasized the knowledge gap problem of
general-purpose LLMs – they often lack accurate do-
main knowledge, resulting in inaccurate and unreliable
outputs, and even difficulty in real-world applications.

Among various knowledge enhancement techniques
for LLMs, Prof. Hu focused on an LLM fine-tuning
framework with adaptive integration of multi-source KGs,
consisting of knowledge extraction, knowledge fusion,
and KG-enhanced LLMs. In the field of knowledge ex-
traction, he introduced problems such as domain named
entity recognition, document-level relation extraction [49],
continual event extraction [50], document-level event
causality identification [27], and continual relation ex-
traction [48]. In knowledge fusion, Prof. Hu discussed
embedding-based entity alignment [44, 41, 12, 40], knowl-
edge transfer [19, 53], adding human-in-the-loop [17,
16], benchmarking, and the OpenEA toolkit [42]. In
KG-enhanced LLMs fine-tuning, he introduced KnowLA
[28], a knowledgeable adaptation method for PEFT (pa-
rameter efficient fine-tuning), particularly for LoRA (Low-
Rank Adaptation). (i) KnowLA with LoRA can align
the space of the LLM with the space of KG embeddings,
and (ii) KnowLA can activate the parameterized poten-
tial knowledge that originally exists in the LLM, even
though the used KG does not contain such knowledge.

Prof. Hu concluded with interesting applications of
KG-enhanced LLMs in translating configuration files dur-
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ing device replacements in communication networks and
unified PEFT+RAG (Retrieval-Augmented Generation).

3. INDUSTRIAL INVITED TALK
Siwei Gu and Yihang Yu from NebulaGraph [3] de-

livered an inspiring industrial talk on GraphRAG [31],
i.e., Integrating GenAI with Graph: Innovations and
Insights from NebulaGraph. RAG is a technique to
optimize the output of an LLM so that it references an
authoritative, up-to-date KB outside of its training cor-
pus before generating a response. Given a user’s query,
the classic RAG approach uses vector similarity to re-
trieve semantically similar matches. It also builds of-
fline indexes over embedding vectors to speed-up on-
line retrieval, but partitioning knowledge across chunks
can lose global context/ inter-relationships. Connection-
oriented retrieval (e.g., join and multi-hop queries) as
well as addressing broad, global questions that require
synthesizing insights from the entire data can be chal-
lenging when the context is spread over multiple chunks.

To resolve the aforementioned issues, NebulaGraph
launched industry-first GraphRAG [31] – a technology
harnessing the power of knowledge graphs to provide
retrieval methods with a more comprehensive contex-
tual understanding and thereby assisting users in obtain-
ing cost-effective, smarter, and more precise search re-
sults with an LLM. In particular, it uses a KG to model
the external KB, shows the relationships between enti-
ties, which can more accurately understand the query
intent, and then uses retrieval enhancement for LLMs.
For instance, one can use graph reasoning or subgraph
retrieval to find relevant contexts through relationships.
Users can push domain Knowledge to KG schema and
relationships [54]. Furthermore, one can apply graph-
based indexing for a more comprehensive retrieval of
context, since graph indexing helps in connecting frag-
mented knowledge.

Gu and Yu concluded by discussing potential direc-
tions about various indexing and retrieval strategies in
graphRAG [1], node importance finding [13], chain-of-
exploration [37], and query-focused summarization [10].

4. RESEARCH PAPERS
The peer-reviewed research papers presented in this

workshop can be broadly classified into three categories.

4.1 LLMs for KGs
KGs are difficult to construct due to the high cost. KG

querying is also challenging due to their incomplete-
ness, users requiring to have full knowledge of the query
language (e.g., SPARQL, Cypher), and the large and
complex KG schema. LLMs can assist in KG construc-
tion via prompt engineering without huge labeling ef-

forts, and improve the usability and performance of nat-
ural language QA with their strong understanding and
generalization capabilities. Nie et al. leverage domain-
specific knowledge from ontology and Chain-of-Thought
prompts to extract higher-quality triples from unstruc-
tured text [32]. Groves et al. empirically compare in-
context learning, fine-tuning, and supervised learning in
automated knowledge curation for biomedical ontolo-
gies [11]. Mou et al. explore in-context learning capa-
bilities of GPT-4 for instruction driven adaptive knowl-
edge graph construction, while also proposing a self-
reflection mechanism to enable LLMs to critically eval-
uate their outputs and learn from errors using examples
[29]. Mustafa et al. use the W3C Open Digital Rights
Language (ODRL) ontology and its documentation to
formulate prompts in large language models and gener-
ate usage policies in ORDL from natural language in-
structions [30].

4.2 KGs for LLMs
LLMs hallucinate due to lack of context or knowledge

gap. Offering domain-specific and up-to-date knowl-
edge through KGs can enhance the accuracy, consis-
tency, transparency, and the overall capabilities of LLMs.
Liu et al. propose a collaborative LLMs method for
open-set object recognition, incorporating KGs to alle-
viate hallucination of LLMs [26]. Wang et al. study a
novel infuser-guided knowledge integration framework
to integrate unknown knowledge into LLMs efficiently
without unnecessary overlap of known knowledge [45].

4.3 Unifying LLMs+KGs
The third category of papers simultaneously leverage

the factual knowledge of KGs and the parametric knowl-
edge of LLMs to mutually enhance each other. Zhang
et al. introduce OneEdit – a neural-symbolic prototype
system for collaborative knowledge editing using natu-
ral language and facilitating easy-to-use knowledge man-
agement with KGs and LLMs [57]. Khorashadizadeh
et al. present a survey on the synergy between LLMs
and KGs [22]. Cavalleri et al. present the SPIREX sys-
tem to extract triples from scientific literature involving
RNA molecules [8]. They exploit schema constraints in
the formulation of LLM prompts and also utilize graph
machine learning on an RNA-based KG to assess the
plausibility of extracted triples.

5. PANEL
The workshop was concluded with a panel discus-

sion [9] on the unification of LLMs, KGs, and Vec-
tor databases (Vector DBs). The panelists were Wei
Hu (Nanjing University, China), Shreya Shankar (UC
Berkeley, USA), Haofen Wang (Tongji University, China),
and Jianguo Wang (Purdue University, USA).
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LLMs, KGs, and Vector DBs: Synergy and Opportu-
nities for Data Management. The LLM+KG’24 chairs
first asked some questions. Q1. What are the synergies
among LLMs, Vector DBs, and graph data management
including KGs? Q2. What are the roles of DBs in LLMs
+ KGs + Vector data management? Q3. How can LLMs
+ KGs + Vector data enhance data management? Q4.
What are the significance of human-in-the loop and re-
sponsible AI in LLM systems and Vector DBs? How
can KGs help in these aspects? Q5. How can academia
+ industry partnership and interdisciplinary collabora-
tions advance this field? What would be the roles of
benchmarking, open-source models, tools, and datasets?

The panelists added further perspectives to those ques-
tions. While some aspects of these technologies may
seem part of the hype cycle, the foundational ideas be-
hind the integration of LLMs, Vector DBs, and KGs
are well-grounded in addressing real-world data chal-
lenges, and LLMs are definitely a key to genAI. They
can reinforce each other by combining structured/ semi-
structured and well-curated data for accuracy (e.g., KGs),
efficient data retrieval (Vector DBs), and contextual un-
derstanding (LLMs), ensuring robust querying, reason-
ing, and interpretability. Many old DB ideas are rele-
vant around LLMs’ self-consistency, thinking step-by-
step, etc. [34]. For the deploymentment of LLMs in
data pipeline, bolt-on data quality constraints for LLM-
generated data is crucial [38]. LLMs over graph-based
applications need both vector- and graph-based RAGs,
e.g., consider queries like “What do others say about my
papers?” or “Find competitors with similar products to
mine and analyze their pricing strategies for different
products”. Relational DBs may support efficient vector
data management [59], e.g., PASE is a highly optimized
generalized vector database based on PostgreSQL.

These technologies will enhance databases, knowl-
edge engineering, and data science by enabling more dy-
namic and responsive search and query responses, facili-
tating richer interactions with multi-modal data from di-
verse sources, integrating domain-specific understand-
ing and learning deep semantics. Many potential areas
or success stories include NLIDB (natural language in-
terfaces for data bases)/ Text2SQL, query optimization,
data curation, neural DBs, self-driving DBs, data edu-
cation, OpenKG+SPG, and declarative systems for AI
workloads (e.g., Palimpzest [24], LOTUS [35]). The
synergy is particularly transformative in domains like
personalized healthcare and financial analytics.

Transparency and explainability are key challenges in
this domain. LLMs make mistakes and require guardrails.
Both human-in-the-loop and KGs can align LLMs by
providing contextual relevance, factual information, and
feedback based on preferences. Ultimately, developing
AI systems that adhere to ethical guidelines, emphasiz-

ing safety, accountability, fairness, privacy, and trans-
parency is crucial for deploying them in the real world.

This is an interdisciplinary area, and the DB commu-
nity is well-positioned to own the data pre-processing
and validation parts of LLM pipelines [5]. However, en-
couraging idea exchanges by integrating expertises from
fields like DB, ML, NLP, HCI, and CV can drive inno-
vations and create end-to-end solutions/ systems. Fos-
tering academia + industry partnerships would require
aligning objectives, e.g., industries can offer internships
and GPU resources, co-fund initiatives for practical im-
pact and knowledge exchange, while also leading the
LLM developments. Benchmarking and providing open
source models, tools, and data are important to enhances
accessibility, innovation, and community collaboration.
Recently, there are also concerns, e.g., many benchmark
datasets and empirical studies, domain-specific LLMs
reporting only “biased” results, etc.

Finally, the panel concluded by discussing open prob-
lems such as conducting neural-symbolic reasoning, man-
aging complex, dynamic KGs, scaling integration and
reducing costs, guardrailing LLMs, ensuring data pri-
vacy and compliance, and various engineering challenges.

6. FUTURE DIRECTIONS

We conclude that there are several ongoing works in
the area of LLMs+KGs, with many open problems, e.g.,
• Integration of Vector and Graph Databases. Lever-
aging vector DBs for GraphRAG creates new opportu-
nities such as combining graph DBs with vector DBs
[25], using graph DBs as semantic caches of LLMs en-
abling semantic matching for new graph queries instead
of expensive LLM API calls [21], optimizing the index
creation and similarity search over large-scale graph em-
beddings, and hardware acceleration.
• Efficient and Explainable GraphRAG. The efficiency
of relevant subgraphs retrieval and raking is challenging
in GraphRAG as KGs are large and the context length
of LLM is limited. In GraphRAG, KGs can enhance
explainability by linking LLM-generated answers to ex-
plicit KG relationships, while also acting as guardrails
to validate answers against factual knowledge.
• Knowledge Conflict and Dynamic Integration. Align-
ing LLMs+KGs is a critical challenge in knowledge en-
gineering since overlap and conflict occur when inte-
grating new knowledge from external sources into LLMs.
Incremental updates to KGs and dynamic integration with
LLMs are crucial for up-to-date knowledge integration.

The second edition of the workshop LLM+Graph’25
[2] will be held in conjunction with VLDB 2025 with a
broader perspective, since we shall focus on data man-
agement for the general topic of LLM+graph comput-
ing, rather than only data management for LLM+KG.
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1 Introduction
This report provides insights into the challenges,
emerging topics, and opportunities related to human–data
interaction and visual analytics in the AI era.

The BigVis 20241 organizing committee conducted
a survey among experts in the field. They invited
the Program Committee members and the authors of
accepted papers to share their views. Thirty-two scientists
from diverse research communities, including Databases,
Information Visualization, and Human–Computer
Interaction, participated in the study. These scientists,
representing both industry and academia, provided
valuable insights into the current and future landscape of
the field.

In this report, we analyze the survey responses
and compare them to the findings of a similar study
conducted four years ago [2]. The results reveal some
interesting insights. First, many of the critical challenges
identified in the previous survey remain highly relevant
today, despite being unrelated to AI. Meanwhile, the
field’s landscape has significantly evolved, with most
of today’s vital challenges not even being mentioned in
the earlier survey, underscoring the profound impact of
AI-related advancements.

By summarizing the perspectives of the research
community, this report aims to shed light on the key
challenges, emerging trends, and potential research
directions in human–data interaction and visual analytics
in the AI era.

2 Survey Overview
The survey is divided into two parts. The first is related to
challenges (Sec. 3), and the second focuses on emerging
research topics (Sec. 4).

*Corresponding author.
1 7th Intl. Workshop on Big Data Visual Exploration & Analytics,
in conjunction with the 50th Intl. Conf. on Very Large Databases
(VLDB 2024), Guangzhou, China. More details about the BigVis
workshops can be found in [7].

The participants were requested to answer six
questions, either by filling out free-text fields or selecting
from the options provided. The survey was anonymous,
since the questions related to personal information are
optional, e.g., name, county, affiliation. The survey
required, on average, about three to five minutes to be
completed.

Participants Demographics. We intended to find
scientists from different research communities
(e.g., Databases, Information Visualization, HCI), and
from industry and academia. To this end, the survey was
disseminated to the BigVis 2024 Program Committee
members (58 members) and to the authors of accepted
BigVis 2024 papers (34 authors). At the end, 32 of the
scientists invited completed the survey.

The following characteristics of the participants are
collected (Fig. 1):

− Scientific Field (Fig. 1a): The options were:
(a) Database; (b) Information Visualization;
(c) Data Minning; (d) Human–Computer
Interaction; (e) Computer Graphics; and
(f) Other. Most of the participants belong to
Information Visualization (47%) and Database
(37%) communities, while 16% belong to others
research fields.

− Career (Fig. 1b): The options were: Academic
(81%) and Industry (19%).

− Position (Fig. 1c): The options were: Professor
(59%); Researcher (28%); and Analyst/Scientist/
Engineer (13%).

3 Research Challenges
In this section we outline the survey’s results regarding
research challenges related to data visualization and
visual analytics.

In the first part (Sec. 3.1), the participants were
asked to vote on today’s importance of the challenges
emerged four years ago in a 2020 report, titled “Big
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Figure 2: The Importance of the 2020 Challenges Today ["Is this challenge important today?"]

Data Visualization and Analytics: Future Research
Challenges and Emerging Applications” [2]. In the next
part (Sec. 3.2), participants suggested a challenge they
consider the most important today, regardless of whether
it was included in 2020 challenges.

3.1 The Challenges of the 2020 Report
This section presents the results of the survey regarding
today’s importance of the ten challenges identified
four years ago in the 2020 report. Particularly, in the
context of the 3rd International Workshop on Big Data
Visual Exploration and Analytics (BigVis 2020), the
organizing committee invited 14 distinguished scientists,
from different communities to provide their insights
regarding the challenges and the applications they find
more interesting in coming years, related to the areas of
Big Data visualization and analytics.

The challenges indicated in the 2020 report were:
(a) Support scalability & efficiency; (b) Enable visual
analysis for ML applications; (c) Understand what the
users need; (d) Build novel interfaces & user interactions;

(e) Assistance & guidance; (f) Generate data stories &
explanations; (g) Enable federated visualization over
different data sources; (h) Develop benchmarks &
evaluation techniques; (i) Provide sustainable insights;
and (k) Enable personalization & recommendations.

Question 1

The participants were asked to vote on the
ten challenges stated in the 2020 report, based on
their importance/emerge. Particularly, the participants
rated each challenge using a five-level Likert scale
(i.e., Strongly Disagree, Disagree, Neutral, Agree, and
Strongly Agree) on the question "Is this challenge
important today?".

Question 1 Responses. The results are presented in
Figure 2 via a percent stacked bar chart. Participants
voted “Scalability & efficiency” as the most important
challenge, with 94% of participants indicating they agree
or strongly agree, and 0% disagree or strongly disagree.
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The second most significant is the “Visual analysis for
ML applications” challenge, with 78% (resp. 0%) of
the participants state that agree or strongly agree (resp.
disagree or strongly disagree). “Sustainable insights”
is the challenge in which most of the participants
disagree (13%) or strongly disagree (3%). Finally,
“Personalization & recommendations” is voted as the
least important challenge.

It is worth mentioning that for all challenges, at
least 50% of the participants strongly agree or agree
on today’s importance of the challenge. Similar results
can be observed when considering importance scores.

3.2 The Challenges of the 2024 Survey
This section presents the challenges stated by the
participants as the most important, regardless of whether
they were included in 2020 challenges.

Question 2

The participants were asked to provide in a free text
the challenge they consider most important for the
coming years, along with a brief description.

Question 2 Responses. The participants indicated
16 challenges. The challenges are presented in Table 1;
the number in the parentheses that appears in some
challenges indicates the number of participants that
mentioned this challenge. Furthermore, red font
highlights the challenges that are mentioned for the
first time in this survey, i.e., challenges that were not
mentioned in the 2020 survey.

The most commonly suggested challenge is the
“Use of LLMs in visualization and analytics” (voted
by 16% of the participants), whereas “Fairness and
Trustworthiness”, as well as “Visualization for non-expert
users” are the next most common (each voted by
13%). Note that none of the terms LLMs, fairness
or trustworthiness is mentioned in the four years ago
challenges. Also note that explainability, which emerged
as one of the most frequently mentioned challenges, is
also not mentioned in the 2020 report.

Other common challenges (mentioned by at least
two participants) are related to: “User assistance &
guidance”; “Understanding what the users need”; “High
dimensional & stream data”; “Progressive data analysis
& visualization”; and “Immersive visualization”. Among
these challenges, “High dimensional & stream data”,
“Progressive analysis”, and “Immersive visualization”
appeared for the first time.

4 Emerging Topics
In this section we present the participants’ responses
regarding the most emerging research topics in Big

Table 1: Survey Challenges ★

Exploit LLMs(5) , Ensure fairness & trustworthiness(4) ,
Enable visualization for non-expert users(4) ,

Offer assistance & guidance(2) , Generate
explanations(2) , Understand what the users need(2) ,

Handle high dimensional & stream data(2) ,
Enable progressive data analysis & visualization(2) ,

Develop immersive visualization systems(2) , Provide
sustainable insights, Support data abstraction,
Implement novel scalable interfaces, Design

context-specific visualizations, Formulate fundamental
visualization problems, Use surrogate modeling,
Develop energy consumption-based solutions

★ c(x): x indicates the number of participants that mention the
challenge c in the survey. Red font: Challenges mentioned
for the first time in the current survey (considering only
those indicated by at least two participants).

data visualization and analytics field. The candidate list
consists of the topics of interest included in the BigVis
call-for-papers.

Question 3

The participants were asked to select (vote) from a
list of candidate topics, up to three topics that they
consider the most emerging.

Question 3 Responses. Figure 3 shows the percentage
of the participants’ vote for each topic. The topics with
the most votes are “Human–in–the–loop processing”;
“Interactive & human–centered ML”; and “Progressive
analytics”, where 31% of the participants select. On the
other hand, the topics with the less votes are: “Scientific
visualization”; “Setting-oriented visualization”;
and “Distributed & parallel techniques”, which are
voted by 3% of the participants.

5 Discussion
First, the survey highlights the broad acceptance of the
importance of all the challenges identified four years ago
(Question 1), with at least half of the participants strongly
agreeing or agreeing on their today’s importance.

The results regarding the current challenges
(Question 2) revealed the importance of AI–related
problems. Notably, the most frequently mentioned
challenges today were entirely absent four years ago.
For example, problems related to LLMs, fairness
& trustworthiness, and explanations are some of
the newcomers. Furthermore, challenges such as
“Non-expert users”, “High dimensional & stream data”,
“Progressive analysis”, and “Immersive visualization”
appeared also for the first time.
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Further comparison of responses reveals that
“Scalability & efficiency”, the most important challenge
in 2020 (Question 1), was not mentioned in Question 2.
One possible explanation is that nearly 95% of
participants had already rated it in Question 1 as (very)
important, reducing the need to highlight it again.
Similarly, “Visual analysis over ML applications”, the
second most important challenge in 2020, was absent
from Question 2 responses, despite being recognized as
one of the most emerging topics (Question 3).

Additional discussion of the current challenges
and state-of-the-art approaches can be found in
[1, 3–6, 8–15].

References
[1] Sihem Amer-Yahia, Leilani Battle, Yifan Hu, Dominik Moritz,

Aditya Parameswaran, Nikos Bikakis, Panos K. Chrysanthis,
Guoliang Li, George Papastefanatos, and Lingyun Yu. 2025. Data
Exploration and Visual Analytics Challenges in AI Era. ACM
SIGMOD Blog, https://wp.sigmod.org/?p=3820.

[2] Gennady L. Andrienko, Natalia V. Andrienko, Steven Mark
Drucker, Jean-Daniel Fekete, Danyel Fisher, Stratos Idreos,
Tim Kraska, Guoliang Li, Kwan-Liu Ma, Jock D. Mackinlay,
Antti Oulasvirta, Tobias Schreck, Heidrun Schumann, Michael
Stonebraker, David Auber, Nikos Bikakis, Panos K. Chrysanthis,
George Papastefanatos, and Mohamed A. Sharaf. 2020. Big
Data Visualization and Analytics: Future Research Challenges
and Emerging Applications. In Workshop on Big Data Visual
Exploration & Analytics (BigVis 2020).

[3] Natalia V. Andrienko, Gennady L. Andrienko, Linara Adilova,
Stefan Wrobel, and Theresa-Marie Rhyne. 2022. Visual Analytics
for Human-Centered Machine Learning. CG&A (2022).

[4] Rahul C. Basole and Timothy Major. 2024. Generative AI for
Visualization: Opportunities and Challenges. TVCG (2024).

[5] Leilani Battle and Carlos Scheidegger. 2020. A structured review
of data management technology for interactive visualization and
analysis. IEEE TVCG 27, 2 (2020).

[6] Nikos Bikakis. 2022. Big Data Visualization Tools. In
Encyclopedia of Big Data Technologies, 2nd Ed. Springer.

[7] Nikos Bikakis, George Papastefanatos, Panos K. Chrysanthis,
Olga Papemmanuil, David Auber, Steffen Frey, Issei Fujishiro,
Hanna Hauptmann, Shixia Liu, Kwan-Liu Ma, Tobias Schreck,
Michael Sedlmair, and Mohamed A. Sharaf. 2024. Visualizing,
Exploring and Analyzing Big Data: A 6-Year Story. ACM
SIGMOD Record 53, 2 (2024).

[8] Muhammad Raees, Inge Meijerink, Ioanna Lykourentzou,
Vassilis-Javed Khan, and Konstantinos Papangelis. 2024. From
Explainable to Interactive AI: A Literature Review on Current
Trends in Human-AI Interaction. J. Hum. Comput. Stud. (2024).

[9] Junpeng Wang, Shixia Liu, and Wei Zhang. 2024. Visual
Analytics for Machine Learning: A Data Perspective Survey.
IEEE TVCG 30, 12 (2024).

[10] Qianwen Wang, Zhutian Chen, Yong Wang, and Huamin Qu.
2022. A Survey on ML4VIS: Applying Machine Learning
Advances to Data Visualization. IEEE TVCG 28, 12 (2022).

[11] Aoyu Wu, Dazhen Deng, Min Chen, Shixia Liu, Daniel A. Keim,
Ross Maciejewski, Silvia Miksch, Hendrik Strobelt, Fernanda B.
Viégas, and Martin Wattenberg. 2023. Grand Challenges in Visual
Analytics Applications. IEEE CG&A (2023).

[12] Aoyu Wu, Yun Wang, Xinhuan Shu, Dominik Moritz, Weiwei
Cui, Haidong Zhang, Dongmei Zhang, and Huamin Qu. 2022.
AI4VIS: Survey on Artificial Intelligence Approaches for Data
Visualization. IEEE TVCG 28, 12 (2022).

[13] Weikai Yang, Mengchen Liu, Zheng Wang, and Shixia Liu.
2024. Foundation models meet visualizations: Challenges and
opportunities. Comput. Vis. Media 10, 3 (2024).

[14] Yilin Ye, Jianing Hao, Yihan Hou, Zhan Wang, Shishi Xiao, Yuyu
Luo, and Wei Zeng. 2024. Generative AI for visualization: State
of the art and future directions. Vis. Informatics 8, 1 (2024).

[15] Jun Yuan, Changjian Chen, Weikai Yang, Mengchen Liu, Jiazhi
Xia, and Shixia Liu. 2021. A survey of Visual Analytics
Techniques for Machine Learning. Comput. Vis. Media 7, 1
(2021).

SIGMOD Record, June 2025 (Vol. 54, No. 2) 69



How Diverse Are Our Conference Review Boards?

Sourav S Bhowmick
NTU

Singapore
assourav@ntu.edu.sg

Divesh Srivastava
AT & T Chief Data Office

United States
divesh@research.att.com

ABSTRACT
The diversity of review boards is crucial in improving
the overall review quality at academic venues. In this
report, we examine the review board characteristics of
four major data management conferences across four di-
versity dimensions and over time. Our analysis shows
that smaller venues have made significant strides in di-
versifying their review boards, whereas larger venues
encounter difficulties in achieving similar diversity due
to overrepresentation in certain dimensions. We empha-
size the importance of intensifying efforts to create more
diverse and balanced review boards and advocate for the
development of tools to support this process.

1. INTRODUCTION
Diversity is widely recognized as a critical fac-

tor that plays a significant role for success in many
scientific disciplines [13, 15]. It has been reported
that groups with diverse members often outperform
homogenous groups [13] leading to more impact-
ful work [12, 15]. We expect this to also be true
in data management research given its increasing
global reach. The data management community,
now more than ever, includes people from diverse
backgrounds as evident from the geographic diver-
sity of authors in our major venues such as SIGMOD
and VLDB. Significant developments have been made
possible by individuals from diverse backgrounds as
can be seen in the diversity of recipients of major
awards in the data management community (e.g.,
[3–6]) and in general in the computing community
(e.g., [1]). For these reasons, the Diversity, Eq-
uity and Inclusion (DEI) initiative [2] was formed
in 2020 to actively promote diversity and inclusion
within the data management community [7–9].

Given the benefits of diversity in science, it is
desirable for review boards at our major confer-
ences to include experts from varied backgrounds.
Such diversity enhances the review process by offer-
ing unique perspectives and experiences, while also
reducing the risks of groupthink [14] and confor-

mity that are common in homogeneous groups [16].
Thus, a diverse group of experts in a review board
has the potential to enhance the overall review qual-
ity of a venue, which has a direct impact on the
science that emerges from a community. Recently,
EDBT 2023 PC chairs reported correlation between
the diversity of their review board and the quality
of the review process [11].

In this report, we take a concrete step towards
analyzing diversity of the review boards of four ma-
jor data management venues (i.e., SIGMOD, VLDB,
EDBT, and ICDE). We focus on the diversity dimen-
sions that can be gleaned from diverse public data
sources, i.e., institutional, location, country of ter-
tiary/secondary education (COE), and experience.
We conduct a three-year longitudinal study (2023-
2025) of the review boards. Note that the formation
of the review boards of these venues during this pe-
riod overlaps with the DEI initiative.

Our study found that while some venues have
made progress in promoting diversity on their re-
view boards, this progress is uneven across venues
and dimensions. Smaller venues like EDBT have
successfully diversified their review boards, while
larger venues face challenges in achieving similar di-
versity. In particular, certain larger venues, such as
SIGMOD 2025 and ICDE, show overrepresentation
in specific dimensions, failing to reflect the growing
diversity of the community or the DEI initiative.
We conclude by emphasizing the need for contin-
ued efforts to create diverse review boards and the
development of data-driven tools to assist program
committee (PC) chairs in achieving this goal.

The paper is organized as follows: Section 2 out-
lines the venues in the study. Section 3 presents the
diversity dimensions analyzed. Section 4 presents a
longitudinal analysis of these dimensions across the
venues. Finally, Section 5 concludes with future di-
rections for diverse review board formation.

2. DATASET
The study focuses on the review boards of four
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Table 1: The number of reviewers (PC) and
meta-reviewers (in brackets) in major data
management venues.

Venue Year
2023 2024 2025

SIGMOD 217 [31] 224 [32] 276 [42]
VLDB 216 [35] 206 [38] 314 [50]
EDBT 88 [13] 93 [15] 107 [17]
ICDE 144 [43] 175 [39] 307 [61]

major data management venues–SIGMOD, VLDB,
EDBT, and ICDE–from the last three editions (2023-
2025). The research has two main objectives: (1)
to examine recent trends in the diversity of review
boards through a three-year longitudinal study, and
(2) to assess the impact of the DEI initiative on the
formation of diverse review boards in these venues.
The DEI initiative began in 2020 [9], with commu-
nity awareness in 2021, and the first DEI report was
published in June 2022 [9], which coincided with the
formation of the review boards for the 2023 con-
ferences. Each of these venues had DEI chairs to
promote DEI activities and policies.

The lists of members (meta-reviewers and review-
ers (PC)) were received from the PC chairs of re-
spective venues. Table 1 reports the statistics. Since
review boards can be dynamic, with members added
or removed throughout the review process, the anal-
ysis focuses on the aggregated review boards after
the final submission cycle for all venues. Observe
that review board sizes have generally increased
monotonically across all venues over the past three
years.

We manually retrieved the DBLP addresses of all
review board members using Google search. Each
review board member for a given venue is uniquely
identified by their email address or DBLP name
which is unique in DBLP1.

3. CATEGORIES OF DIVERSITY
This article focuses on several dimensions of di-

versity that can be assessed using publicly available
data on review board members. These include insti-
tutional, location, country of tertiary/secondary ed-
ucation, and experience diversities. Although gen-
der and racial diversity are important, they are not
analyzed due to the lack of publicly available data
for many reviewers. Similarly, topics of expertise
specified by review board members are not consid-
ered, as this information is not publicly accessible.

Institutional diversity focuses on profiling the dif-
ferent institutions that review board members are
affiliated with. Location diversity refers to the di-
versity of the countries where review board mem-
1
In DBLP, homonyms are distinguished from one another by a

unique numerical suffix to their name.

bers are based while serving for a venue. Since the
country of origin might not be publicly available,
the study uses country of tertiary/secondary educa-
tion (COE) as a proxy, which indicates the coun-
try where a reviewer completed their high school or
undergraduate education. This information is typ-
ically found on a reviewer’s homepage or LinkedIn
page and has been used in review board formation
for EDBT 2023 [11].

Lastly, experience diversity captures the balance
of senior and junior reviewers on a review board. A
well-balanced board should have both experienced
researchers and junior ones, allowing for expertise
while providing opportunities for junior researchers
to gain experience. However, there is no univer-
sally agreed-upon definition of a “senior” reviewer,
as there are no consistent criteria to distinguish be-
tween senior and junior reviewers. To assess senior-
ity in terms of research experience, we use publica-
tion age and publication venue index as a proxy for
experience.

The publication age of a person p in the context
of venue v, denoted by age(p, v), is given as follows:

age(p, v) = sub year(v)− first year(p) (1)

where sub year(v) and first year(p) denote the year
of the first submission cycle of a venue v and the first
year of publication of p, respectively. The larger
the value of age(p, v) the more senior p is w.r.t. the
number of years of research experience.

The publication venue index of a person p w.r.t.
venue v, denoted by venue(p, v), is given as follows:

venue(p, v) =
∑

vi∈V

cnt(p, vi) (2)

where v ∈ V and cnt(p, vi) denotes the total num-
ber of publications of p in venue vi. For SIGMOD
and VLDB, we choose V = {SIGMOD,VLDB}. For
any other venue v (i.e., v ∈ {EDBT, ICDE}), V =
{v,SIGMOD,VLDB}, which includes publications in
both the selected venue v and the top venues (SIGMOD,
VLDB). The larger the value of venue(p, v) the more
publication experience p has w.r.t. v.

Note that both these measures can be computed
automatically from DBLP.

4. ANALYSIS
This section analyzes trends related to the dimen-

sions of diversity for reviewers and meta-reviewers
at a venue. While meta-reviewers typically do not
review submissions, they are included in the study
due to their important role in PC formation, often
recommending reviewers to the PC chairs. Diverse
meta-reviewers can help create a more diverse set
of reviewers. In the next section, we shall correlate
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Table 2: Institutional diversity.
Venue Year IDR (Meta-

reviewer)
Top Institution (% of meta-
reviewers)

IDR (Re-
viewer)

Top Institution (% of reviewers)

SIGMOD
2023 0.93 university of waterloo (9.68%) 0.68 national university of singapore (3.23%)
2024 0.91 microsoft (9.38%) 0.64 microsoft (7.15%)
2025 0.76 northeastern university (7.14%) 0.63 microsoft (6.88%)

VLDB
2023 0.92 eth zurich, chinese university of hong

kong, university of ioannina (5.71%)
0.65 microsoft (3.7%)

2024 0.92 national university of singapore
(5.26%)

0.65 microsoft (4.37%)

2025 0.94 hong kong university of science and
technology (6.0%)

0.61 microsoft (5.25%)

EDBT
2023 0.93 national university of singapore

(15.38%)
0.84 microsoft (5.68%)

2024 1.0 N.A. 0.94 university of calabria, hong kong university of
science and technology (guangzhou), univer-
sity of modena and reggio emilia, universita
di bologna, universita degli studi di milano
(2.15%)

2025 0.88 university of waterloo (11.76%), uni-
versity of ioannina (11.76%)

0.81 athena research center (4.67%)

ICDE
2023 0.88 national university of singapore

(6.98%)
0.74 national university of singapore (4.17%)

2024 0.93 hong kong university of science and
technology (10.26%)

0.69 zhejiang university (4.0%)

2025 0.85 hong kong university of science and
technology (8.2%)

0.6 hong kong university of science and technology
(3.52%)

Table 3: Location and COE diversity of the
review boards.

Venue Year Meta-reviewer Reviewer
LDR CI LDR CI

SIGMOD
2023 0.39 0.52 0.11 0.17
2024 0.31 0.41 0.13 0.15
2025 0.17 0.38 0.09 0.12

VLDB
2023 0.34 0.37 0.13 0.13
2024 0.34 0.32 0.11 0.13
2025 0.32 0.36 0.09 0.11

EDBT
2023 0.69 0.69 0.25 0.22
2024 0.8 0.53 0.19 0.18
2025 0.65 0.53 0.17 0.24

ICDE
2023 0.30 0.30 0.15 0.17
2024 0.33 0.28 0.14 0.15
2025 0.25 0.28 0.11 0.10

these insights with the recent efforts of the DEI ini-
tiative, as outlined in the three annual reports [7–9].
Note that in all figures related to location and COE
diversity, the focus is not on clearly displaying in-
dividual locations or COEs, but rather on visually
emphasizing the skewness of the distributions.

4.1 Institutional Diversity
Since review board members of most venues are

affiliated with over 100 institutions, we compute the
institutional diversity ratio (IDR) rather than us-
ing a histogram to analyze institutional diversity.
Specifically, it is defined as follows:

IDR(v) =
|Iv|
|Rv|

(3)

where Rv is the set of reviewers or meta-reviewers
of a venue v and Iv is the set of institutions they
are affiliated with. For simplicity, we assume each
member r ∈ Rv is associated with only one insti-
tution. Observe that 0 < IDR(v) ≤ 1. A higher
IDR(v) value indicates greater institutional diver-
sity in the venue.

Table 2 presents the results of institutional diver-
sity of the four venues. We observe several inter-
esting trends. First, we observe decreasing trend in

institutional diversity with time for reviewers (i.e.,
IDR is decreasing for almost all venues with time).
In particular, IDR is lowest for ICDE 2025 (0.6).
Similarly, except for VLDB, we generally see de-
creasing value of IDR for meta-reviewers. An ex-
ception is EDBT 2024 which has a perfect IDR value
for meta-reviewers (i.e., all meta-reviewers are from
distinct institutions) and a high IDR of the PC. Sec-
ond, we report the institution(s) that most number
of (meta)reviewers are associated with in a review
board (i.e., Top Institution column in Table 2).
Interestingly, in ICDE the top institution is domi-
nated by three asian universities. In contrast, the
PC of SIGMOD and VLDB is dominated by a non-
academic institution (Microsoft).

4.2 Location Diversity
Next, we compute the location diversity of the

four venues. Since the sizes of the review boards
of these venues can vary greatly, we compute the
location diversity ratio (LDR) as defined as follows:

LDR(v) =
|Lv|
|Rv|

(4)

where Rv is the set of reviewers (or meta-reviewers)
of a venue v and Lv is the set of locations associated
with Rv

2. Observe that 0 ≤ LDR(v) ≤ 1. The
higher the value of LDR(v) of a venue the more
diverse Rv is w.r.t. locations.

Table 3 presents the LDR values for the venues,
ranging from 0.09 to 0.25 for reviewers. EDBT 2023
is the most diverse, while SIGMOD 2025 and VLDB
2025 are the least diverse. All venues, except SIG-
MOD 2024, show a decline in location diversity over

2
The individual’s location is determined using the institutional

domain in their email address; if this fails, the location is man-
ually obtained from their homepage or LinkedIn profile.
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Figure 1: Location distribution of reviewers in SIGMOD, VLDB, ICDE, and EDBT.

Table 4: Top continents of reviewers. The
percentage of reviewers is shown in brackets.

Venue Year
2023 2024 2025

SIGMOD N. America [46.08] N. America [52.68] N. America [51.09]
VLDB N. America [37.5] N. America [44.66] N. America [41.36]
EDBT Europe [44.32] Europe [66.67] Europe [66.36]
ICDE Asia [41.67] Asia [46.86] Asia [46.15]

time. For meta-reviewers, LDR values range from
0.17 to 0.8, with SIGMOD showing a decreasing
trend, while EDBT has maintained high location
diversity over the past three years. In summary,
EDBT stands out for having superior location di-
versity for both reviewers and meta-reviewers over
the last three years.

The distributions of location diversity for review-
ers are shown in Figure 1. We can observe the fol-
lowing key trends. First, the location of reviewers
is primarily dominated by United States. For all
the three editions of SIGMOD and VLDB 2023, the
location distribution is highly skewed, with the dif-
ference between the top-2 locations is more than
30%. In contrast, for ICDE and EDBT, the location
diversity is more balanced, with the top location
varies between 20.6% to 29.2% of the PC. Second,
the trend of the top location remains relatively sta-
ble for SIGMOD and VLDB, but not for ICDE and
EDBT. Notably, EDBT shows a less skewed distri-
bution over time, even as its PC size increases.

Table 4 presents the top continents of the re-
viewers. The majority of reviewers for SIGMOD
and VLDB are from North America, while EDBT
predominantly features reviewers from Europe and
ICDE from Asia.

Figure 2 shows the distributions of meta-reviewers
in representative venues. Similar to the PC distri-
butions, the United States is the top location for
meta-reviewers in SIGMOD, VLDB, and ICDE (2023
and 2024). However, for EDBT, the top locations
vary by year, with the United States, Italy, and
Germany leading in different years. The distribu-
tion is highly skewed for SIGMOD and VLDB, al-
though VLDB shows increasing diversity in terms
of the number of countries. In contrast, ICDE and
EDBT have more balanced distributions. There is
a downward trend in the skewness of location dis-
tribution for VLDB, while SIGMOD shows a steep
upward trend. In SIGMOD 2023, the top location
comprised 31.25% of meta-reviewers, but this in-
creased to 80.95% in 2025, with the difference be-
tween the top two locations rising from 18.75% to
73.81%. As a result, SIGMOD 2025 is the least di-
verse in terms of meta-reviewer location.

4.3 COE Diversity
Next, we report our observations w.r.t. COE di-

versity. Note that for any venue, we are not able to
find the COE information of at most 0.5% of the re-
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Figure 2: Location distribution of meta-reviewers in SIGMOD, VLDB, ICDE, and EDBT.

viewers. Since other reviewers likely cover the same
COEs, their influence on overall trends is negligible.

We compute the COE Index (CI) by replacing
Lv with Cv in Equation 4, where Cv represents the
set of COEs associated with Rv. Table 3 shows
that the CI for reviewers ranges from 0.1 to 0.24,
with EDBT 2025 being the most diverse and ICDE
2025 the least. Notably, ICDE has shown a declining
trend in COE diversity over the past three years.
For meta-reviewers, the CI varies from 0.28 to 0.69,
with EDBT leading in diversity. Similar to location
diversity, SIGMOD exhibits a downward trend in
COE diversity over the last three years.

Figure 3 shows the COE diversity distributions
for reviewers (PC). We can observe the following
key trends. First, except for EDBT, the COE of
reviewers in SIGMOD, VLDB, and ICDE is domi-
nated by China across all three years. The percent-
age of such reviewers varies widely, from 22.42%
in SIGMOD 2024 to 59.43% in ICDE 2024. Sec-
ond, COE diversity is significantly skewed for VLDB
and ICDE, with the top-2 COEs in VLDB 2024 and
ICDE differing in the narrow range of 44.18%–52%,
showing a large gap between the top COE and the
rest. In contrast, SIGMOD and EDBT have smaller
differences, ranging from 8.97% (SIGMOD 2024) to
15.89% (EDBT 2025). Third, while the trend of the
top COE remains relatively stable for SIGMOD and
EDBT, VLDB and ICDE show an inverted V-shaped
trend, with an upward trend from 2023 to 2024, fol-
lowed by a downward trend in 2025. This trend is
more pronounced for VLDB than for ICDE.

Interestingly, the COE distribution of meta-reviewers
differs from that of reviewers. Unlike reviewers,
no single COE dominates in SIGMOD, VLDB, and
EDBT. However, VLDB 2024 and ICDE have similar
distribution profiles, with China being the top COE
across all three years and a significant gap between

Table 5: Publication age statistics.
Venue Year Reviewer Meta-reviewer

Mean Med. S.D. Mean Med. S.D.

SIGMOD
2023 16.95 17 7.53 21 21 5.13
2024 17.54 17 7.99 23.56 23 7.34
2025 17.93 17 8.39 22.83 22 7.69

VLDB
2023 14.97 14 7.35 21.71 21 5.69
2024 15.22 14 7.13 24.24 23.5 7.29
2025 16.66 16 7.7 21.96 21 7.9

EDBT
2023 15.82 15.5 6.95 22.46 20 9.03
2024 20.3 20 7.72 24.33 24 7.04
2025 20.38 20 7.36 27.41 27 6.06

ICDE
2023 14.55 14 7.12 24 23 7.33
2024 16.62 15 8.51 22.77 22 6.63
2025 14.25 13 7.71 21.85 20 8.13

the top-2 COEs. Additionally, there is a general
trend of reduced skewness in the COE distribution
for the 2025 edition compared to the previous year.

4.4 Experience Diversity
Table 5 presents statistics on the publication age

of reviewers and meta-reviewers. We observe sev-
eral interesting trends. First, meta-reviewers con-
sistently have higher publication age than reviewers
across all venues, as expected, with the mean and
median values closely aligned in most cases. Second,
EDBT has a higher average publication age, while
VLDB and ICDE have the least experienced review
boards w.r.t. publication age over the past three
years. Third, except for ICDE, the average publi-
cation age of reviewers has been increasing, show-
ing greater experience. However, this trend does
not apply to meta-reviewers. All venues, except
for EDBT, show an inverted-V trend or decreasing
trend in publication age for meta-reviewers (with
ICDE showing a decreasing trend). In summary,
while review board sizes have grown for all venues,
EDBT is the only venue that has consistently seen
growth in both board size and publication age.

Table 6 presents the average publication venue
index for reviewers across the four venues. The val-
ues in brackets indicate the percentage of reviewers
with venue(p, v) = 0. SIGMOD shows a decreasing
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Figure 3: COE distribution of reviewers in SIGMOD, VLDB, ICDE, and EDBT.

trend in the average publication venue index, while
the other venues exhibit V-shaped or inverted V-
shaped trends. Nevertheless, SIGMOD (resp. ICDE)
consistently has higher index compared to VLDB
(resp. EDBT). Additionally, the percentage of re-
viewers with no relevant publications is low for all
venues, except for EDBT 2024.

5. REFLECTION & CONCLUSIONS
The DEI initiative in data management initially

focused on issues related to participants, authors,
and speakers, as well as managing conflicts of inter-
est (COI) for fairer reviewer assignments, as out-
lined in the 2021 and 2022 reports [8, 9]. The need
for diversification of the review boards only sur-
faced in the most recent report [7]. This article
examines the diversity of review boards at four ma-
jor data management venues. While EDBT has
demonstrated superior diversity across the major-
ity of the dimensions of the review boards, larger
venues have struggled to maintain this level of con-
sistency. Specifically, there is a noticeable decline in
institutional diversity for both reviewers and meta-
reviewers across most venues. EDBT shows the most
balanced distribution of location and COE diver-
sity among reviewers, while other venues, especially
SIGMOD, show significant skewness. Finally, EDBT
has the most experienced review boards w.r.t. pub-
lication age, while VLDB and ICDE have the least

Table 6: Average publication venue index.
Venue Year

2023 2024 2025

SIGMOD 13.47 [5.07] 13.1 [5.8] 11.93 [4.8]
VLDB 11.14 [4.35] 10.28 [6.09] 11.32 [4.78]
EDBT 11.31 [0] 9.97 [9.68] 14.02 [0.93]
ICDE 14.31 [3.47] 18.75 [2.29] 14.06 [5.21]

experienced, with ICDE showing a declining trend
over time. Note that we intentionally avoided spec-
ulating on the reasons behind these trends, as the
processes involved in forming review boards and the
challenges faced are only known to the PC chairs.

The results indicate that review board diversity
does not always reflect the growing diversity within
the data management community. For instance,
while the reviewer database of CLOSET [10] shows
over 70 distinct COEs of reviewers in the past five
years, less than half of these have been represented
on review boards. This highlights the need for more
targeted efforts to create diverse and balanced boards.
Given the increasing size of review boards and high
declination rates for PC invites [11], manually ad-
dressing it is difficult for PC chairs. Therefore, the
development of data-driven, PC chair-in-the-loop
tools is essential for efficiently forming diverse and
balanced review boards. Lastly, a key goal of a di-
verse review board is to ensure that submissions are
reviewed by diverse experts. Hence, future research
will explore the impact of diverse review boards on
diversity of reviewer assignments, though access to
private assignment data remains a key obstacle.
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L. Peterfreund, S. Sahri, S. Sellami, R.
Shraga, U. Sirin, W.-C. Tan, B.
Thuraisingham, Y. Tian, G. Vargas-Solar, M.
Zhang, W. Zhang. Diversity, Equity and
Inclusion Activities in Database Conferences:
A 2023 Report. SIGMOD Record , 53(2), June
2024.

[8] S. Amer-Yahia, D. Agrawal, Y. Amsterdamer,
S. S. Bhowmick, A. Bonifati, R.
Borovica-Gajic, J. Camacho-Rodŕıguez, B.
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