
SIGMOD Officers, Committees, and Awardees 
	

Chair	 Vice-Chair	 Secretary/Treasurer	
Divyakant	Agrawal	 Fatma	Ozcan	 Rachel	Pottinger	

Department	of	Computer	Science	 Systems	Research	Group	 Department	of	Computer	Science	
UC	Santa	Barbara	 Google	 University	of	British	Columbia		

Santa	Barbara,	California	 Sunnyvale,	California	 Vancouver	
USA	 USA	 Canada	

+1	805	893	4385	 +1	669	264	9238	 +1	604	822	0436	
agrawal	<at>	cs.ucsb.edu	 Fozcan	<at>	google.com	 Rap	<at>	cs.ubc.ca	

	
	
SIGMOD	Executive	Committee:			

Divyakant	Agrawal	(Chair),	Fatma	Ozcan	(Vice-chair),	Rachel	Pottinger	(Treasurer),	Juliana	Freire	
(Previous	SIGMOD	Chair),	Chris	Jermaine	(SIGMOD	Conference	Coordinator	and	ACM	TODS	Editor	in	
Chief),	Rada	Chirkova	(SIGMOD	Record	Editor),	Angela	Bonifati	(2022	SIGMOD	PC	co-chair),	Amr	El	
Abbadi	(2022	SIGMOD	PC	co-chair),	Floris	Geerts	(Chair	of	PODS),	Sihem	Amer-Yahia	(SIGMOD	
Diversity	and	Inclusion	Coordinator),	Sourav	S	Bhowmick	(SIGMOD	Ethics)	
	

Advisory	Board:		
Yannis	Ioannidis	(Chair),	Phil	Bernstein,	Surajit	Chaudhuri,	Rakesh	Agrawal,	Joe	Hellerstein,	Mike	
Franklin,	Laura	Haas,	Renee	Miller,	John	Wilkes,	Chris	Olsten,	AnHai	Doan,	Tamer	Özsu,	Gerhard	
Weikum,	Stefano	Ceri,	Beng	Chin	Ooi,	Timos	Sellis,	Sunita	Sarawagi,	Stratos	Idreos,	and	Tim	Kraska	

	
SIGMOD	Information	Directors:			
	 Sourav	S	Bhowmick,	Nanyang	Technological	University	
	 Byron	Choi,	Hong	Kong	Baptist	University	
	
Associate	Information	Directors:			

Huiping	Cao	(SIGMOD	Record),	Georgia	Koutrika	(Blogging),	Wim	Martens	(PODS)	
	
SIGMOD	Record	Editor-in-Chief:			
	 Rada	Chirkova,	NC	State	University	
	
SIGMOD	Record	Associate	Editors:			

Lyublena	Antova,	Marcelo	Arenas,	Manos	Athanassoulis,	Renata	Borovica-Gajic,	Vanessa	Braganholo,		
Susan	Davidson,	Aaron	J.	Elmore,	Wook-Shin	Han,	Wim	Martens,		Kyriakos	Mouratidis,	Dan	Olteanu,		
Tamer	Özsu,	Kenneth	Ross,	Pınar	Tözün,	Immanuel	Trummer,	Yannis	Velegrakis,	Marianne	Winslett,		
and	Jun	Yang	

	
SIGMOD	Conference	Coordinator:			

Chris	Jermaine,	Rice	University		
	

PODS	Executive	Committee:		
	 Floris	Geerts	(chair),	Pablo	Barcelo,	Leonid	Libkin,	Hung	Q.	Ngo,	Reinhard	Pichler,	Dan	Suciu	
	
Sister	Society	Liaisons:			
	 Raghu	Ramakhrishnan	(SIGKDD),	Yannis	Ioannidis	(EDBT	Endowment),	Christian	Jensen	(IEEE	TKDE)	
	
SIGMOD	Awards	Committee:		

H.V.	Jagadish	(Chair),	Stefano	Ceri,	Yanlei	Diao,	Samuel	Madden,	Volker	Markl,	Sayan	Ranu,	Barna	Saha,	
Wang-Chiew	Tan	

	
	

SIGMOD Record, December 2023 (Vol. 52, No. 4) 1



Jim	Gray	Doctoral	Dissertation	Award	Committee:			
Wolfgang	Lehner	(co-chair),	Gustavo	Alonso	(co-chair),	Azza	Abouzied,	Daniel	Deutch,	Evaggelia	
Pitoura,	Xiaofang	Zhou,	Huanchen	Zhang,	and	Chenggang	Wu	

	
SIGMOD	Edgar	F.	Codd	Innovations	Award		
For	innovative	and	highly	significant	contributions	of	enduring	value	to	the	development,	understanding,	or	use	
of	database	systems	and	databases.	Recipients	of	the	award	are	the	following:		

Michael	Stonebraker	(1992)	 	 Jim	Gray	(1993)	 	 	 	 Philip	Bernstein	(1994)		
David	DeWitt	(1995)	 	 	 C.	Mohan	(1996)	 	 																		 David	Maier	(1997)		
Serge	Abiteboul	(1998)	 	 	 Hector	Garcia-Molina	(1999)	 						 Rakesh	Agrawal	(2000)		
Rudolf	Bayer	(2001)	 	 	 Patricia	Selinger	(2002)	 										 	 Don	Chamberlin	(2003)		
Ronald	Fagin	(2004)	 	 	 Michael	Carey	(2005)	 	 						 Jeffrey	D.	Ullman	(2006)		
Jennifer	Widom	(2007)	 	 	 Moshe	Y.	Vardi	(2008)	 	 						 Masaru	Kitsuregawa	(2009)		
Umeshwar	Dayal	(2010)	 	 	 Surajit	Chaudhuri	(2011)	 						 	 Bruce	Lindsay	(2012)	
Stefano	Ceri	(2013)		 	 	 Martin	Kersten	(2014)	 	 						 Laura	Haas	(2015)	
Gerhard	Weikum	(2016)	 	 	 Goetz	Graefe	(2017)	 	 	 Raghu	Ramakrishnan	(2018)	
Anastasia	Ailamaki	(2019)																									Beng	Chin	Ooi	(2020)	 	 	 Alon	Halevy	(2021)	
Dan	Suciu	(2022)	 	 	 	 Joseph	M.	Hellerstein	(2023)	
	
SIGMOD	Systems	Award		
For	technical	contributions	that	have	had	significant	impact	on	the	theory	or	practice	of	large-scale	data	
management	systems.	

Michael	Stonebraker	and	Lawrence	Rowe	(2015);	Martin	Kersten	(2016);	Richard	Hipp	(2017);		
Jeff	 Hammerbacher,	 Ashish	 Thusoo,	 Joydeep	 Sen	 Sarma;	 Christopher	 Olston,	 Benjamin	 Reed,	 and	 Utkarsh	
Srivastava	(2018);	Xiaofeng	Bao,	Charlie	Bell,	Murali	Brahmadesam,	James	Corey,	Neal	Fachan,	Raju	Gulabani,	
Anurag	Gupta,	Kamal	Gupta,	 James	Hamilton,	Andy	 Jassy,	Tengiz	Kharatishvili,	 Sailesh	Krishnamurthy,	Yan	
Leshinsky,	 Lon	 Lundgren,	 Pradeep	Madhavarapu,	 Sandor	Maurice,	 Grant	McAlister,	 Sam	McKelvie,	 Raman	
Mittal,	Debanjan	 Saha,	 Swami	 Sivasubramanian,	 Stefano	 Stefani,	 and	Alex	Verbitski	 (2019);	Don	Anderson,	
Keith	 Bostic,	 Alan	 Bram,	 Grg	 Burd,	Michael	 Cahill,	 Ron	 Cohen,	 Alex	 Gorrod,	 George	 Feinberg,	Mark	Hayes,	
Charles	 Lamb,	 Linda	Lee,	 Susan	LoVerso,	 John	Merrells,	Mike	Olson,	 Carol	 Sandstrom,	 Steve	 Sarette,	David	
Schacter,	David	Segleau,	Mario	Seltzer,	and	Mike	Ubell	(2020);	Michael	Blanton,	Adam	Bolton,	Bill	Boroski,	Joel	
Brownstein,	Robert	Brunner,	Tamas	Budavari,	Sam	Carliles,	Jim	Gray,	Steve	Kent,	Peter	Kunszt,	Gerard	Lemson,	
Nolan	Li,	Dmitry	Medvedev,	 Jeff	Munn,	Deoyani	Nandrekar-Heinis,	Maria	Nieto-Santisteban,	Wil	O’Mullane,	
Victor	Paul,	Don	Slutz,	Alex	Szalay,	Gyula	Szokoly,	Manu	Taghizadeh-Popp,	Jordan	Raddick,	Bonnie	Souter,	Ani	
Thakar,	Jan	Vandenberg,	Benjamin	Alan	Weaver,	Anne-Marie	Weijmans,	Sue	Werner,	Brian	Yanny,	Donald	York,	
and	the	SDSS	collaboration	(2021);	Michael	Armbrust,	Tathagata	Das,	Ankur	Dave,	Wenchen	Fan,	Michael	J.	
Franklin,	 Huaxin	 Gao,	Maxim	Gekk,	 Ali	 Ghodsi,	 Joseph	 Gonzalez,	 Liang-Chi	 Hsieh,	 Dongjoon	Hyun,	 Hyukjin	
Kwon,	Xiao	Li,	Cheng	Lian,	Yanbo	Liang,	Xiangrui	Meng,	Sean	Owen,	Josh	Rosen,	Kousuke	Saruta,	Scott	Shenker,	
Ion	Stoica,	Takuya	Ueshin,	Shivaram	Venkataraman,	Gengliang	Wang,	Yuming	Wang,	Patrick	Wendell,	Reynold	
Xin,	Takeshi	Yamamuro,	Kent	Yao,	Matei	Zaharia,	Ruifeng	Zheng,	and	Shixiong	Zhu	(2022);	Aljoscha	Krettek,	
Andrey	 Zagrebin,	 Anton	 Kalashnikov,	 Arvid	 Heise,	 Asterios	 Katsifodimos,	 Jiangji	 (Becket)	 Qin,	 Benchao	 Li,	
Bowen	Li,	Caizhi	Weng,	ChengXiang	Li,	Chesnay	Schepler,	Chiwan	Park,	Congxian	Qiu,	Daniel	Warneke,	Danny	
Cranmer,	 David	 Anderson,	 David	 Morávek,	 Dawid	 Wysakowicz,	 Dian	 Fu,	 Dong	 Lin,	 Eron	 Wright,	 Etienne	
Chauchot,	Fabian	Hueske,	Fabian	Paul,	Feng	Wang,	Gabor	Somogyi,	Gary	Yao,	Godfrey	He,	Greg	Hogan,	Guowei	
Ma,	 Gyula	 Fora,	 Haohui	Mai,	 Henry	 Saputra,	 Hequn	 Cheng,	 Igal	 Shilman,	 Ingo	 Bürk,	 Jamie	 Grier,	 Jark	Wu,	
Jincheng	 Sun,	 Jing	 Ge,	 Jing	 Zhang,	 Jingsong	 Lee,	 Junhan	 Yang,	 Konstantin	 Knauf,	 Kostas	 Kloudas,	 Kostas	
Tzoumas,	Kete	(Kurt)	Young,	Leonard	Xu,	Lijie	Wang,	Lincoln	Lee,	Lungu	Andra,	Martijn	Visser,	Marton	Balassi,	
Matthias	 J.	Sax,	Matthias	Pohl,	Matyas	Orhidi,	Maximilian	Michels,	Nico	Kruber,	Niels	Basjes,	Paris	Carbone,	
Piotr	Nowojski,	Qingsheng	Ren,	Robert	Metzger,	Roman	Khachatryan,	Rong	Rong,	Rui	Fan,	Rui	Li,	Sebastian	
Schelter,	Seif	Haridi,	Sergey	Nuyanzin,	Seth	Wiesman,	Shaoxuan	Wang,	Shengkai	Fang,	Shuyi	Chen,	Sihua	Zhou,	
Stefan	 Richter,	 Stephan	 Ewen,	 Theodore	 Vasiloudis,	 Thomas	Weise,	 Till	 Rohrmann,	 Timo	Walther,	 Tzu-Li	
(Gordon)	Tai,	Ufuk	Celebi,	Vasiliki	Kalavri,	Volker	Markl,	Wei	Zhong,	Weijie	Guo,	Xiaogang	Shi,	Xiaowei	Jiang,	

2 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Xingbo	Huang,	Xingcan	Cui,	Xintong	Song,	Yang	Wang,	Yangze	Guo,	Yingjie	Cao,	Yu	Li,	Yuan	Mei,	Yun	Gao,	Yun	
Tang,	Yuxia	Luo,	Zhijiang	Wang,	Zhipeng	Zhang,	Zhu	Zhu,	Zili	Chen	(2023)	
	
SIGMOD	Contributions	Award		
For	 significant	 contributions	 to	 the	 field	 of	 database	 systems	 through	 research	 funding,	 education,	 and	
professional	services.	Recipients	of	the	award	are	the	following:		

Maria	Zemankova	(1992)	 	 	 Gio	Wiederhold	(1995)	 	 	 Yahiko	Kambayashi	(1995)		
Jeffrey	Ullman	(1996)	 	 	 Avi	Silberschatz	(1997)	 	 	 Won	Kim	(1998)		
Raghu	Ramakrishnan	(1999)	 	 Michael	Carey	(2000)	 	 	 Laura	Haas	(2000)		
Daniel	Rosenkrantz	(2001)	 	 Richard	Snodgrass	(2002)		 	 Michael	Ley	(2003)		
Surajit	Chaudhuri	(2004)			 	 Hongjun	Lu	(2005)		 	 	 Tamer	Özsu	(2006)		
Hans-Jörg	Schek	(2007)	 	 	 Klaus	R.	Dittrich	(2008)	 												 	 Beng	Chin	Ooi	(2009)		
David	Lomet	(2010)																											 Gerhard	Weikum	(2011)	 	 	 Marianne	Winslett	(2012)	
H.V.	Jagadish	(2013)	 	 	 Kyu-Young	Whang	(2014)		 	 Curtis	Dyreson	(2015)	
Samuel	Madden	(2016)	 	 	 Yannis	E.	Ioannidis	(2017)	 	 Z.	Meral	Özsoyoğlu	(2018)	
Ahmed	Elmagarmid	(2019)																							Philipe	Bonnet	(2020)		 	 	 Juliana	Freire	(2020)	
Stratos	Idreos	(2020)	 	 	 Stefan	Manegold	(2020)		 	 	 Ioana	Manolescu	(2020)	
Dennis	Shasha	(2020)	 	 	 Divesh	Srivastava	(2021)	 	 	 Christian	S.	Jensen	(2022)	
K.	Selcuk	Candan	(2023)	
		
SIGMOD	Jim	Gray	Doctoral	Dissertation	Award		
SIGMOD	has	established	the	annual	SIGMOD	Jim	Gray	Doctoral	Dissertation	Award	to	recognize	excellent	
research	by	doctoral	candidates	in	the	database	field.		Recipients	of	the	award	are	the	following:		

§ 2006	Winner:	Gerome	Miklau.	Honorable	Mentions:	Marcelo	Arenas	and	Yanlei	Diao	
§ 2007	Winner:	Boon	Thau	Loo.	Honorable	Mentions:	Xifeng	Yan	and	Martin	Theobald	
§ 2008	Winner:	Ariel	Fuxman.	Honorable	Mentions:	Cong	Yu	and	Nilesh	Dalvi	
§ 2009	Winner:	Daniel	Abadi.		Honorable	Mentions:	Bee-Chung	Chen	and	Ashwin	Machanavajjhala	
§ 2010	Winner:	Christopher	Ré.	Honorable	Mentions:	Soumyadeb	Mitra	and	Fabian	Suchanek	
§ 2011	Winner:	Stratos	Idreos.	Honorable	Mentions:	Todd	Green	and	Karl	Schnaitterz	
§ 2012	Winner:	Ryan	Johnson.	Honorable	Mention:	Bogdan	Alexe	
§ 2013	Winner:	Sudipto	Das,	Honorable	Mention:	Herodotos	Herodotou	and	Wenchao	Zhou	
§ 2014	Winners:	Aditya	Parameswaran	and	Andy	Pavlo.	
§ 2015	Winner:	Alexander	Thomson.	Honorable	Mentions:	Marina	Drosou	and	Karthik	Ramachandra	
§ 2016	Winner:	Paris	Koutris.	Honorable	Mentions:	Pinar	Tozun	and	Alvin	Cheung	
§ 2017	Winner:	Peter	Bailis.	Honorable	Mention:	Immanuel	Trummer	
§ 2018	Winner:	Viktor	Leis.	Honorable	Mention:	Luis	Galárraga	and	Yongjoo	Park	
§ 2019	Winner:	Joy	Arulraj.	Honorable	Mention:	Bas	Ketsman		
§ 2020	Winner:	Jose	Faleiro.	Honorable	Mention:	Silu	Huang	
§ 2021	Winner:	Huanchen	Zhang,	Honorable	Mentions:	Erfan	Zamanian,	Maximilian	Schleich,	and	Natacha	

Crooks	
§ 2022	Winner:	Chenggang	Wu,	Honorable	Mentions:	Pingcheng	Ruan	and	Kexin	Rong	
§ 2023	Winner:	Supun	Nakandala,	Honorable	Mentions:	Benjamin	Hilprecht	and	Zongheng	Yang	

A	complete	list	of	all	SIGMOD	Awards	is	available	at:	https://sigmod.org/sigmod-awards/		

[Last	updated:	June	1,	2023]	

SIGMOD Record, December 2023 (Vol. 52, No. 4) 3



 Editor’s Notes 
	

Welcome	to	the	December	2023	issue	of	the	ACM	SIGMOD	Record!		

This	issue	starts	with	the	Database	Principles	column	presenting	an	article	by	ten	Cate	and	col-
leagues	on	algorithms	for	solving	the	fitting	problem	for	conjunctive	queries.		The	fitting	problem,	
which	concerns	constructing	queries	that	fit	the	given	labeled	data	examples,	has	a	long	history	in	
database	research,	with	connections	ranging	from	the	query-by-example	paradigm	to	inductive	
logic	programming.	The	authors	consider	the	fitting	problem	for	the	case	of	conjunctive	queries,	
that	is	select-project-join	queries	with	equality	comparisons,	covering	desirable	properties	for	po-
tential	algorithms	addressing	the	problem,	a	comparison	of	existing	algorithms	under	these	consid-
erations,	and	structural	interactions	between	the	considerations.	The	article	concludes	with	an	out-
line	of	interesting	directions	for	further	investigation.		

The	Surveys	column	features	a	contribution	by	Siddiqui	and	Wu.	The	article	considers	the	landscape	
of	challenges	in	recommending	high-quality	indexes	while	ensuring	scalability	in	managing	work-
loads	in	modern	cloud	services.	Within	this	scope,	the	authors	explore	ways	in	which	machine-learn-
ing	techniques	provide	new	opportunities	in	the	mitigation	of	some	of	the	challenges	in	automated	
index	tuning.	The	article	highlights	the	key	takeaways	from	the	recent	efforts	in	these	directions,	and	
underlines	the	gaps	that	need	to	be	closed	for	their	effective	functioning	within	the	traditional	index-
tuning	framework.	The	information	provided	in	the	article	can	be	useful	 in	providing	context	and	
impetus	to	the	further	research	and	development	efforts	in	automated	index	tuning.	
	
The	Reminiscences	on	Influential	Papers	column	features	contributions	by	Sourav	Bhowmick,	Car-
sten	Binnig,	and	Peter	Alvaro.		
	
The	Advice	to	Mid-Career	Researchers	column	presents	a	contribution	by	Tiziana	Catarci.	In	the	col-
umn,	she	shares	her	experiences	with	the	university-career	tracks	in	her	home	country	and	in	Europe	
as	a	whole,	and	provides	perspective	on	how	the	mid-career	period	can	give	researchers	even	more	
freedom	to	study,	create	their	own	groups,	and	choose	their	own	ventures.	She	also	explores	poten-
tial	ways	to	impact	the	society,	to	contribute	to	the	creation	of	a	better	world,	and	to	be	a	positive	
example	for	the	younger	generation	during	that	career	period.	
	
The	DBrainstorming	column,	whose	goal	is	to	discuss	new	and	potentially	controversial	ideas	that	
might	be	of	interest	and	benefit	to	the	research	community,	features	an	article	by	Tianzheng	Wang.	
The	article	ponders	research	questions	around	the	roles	of	programming	languages	in	implementing	
DBMS.	The	DBMS	software	is	expected	to	deliver	both	on	good	use	of	the	hardware	for	high	perfor-
mance	and	on	success	with	high-level	abstractions,	which	often	leads	to	the	choice	of	more	than	one	
programming	language	for	the	implementations.	The	article	makes	a	case	for	exploring	features	of	
programming	languages	in	deciding	whether	a	single	programming	language	can	be	used	in	imple-
menting	DBMS,	and	for	quantitatively	comparing	the	available	programming	languages	for	this	pur-
pose.	As	compiler	and	ecosystem	support	can	often	fall	short	in	DBMS	development,	the	author	calls	
on	the	community	to	consider	influencing	programming-language	and	compiler	design	to	push	the	
desired	features	early	into	future	programming	languages.	
 
The	issue	closes	with	an	Open	Forum	column,	which	presents	an	article	by	Meliou	and	colleagues	
that	focuses	on	the	important	and	hard	task	of	reviewing	papers	for	conferences.	The	article	reports	
the	results	of	a	survey	conducted	to	gather	the	opinions	of	the	data-management	community	regard-
ing	what	 could	 be	 done	 to	 address	 the	 existing	 challenges	 in	 conference	 reviewing.	 The	 authors	

4 SIGMOD Record, December 2023 (Vol. 52, No. 4)



reached	out	to	about	1,200	members	of	the	community	with	relevant	reviewing	experience,	and	col-
lected	345	anonymous	responses.	A	planned	follow-up	to	the	article	will	discuss	in	more	depth	par-
ticular	proposals	inspired	by	the	collective	feedback	from	the	community.	
	
On	behalf	of	the	SIGMOD	Record	Editorial	board,	I	hope	that	you	enjoy	reading	the	December	2023	
issue	of	the	SIGMOD	Record!		
	
Your	submissions	to	the	SIGMOD	Record	are	welcome	via	the	submission	site:	

https://mc.manuscriptcentral.com/sigmodrecord 	
	
Prior	to	submission,	please	read	the	Editorial	Policy	on	the	SIGMOD	Record’s	website:		

https://sigmodrecord.org/sigmod-record-editorial-policy/	
		

Rada	Chirkova	

December	2023	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
Past	SIGMOD	Record	Editors:	

	
Yanlei	Diao	(2014-2019)																					Ioana	Manolescu	(2009-2013)													Alexandros	Labrinidis	(2007–2009)	
Mario	Nascimento	(2005–2007)							Ling	Liu	(2000–2004)		 												Michael	Franklin	(1996–2000)	
Jennifer	Widom	(1995–1996)											Arie	Segev	(1989–1995)	 												Margaret	H.	Dunham	(1986–1988)	
Jon	D.	Clark	(1984–1985)																			Thomas	J.	Cook	(1981–1983)		 												Douglas	S.	Kerr	(1976-1978)		
Randall	Rustin	(1974-1975)														Daniel	O’Connell	(1971–1973)													Harrison	R.	Morse	(1969)																			

SIGMOD Record, December 2023 (Vol. 52, No. 4) 5



Fitting Algorithms for Conjunctive Queries

Balder ten Cate
ILLC, University of Amsterdam

Maurice Funk
Leipzig University and ScaDS.AI

Jean Christoph Jung
TU Dortmund University

Carsten Lutz
Leipzig University and ScaDS.AI

ABSTRACT
A fitting algorithm for conjunctive queries (CQs) is an al-
gorithm that takes as input a collection of data examples
and outputs a CQ that fits the examples. In this column,
we propose a set of desirable properties of such algorithms
and use this as a guide for surveying results from the au-
thors’ recent papers published in PODS 2023, IJCAI 2023,
and Inf. Proc. Letters 2024. In particular, we explain and
compare several concrete fitting algorithms, and we discuss
complexity and size bounds for constructing fitting CQs with
desirable properties.

1. INTRODUCTION
The fitting problem for conjunctive queries (CQs) is

the problem to construct a CQ q that fits a given set of
labeled data examples. This fundamental problem has a
long history in database research. It lies at the heart of
the classic Query-By-Example paradigm [41] that aims
to assist users in query formation and query refinement,
and that is also known as query reverse engineering. It
has been intensively studied for CQs [38, 33, 7] and other
types of queries (e.g., [10, 4, 20]). The fitting problem
is also central to Inductive Logic Programming [21, 27],
where CQs correspond to the basic case of non-recursive
single-rule Datalog programs, and has close connections
to fitting problems for schema mappings [2, 12]. More re-
cent motivation comes from automatic feature generation
in machine learning with relational data [30, 8]. Here,
the CQ fitting problem arises because a CQ that sepa-
rates positive from negative examples in (a sufficiently
large subset of) a labeled dataset is a natural contender
for being added as an input feature to the model [8].
Examples illustrating the fitting problem are given

in Table 1. In each example, certain values from the
database instance are labeled as positive and/or negative,
and a fitting query must include the positive examples
in its output and exclude the negative examples.

Depending on the application, desirable properties of
a fitting algorithm may include the following:

1This paper was written in response to a dual invitation from
the SIGMOD Record Database Principles column and the
ACM SIGMOD Research Highlight Award committee.

Efficiency Ideally, the fitting algorithm should run in
polynomial time in the size of the input examples,
or at least in polynomial time in the size of the
input examples plus the size of the smallest fitting
query. We call the latter weakly polynomial.

Succinctness Ideally, the fitting algorithm outputs a
query of small size, i.e., not much larger than
the smallest fitting query. This can be formal-
ized through the notion of the “Occam property”,
which requires that the size of the output concept is
bounded polynomially in the size of a target query
and sublinearly in the number of input examples.

Producing Extremal Fittings When several fitting
queries exist, it may be desirable to output a query
that is either most-general or most-specific among
all fitting queries.

Generalization to Unseen Examples Ideally, we would
like the fitting algorithm to come with a (prob-
abilistic) guarantee that the output query not
only fits the input examples, but performs well
on future unseen examples (drawn from the same
distribution as the input examples and labeled
according to the same “target query”). This is
formalized by the well-known PAC (“Probably
Approximately Correct”) property.

Completeness for Design Ideally, the fitting algorithm
can be compelled to produce any CQ (up to
equivalence) by giving it the right input examples.

It turns out that some of these properties are difficult
or impossible to attain. Also, there are properties that
can be obtained in isolation, but not in combination.
A fundamental difficulty is that the fitting problem is
computationally hard, and it is known that the smallest
fitting CQ for a given collection of labeled examples is in
general exponential in size [40]. To make things worse,
the hardness pertains already to very small subclasses of
CQs and natural restrictions on the fitting problem ob-
tained by requiring, for instance, that all input examples
use the same database instance (cf. Section 4).

6 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Example database instance I:

Businessman
donald
fred
james

Economist
barack-sr

Democrat
barack
franklin

Republican
donald

Father
barack-sr barack
fred donald
james franklin

Labeled examples: A fitting query:

E+ = {(I, franklin), (I, barack)} q(x) :- Democrat(x).
E− = {(I, donald)}

E+ = {(I, franklin), (I, donald)} q(x) :- Father(y, x),
E− = {(I, barack)} Businessman(y).

E+ = {(I, barack), (I, donald)} the union of CQs
E− = {(I, franklin)} q(x) :- Republican(x)

q(x) :- Father(y, x),
Economist(y).

Table 1: Examples of the fitting problem

Strongly
Occam

Occam Polynomial PAC

Complete for
Design

Producing a
most-specific

fitting

Producing a
most-general fitting

when it exists

×
×

×

Figure 1: Summary of interactions between desirable
properties (the edge label × means incompatibility)

Despite these roadblocks, there are ways forward. One
may opt to bite the bullet and live with the high com-
putational complexity, for example by employing SAT
solvers. One may also extend the capabilities of the
fitting algorithm by allowing it to interactively ask ques-
tions to an oracle that provides black-box access to a
fitting CQ (the “target CQ”). Specifically, the algorithm
may produce a database instance and a tuple and ask
whether the tuple belongs to the output of the target
CQ on that instance. In reality, the oracle may be a pre-
existing compiled CQ (in reverse-engineering scenarios)
or a user (in interactive query specification settings). A
third option is to resort to incomplete approaches that
do not always return a fitting CQ when one exists.
In this column, we (i) compare several different fit-

ting algorithms based on the above considerations and
(ii) discuss structural interactions between the above
desiderata. In particular, we will study three fitting
algorithms for CQs, described at a high level as follows:

Algorithm P This algorithm takes as input a collection
of labeled examples and outputs the canonical CQ
of the direct product of the positive examples,
which is known to fit whenever a fitting CQ exists.

Algorithm M can be viewed as an optimized version of

Algorithm P that additionally interacts with an
oracle as described above. It computes the product
of the positive examples in an iterative way and uses
the oracle to minimize the query in each iteration.

Algorithm B proceeds by solving a size-bounded version
of the fitting problem for increasing size bounds,
until a fitting CQ is found. This is also known as
the “bounded fitting approach”.

Each of the five desirable properties listed above will
be discussed in a separate section of this column. We will
discuss how the three algorithms fare, explain how this
is complemented by lower bounds, and discuss structural
interactions between the different desiderata. Table 2
provides a summary of the interactions between the
considered properties. The technical results we present
are mostly drawn from the recent papers [14, 17, 16].
Indeed, our motivation for writing this column is to fit
these results into a unified picture.
Fitting problems for CQs and especially also for

broader classes of logic programs have been investigated
extensively in the literature on Inductive Logic Program-
ming (ILP), with a strong emphasis on systems imple-
mentation. The most common technique used in ILP
systems is based on refinement operators. In the case of
CQs it is known that fitting algorithms based on refine-
ment operators are incomplete. Nevertheless, refinement-
operator based approaches have been successfully im-
plemented and used. Therefore, in Section 9, we also
discuss them and their relationship to our algorithms.

Outline. In Section 2, we define the fitting problem. In
Section 3 we describe the three algorithms in more detail.
In Sections 4–8, we investigate the above five desiderata
one by one. In Section 9, we discuss refinement-based
approaches to fitting. Finally, we conclude in Section 10.

2. THE FITTING PROBLEM FOR CQS
As usual, a schema S is a set of relation symbols, each

with associated arity. A database instance over S is
a finite set I of facts of the form R(a1, . . . , an) where
R ∈ S is a relation symbol of arity n and a1, . . . , an are
values. We use adom(I) to denote the set of all values
used in I. We can then view a query over a schema S,
semantically, as a function q that maps each database
instance I over S to a set of k-tuples q(I) ⊆ adom(I)k,
where k ≥ 0 is the arity of the query.

Data Examples. A data example for a query q consists
of a database instance I together with information about
the intended query output q(I). We focus on two types
of data examples (cf. Remark 2.4 for other types):

• a positive example for q is a pair (I, a) with a ∈ q(I);

• a negative example for q is a pair (I, a) with a ∈
adom(I)k \ q(I)

SIGMOD Record, December 2023 (Vol. 52, No. 4) 7



Needs oracle Running time Extremal fitting Occam PAC Complete for design

Alg P no Exponential in the input yes no no yes
(not weakly polynomial) (most-specific)

Alg M yes Exponential in the input no yes yes yes
(weakly polynomial) (strongly) (polynomially)

Alg B no Doubly exponential no yes yes yes
(not weakly polynomial) (strongly) (polynomially)

Table 2: Summary of our comparison of fitting algorithms

with k the arity of the query q. We also say that k is
the arity of the example.
By a collection of labeled examples we mean a pair

E = (E+, E−), where E+ and E− are sets of examples.
We say that a query q fits E if each member of E+ is
a positive example for q and each member of E− is a
negative example for q, or, in other words, if a ∈ q(I)
for all (I, a) ∈ E+ and a ̸∈ q(I) for all (I, a) ∈ E−. Note
that for a fitting to exist, all examples in the collection
must have the same arity.

Example 2.1. Consider the database instance I de-
picted in Table 1, over a schema that consists of unary
and binary relation symbols, storing information about
American presidents. Table 1 lists several collections of
labeled examples, and, for each, a fitting query. Note
that in the third case, no fitting conjunctive query exists,
but a fitting union of conjunctive queries exists.

Fitting Problems. We discuss three algorithmic prob-
lems related to fitting, relative to a query language Q:

Fitting Construction Given a collection E of labeled
examples that has a fitting query in Q, construct
such a query.

Fitting Existence Given a collection E of labeled exam-
ples, decide whether a fitting query from Q exists.

Fitting Verification Given a collection E of labeled ex-
amples and a query q ∈ Q, decide if q fits E.

Among the three problems above, fitting construction
is the main problem of interest and we sometimes refer
to it also as the fitting problem. Note that we have
formulated fitting construction as a promise problem, in
order to study its complexity in isolation from the fitting
existence problem. In practice, one may combine a fitting
construction algorithm with a fitting existence test.
A solution to the fitting construction problem, as

defined above, is any query that fits. In particular,
the query is not required to generalize from the input
collection of labeled examples to other examples, i.e.,
there is no penalty for overfitting.
If Q is the class of all relational algebra queries, the

above problems are trivial. Indeed, if constants are

admitted in the query, a fitting relational algebra query
exists for (E+, E−) if and only if E+ ∩ E− = ∅; as a
fitting query one can pick, intuitively, the union of the
complete descriptions of the positive examples. Without
constants, a fitting relational algebra query exists if and
only if no member of E+ is isomorphic to a member of
E− (cf. [23]). This situation changes for more restricted
query languages Q; we consider conjunctive queries.

Conjunctive Queries and tree CQs. By a k-ary conjunc-
tive query (CQ) over a schema S, we mean an expression
of the form q(x) :- α1, . . . , αn where x = x1, . . . , xk is a
sequence of variables and each αi is a relational atom
that uses a relation symbol from S and no constants.
The variables in x are called answer variables and the
other variables used in the atoms αi are the existential
variables. Each answer variable is required to occur in at
least one atom αi, a requirement known as the safety con-
dition. A CQ of arity 0 is called Boolean. With the size
of a CQ, we mean the number of atoms in it. The query
output q(I) is defined as usual, cf. any standard database
textbook. Two CQs q1 and q2 are equivalent, written
q1 ≡ q2 if q1(I) = q2(I) for all database instances I.
Besides CQs we will also consider a more restricted

class of queries, namely tree CQs. In order to define it,
we need to talk about canonical database instances. The
canonical database instance of a CQ q is the instance
Iq (over the same schema as q) whose active domain
consists of the variables that occur in q and whose facts
are the atomic formulas in q. The definition of tree CQs
is restricted to schemas that consist of unary and binary
relation symbols only. Note that every instance over
such a schema can naturally be viewed as a directed,
edge-labeled and node-labeled graph. A tree CQ is then
a unary CQ q(x) such that Iq, viewed in the above way, is
a directed node-labeled and edge-labeled tree with root x
(without parallel edges, and where all edges are directed
away from the root). Our interest in this class of CQs
stems from the fact that they form a notational variant of
concept expressions in the description logic EL, and that
they are in some ways computationally more attractive.

The fitting construction, fitting existence, and fitting
verification problems have been studied extensively for
the case of CQs as well as for the case of tree CQs. We

8 SIGMOD Record, December 2023 (Vol. 52, No. 4)



will review the known results in the subsequent sections.
Here, we briefly comment on the fitting verification
problem. It was observed in [14] that this problem is DP-
complete for CQs, where DP is the class of problems that
are the intersection of a problem in NP and a problem
in coNP. Tree CQs, on the other hand, can be evaluated
in polynomial time (combined complexity) and it follows
that the fitting verification problem for tree CQs is
solvable in polynomial time (cf. [14]). In summary:

Theorem 2.2 ([14]). Fitting verification is DP-
complete for CQs and in PTime for tree CQs.

Remark 2.3. As defined above, CQs do not con-
tain constants, so we may not write, for instance,
q(x) :- R(x, 100). Filipetto [22] studied the impact of
allowing constants on the fitting problem. For CQs, it
turns out, whether we allow constants does not affect the
fitting problem, modulo simple reductions. Specifically,
given a collection of labeled examples E, we can take
an isomorphic copy E′ of E in which every constant is
renamed, and take the union E ∪E′. Then (assuming E
contains at least one positive example) the CQs that fit
E ∪ E′ are precisely the CQs that do not contain con-
stants and fit E. Conversely, constants can be simulated
by unary relations. The same applies to tree CQs.
While we do not consider unions of conjunctive queries

(UCQs) here, it is interesting to point out that they be-
have differently: allowing constants in UCQs trivializes
the fitting problem. There are several ways to address
this, including specifying a set of allowed constants as
part of the input to the fitting problem, or restricting the
number of allowed constants in the query. Both variants
can be solved by a reduction to the constant-free fitting
problem. Furthermore, identifying a small set of mean-
ingful constants from data is an interesting problem by it-
self that deserves further study. See [22] for more details.

Remark 2.4. Depending on the application scenario,
it may be natural to consider other types of examples
besides positive and negative examples. In particular,
an input-output example is a pair (I, q(I)) consisting
of a database instance together with the entire query
output. Such an example can be viewed as a succinct
representation of a collection of |adom(I)|k many posi-
tive and negative examples, and therefore all the fitting
algorithms that we will discuss can also be applied to
input-output examples, although the complexity bounds
do not necessarily carry over. See also [13, Section 6].

Also, depending on the application scenario, it may be
the case that E+ and E− consist of examples with the
same database instance. Many of the complexity bounds
we will discuss hold already in this restricted setting.

3. THREE FITTING ALGORITHMS
We now define in detail the three algorithms for the

fitting construction problem for CQs.

Algorithm 3.1: Algorithm P

Input : collection (E+, E−) of labeled examples for
which a fitting CQ exists

Output : a fitting CQ
1 e∗ := ek⊤ where k is the arity of (E+, E−);
2 foreach e ∈ E+ do
3 e∗ := e∗ × e

4 return the canonical CQ of e∗

Algorithm P. This algorithm simply returns the canoni-
cal CQ of the direct product of the positive examples.
Intuitively, it extracts the commonalities of the positive
examples. We make this more precise.
The canonical CQ of a data example (I, a1, . . . , an)

is simply the CQ q(xa1 , . . . , xan) whose atoms are the
facts of I, where each value a ∈ adom(I) is uniformly
replaced by a fresh variable xa.
The direct product I × J of two instances I and J

(over the same schema), is the database instance over S
that consists of all facts R(⟨a1, b1⟩, ⟨a2, b2⟩, . . . , ⟨an, bn⟩),
where R(a1, . . . , an) is a fact in I and R(b1, . . . , bn)
is a fact in J . Note that the active domain of I × J
consists of pairs from adom(I) × adom(J). The
direct product (I, a) × (J, b) of two examples, with
a = a1, . . . , ak and b = b1, . . . , bk of the same length, is
given by (I×J, (⟨a1, b1⟩, ⟨a2, b2⟩ . . . , ⟨ak, bk⟩). In general,
this may not yield a well-defined example because
there is no guarantee that the distinguished elements
⟨a1, b1⟩, ⟨a2, b2⟩, . . . , ⟨ak, bk⟩ belong to adom(I × J).
For a finite set of examples E = {e1, . . . , en}, we write∏

e∈E(e) for the direct product e1 × · · · × en (note that
× is associative up to isomorphism). The direct product
operation should not be confused with the Cartesian
product operation from relational algebra: the former
preserves the schema, including the arity of each
relation, but changes the domain; the latter preserves
the domain but produces a relation of increased arity.
We need one more notion. With ek⊤, we denote the

strongest example of arity k. More precisely, ek⊤ takes
the form (I,a) where I is an instance with a single value
a that contains all possible facts over the schema and a,
and a is the tuple (a, . . . , a) of length k. With these
notions in place, Algorithm P is given as Algorithm 3.1.
It simply computes Πe∈E+(e), the negative examples are
not used. Note that taking the product of n instances
may result in an active domain of size exponential in n.

Example 3.1. In almost all of the remaining exam-
ples in this paper and without further notice, we use a
schema S that consists of a single binary relation symbol
R and consider Boolean queries. Note that, then, we may
view an example simply as a database instance, without
distinguished values. Also, many examples will refer to
database instances that take the form of a cycle. For ev-
ery i ≥ 1, we use Ci to denote the database instance that

SIGMOD Record, December 2023 (Vol. 52, No. 4) 9



Algorithm 3.2: Algorithm M

Input : collection (E+, E−) of labeled examples for
which a fitting CQ exists

Output : a fitting CQ
1 e∗ := ek⊤ where k is the arity of (E+, E−);
2 foreach e ∈ E+ do
3 e∗ := e∗ × e;
4 e∗ := minimize(e∗);

5 return the canonical CQ of e∗

6 procedure minimize(I,a)
7 foreach f ∈ I do
8 if a ∈ q̂(I \ {f}) according to MEMBq̂ then
9 I := I \ {f}

consists of the facts R(a1, a2), R(a2, a3), . . . , R(ai, a1).
In other words, Ci is a cycle with i edges.
Now consider the collection of labeled examples E =

(E+, E−) where E+ = {C2, C3} and E− consists of the
single-fact instance {R(a, b)}. Then Algorithm P outputs
the canonical CQ of C6. Note that the direct product
of any two instances Cn and Cm with n,m prime is
isomorphic to Cn·m. Clearly, this is a fitting CQ for E.

The following well-known fact (cf. for instance [40]) im-
plies the correctness of Algorithm P .

Theorem 3.2. If any CQ fits a collection of labeled
examples E = (E+, E−), then the canonical CQ of the
direct product Πe∈E+(e) is well-defined and fits E.

This also implies that Algorithm P can be turned into
an algorithm for fitting existence by checking whether
the constructed CQ fits the negative examples.

Algorithm M. We next consider Algorithm M, first given
in [17]. Algorithm M differs from Algorithms P and B
in having access via a membership oracle (whence the
“M”) to a concrete target CQ q̂ that fits the collection
of examples given as an input. Given an example e,
the oracle returns (in unit time) the status of e, that
is, whether e is a positive or negative example for q̂.
We denote such an oracle with MEMB q̂. Membership
oracles play a central role in exact learning in the style of
Angluin [3]. Note that, just like the other two algorithms,
Algorithm M only needs to solve the fitting construction
problem: it may return any CQ that fits the input
examples, not necessarily one that is equivalent to q̂.
Algorithm M is given as Algorithm 3.2. It works

essentially in the same way as Algorithm P except that,
between any two product constructions, it minimizes
the constructed example. With the latter, we mean to
drop facts as long as the oracle MEMBq̂ tells us that
the resulting example is still positive for q̂. This relies
on the invariant that, during the run of the foreach loop
in Line 2, all constructed examples e∗ are positive for q̂.

It is not hard to see that Algorithm M returns a CQ
q such that q ⊆ q̂, i.e., q(I) ⊆ q̂(I) for all instances I.

Algorithm 3.3: Algorithm B

Input : collection (E+, E−) of labeled examples for
which a fitting CQ exists

Output : a fitting CQ
1 foreach s = 1, 2, . . . do
2 if there is a fitting CQ of size s then
3 return a fitting CQ of size s

However, q need not be equivalent to q̂. If qΠ is the
CQ returned on the same input by Algorithm P, then
qΠ ⊆ q, but again the two CQs need not be equivalent.

Example 3.3. Consider again the collection of data
examples E = (E+, E−) from Example 3.1, that is,
E+ = {C2, C3} and E− contains the single instance
{R(a, b)}. The output of Algorithm M depends on the
choice of the query q̂ used by the membership oracle. If
q̂ is the CQ with canonical database C6, then the output
is q̂. If q̂ is q̂ :- R(x, y), R(y, z), the output also is q̂. If
q̂ is Cn with n a multiple of 6, the output is the CQ with
canonical database C6.

Algorithm B. We finally introduce Algorithm B which
implements in a straightforward way the bounded fitting
approach proposed in [16]. It is based on a size-bounded
version of the fitting construction problem that also
incorporates fitting existence. This is again defined
relative to a query language Q:

Size-Bounded Fitting Given a collection E of labeled
examples and a size bound s ∈ N (in unary), con-
struct a fitting query from Q of size at most s if it
exists and report non-existence otherwise.

Size-bounded fitting tends to be of significantly lower
computational complexity than fitting construction and
existence without a size bound, Section 4 has details.
Algorithm B calls an algorithm for the size-bounded
fitting problem on E with increasing size bounds, see
Algorithm 3.3. More details on algorithms for the size-
bounded fitting problem are given in Section 4.

Example 3.4. Consider once more the collection of
labeled examples E = (E+, E−) from Example 3.1. Algo-
rithm B outputs a fitting CQ of smallest size. In this case,
there is a unique such CQ, which is q :- R(x,y), R(y,z).

4. RUNNING TIME AND SIZE BOUNDS
We discuss the computational complexity of fitting

construction and fitting existence and, closely related,
the size that the smallest CQ that fits a collection of
examples may have in the worst case.

Fundamental Considerations. It was shown in [40] that
the smallest fitting CQ for a given collection of labeled
examples is in general of size exponential in the size of
the examples. We illustrate this with an example.

10 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Example 4.1. Let pi denote the i-th prime number
(where p1 = 2). For n ≥ 1, let En = (E+, E−) be the col-
lection of labeled examples with E+ = {Cp2

, . . . , Cpn+1
},

and E− = {C2}. By the prime number theorem, the total
size of the examples in En is polynomial in n. However,
every fitting CQ has size greater than 2n. More precisely,
let k = Πn+1

i=2 pi. The canonical CQ of Ck fits En and
no smaller fitting CQ exists. Indeed, every fitting CQ q
must contain a directed cycle in order to fit the negative
example, and, in order to fit to the positive examples,
the length of each directed cycle in q must be a multiple
of pi for 2 ≤ i ≤ n+ 1, and hence a multiple of k.

It follows immediately that the fitting problem cannot
be solved by an algorithm with sub-exponential running
time, simply because it does in general not have enough
time to output a fitting. Less trivially, the inherent
complexity of the problem also precludes the existence
of such an algorithm. This is witnessed by the following.

Theorem 4.2. The fitting existence problem for CQs
is coNExpTime-complete.

This result was first shown in [40] and later improved to
hold for a fixed finite schema in [12]. The upper bound is
actually shown by running Algorithm P, whose output q
is guaranteed to fit all positive examples, and then check-
ing in coNP whether q fits the negative examples. One
can show that this is the case if and only if a fitting exists.

Theorem 4.2 does not preclude the possibility of a
fitting algorithm that runs in time polynomial in the
size of the input plus the size of the smallest fitting CQ.
Recall that we call such an algorithm weakly polynomial.
Unfortunately, it follows from the results in [17] that
there is no weakly polynomial fitting algorithm for CQs
unless P=NP. In fact, it is shown in [17] that there is a
class of examples E such that

(i) fitting existence for CQs is NP-hard on collections
of examples from E ;

(ii) if there exists any fitting for such a collection E,
then there is one of size bounded by p(||E||) for
some polynomial p;

(iii) CQs can be evaluated in polynomial time (in com-
bined complexity) on E .

Any weakly polynomial fitting algorithm for CQs would
allow us to decide the problem in (i) in polynomial time,
thus showing P=NP, as follows. Given a collection E
of examples from E that may or may not have a fitting
CQ, we run the algorithm. Note that the algorithm’s
behavior is unspecified in the case that E has no fitting:
it may return something else than a fitting CQ or never
terminate. If the algorithm makes an output, then by (iii)
we may check in polynomial time if it is a fitting CQ for
E and return ‘yes’ or ‘no’ accordingly. If the algorithm

exceeds the running time of q(|E|+ p(|E|)), where q is
the polynomial running time bound of the algorithm on
collections of data examples that are promised to have
a fitting and p the polynomial from point (ii), then we
know that E has no fitting CQ and thus may return ‘no’.

Restricted Fitting Problems. It is natural to ask
whether the complexity of the fitting problem can be
reduced by restricting attention to a subclass of CQs.
Fitting existence is ExpTime-complete for tree

CQs [25] and thus still far from tractable. The upper
bound extends to classes of CQs whose treewidth is
bounded by a constant [7]. Smallest fitting tree CQs
may even be of double exponential size [14]. For CQs
that take the form of a path, fitting existence is still
NP-complete and thus intractable [17]. In this case,
however, there is always a polynomially-size fitting (if a
fitting exists at all). Nevertheless, what was said above
about weakly polynomial fitting algorithms applies
already to these restricted classes.
Other (rather strong) types of syntactic restrictions,

such as limitations on the use of existential variables, de-
terminacy conditions pertaining to functional relations,
and restricted variable depth, were proposed and studied
in the literature on ILP in order to gain tractability. An
overview can be found in [35].

Instead of changing the class of queries, one may also
adopt other restrictions. Requiring that all examples are
based on the same database instance, and even that every
tuple of domain elements from that instance occur as a
positive or negative example (cf. Remark 2.4), does not
improve the complexity [40, 12]. An interesting variation
motivated by the bounded fitting approach that underlies
our Algorithm B is the size-bounded fitting problem, see
Section 3. However, also this restriction does not bring
tractability. It was shown in [27] that the size-bounded
fitting problem for CQs is Σp

2-complete (over a schema
with an infinite number of relation symbols of arity at
most three). Even for tree CQs that take the form of a
path, size-bounded fitting is still NP-complete [17].

How Our Three Algorithms Fare. Algorithm P runs in
single exponential time, which is worst-case optimal
in light of the above considerations. Note, however,
that Algorithm P also has best case exponential running
time which clearly makes it impractical. Of course,
Algorithm P is also not weakly polynomial—we had
argued above that no algorithm can be. Example 5.1
below gives a concrete family of example collections
where a constant-size fitting CQ exists, but Algorithm P
computes a fitting that has exponential size.
Algorithm M, which may be viewed as a refinement

of Algorithm P, has single exponential running time
(independently of the choice of q̂). In contrast to
Algorithm P, however, it is weakly polynomial provided

SIGMOD Record, December 2023 (Vol. 52, No. 4) 11



that the CQ q̂ chosen for the oracle MEMBq̂ is the
smallest fitting CQ [17]. The intuitive reason is that,
after each minimization step, the size of the example
e∗, which represents the current candidate query, must
be bounded from above by the size of q̂; this is because
we need at most one fact in e∗ for each atom in q̂.
Note that the result on the non-existence of weakly
polynomial algorithms from above does not apply to
Algorithm M because of its use of membership queries.

The worst case running time of Algorithm B is even
double exponential (and it is not weakly polynomial). In
fact, we have seen in Example 4.1 that smallest fitting
CQs may be (single) exponentially large. Moreover, the
size of the smallest fitting determines the size bound
s that Algorithm B needs to solve the size-bounded
fitting problem for and, as noted above, for CQs
this problem is Σp

2-complete. Algorithm B is thus a
NExpTimeNP algorithm and has the highest worst-case
complexity among our three algorithms. Interestingly,
it is nevertheless a promising approach to the efficient
implementation of the fitting problem. This is based on
the expectation that, in practical cases, the size of the
smallest fitting query tends to not be excessively large.

An implementation of Algorithm B (“bounded fitting”)
as well as practical experiments have been presented
in [16] for the case of tree CQs. In that case, the size-
bounded fitting problem can be translated in a natural
way into the satisfiability problem of propositional
logic which enables an efficient implementation based
on SAT solvers. The SPELL system described in [16]
shows competitive performance and often outperforms
state-of-the-art systems based on refinement operators
(which are discussed in Section 9). For unrestricted
CQs, one may attempt to replace the SAT solver with
a system for answer set programming or disjunctive
logic programming, but we are not aware that this has
been done in practice. As we will see in Section 7, Al-
gorithm B has the additional advantage of constructing
fittings that generalize well to unseen examples.

5. SUCCINCT FITTINGS
One desirable property of a fitting algorithm is suc-

cinctness: for many applications, one wants to find a
fitting query of small size. We saw in Example 4.1 that
the smallest fitting CQ for a given collection of labeled
examples may be exponentially large in the worst case.
Therefore, the best one can hope for is to produce a
fitting query of size not much larger than that of the
smallest fitting CQ. For fitting algorithms with access to
a membership oracle MEMB q̂, even this is to much: we
can only hope to produce a fitting CQ of size not much
larger than that of (the smallest query equivalent to) q̂.
Intuitively, this is because the membership oracle ‘guides’
the fitting algorithm to q̂ and not to a smaller fitting CQ.
Let us consider Algorithm P (which does not use a

membership oracle). The following example shows that
it may produce a fitting CQ that is much larger than a
fitting CQ of minimal size. In fact, the size of the CQ
produced by Algorithm P cannot be uniformly bounded
by any function in the size of the smallest fitting CQ.

Example 5.1. Consider again Example 4.1. We
modify the example slightly: for n > 0, let En =
(E+, E−) where E+ = {Cp2

, . . . , Cpn+1
} (as before), and

E− = ∅. On input En, Algorithm P outputs a CQ of
size Θ(Πn+1

i=2 pi) (and not equivalent to any smaller CQ),
whereas there is a single (and thus constant size) CQ
that fits En for all n, namely q :- R(x, y).

As we have just seen, Algorithm P does not even
produce a fitting CQ of “near-minimal” size. In the
context of PAC learning as discussed in Section 7, fittings
of near-minimal size play an important role. It will be
beneficial to formalize this notion already here:

Occam Property A fitting algorithm has the Occam
property if the following holds for some α ∈ [0, 1)
and polynomial p: if the input is a collection of
examples labeled according to a “target CQ” qt,
then the output is a fitting CQ of size at most
|E|α · p(|qt|). If α = 0, we say that the fitting
algorithm has the strong Occam property.2

In other words, when a fitting algorithm has the Oc-
cam property, it outputs a CQ whose size depends poly-
nomially on the size of the target CQ and sublinearly
on the number of the examples (if at all). The above
definition of the Occam property is designed to apply
both to ordinary fitting algorithms and to fitting algo-
rithms that use a membership oracle. In the latter case,
the target CQ qt in the above definition is required to
be the CQ used by the oracle. In the former case, we
can always assume without loss of generality that qt is
a fitting CQ of minimal size. Consequently, a fitting
algorithm without membership oracle has the Occam
property if and only if it outputs a CQ of size at most
|E|α · p(n), where n is the size of the smallest CQ that
fits. The latter is indeed the standard condition used
to define Occam algorithms in the literature on compu-
tational learning theory (where Occam algorithms with
membership oracles are typically not considered).

2The terminology “Occam property” is not entirely standard.
In the literature, it is more common to talk about an Occam
algorithm, meaning a fitting algorithm that has the Occam
property and is weakly polynomial. We already saw that
there is no weakly polynomial fitting algorithm for CQs
(without oracle) and thus in particular there is no such
Occam algorithm. By decoupling the size of the output
from the running time of the algorithm, we can more easily
acknowledge that there are super-polynomial-time fitting
algorithms with the Occam property (as we will see below).

12 SIGMOD Record, December 2023 (Vol. 52, No. 4)



How Our Three Algorithms Fare. Example 5.1 shows
that Algorithm P does not have the Occam property. As
we will see, this is an instance of a general phenomenon
related to extremal fitting CQs, see Example 6.2.
Algorithm B does have the strong Occam property:

indeed, it is immediate from the definition of the algo-
rithm that the output CQ is a fitting CQ of minimal
size. Note that this does not depend on the fact that
Algorithm B increases the size bound by 1 in each itera-
tion. In fact, under the scheme s = 1, 2, 4, 8 it still has
the strong Occam property (with p(x) = 2x).

For Algorithm M, it was shown in [17] that it outputs
a CQ whose size is bounded by the size of the query q̂
used by the membership oracle. Therefore, Algorithm
M has the strong Occam property.

6. EXTREMAL FITTINGS
We have already seen that there may be several non-

equivalent fitting CQs for the same collection of data
examples, and in fact it is easy to see that there may be
infinitely many. As was observed in [14], the fitting CQs
always form a convex set. More precisely, whenever two
queries q1, q2 fit a set of labeled examples, the same holds
for every query q with q1 ⊆ q ⊆ q2. Recall that ⊆ denotes
the relation of query containment, i.e., q1 ⊆ q2 means
that q1(I) ⊆ q2(I) for all instances I. The maximal
elements of the convex set of fitting CQs can be viewed
as “most-general” fitting CQs while minimal elements
can be viewed as “most-specific” fitting CQs. We refer to
these, collectively, as “extremal” fitting CQs. When they
exist, they can thus be viewed as demarcating the entire
set of fitting CQs, in the spirit of the version-space repre-
sentation theorem used in machine learning [34, Chapter
2.5]. In applications such as ML feature engineering over
relational data [30, 8], extremal fitting CQs are partic-
ularly natural candidates to consider as features [14].

Most-Specific Fitting CQs. There are two natural ways
to define “most-specific fitting CQs” for a collection of
labeled examples E: a CQ q is a

• strongly most-specific fitting CQ for E if q fits E
and for every CQ q′ that fits E, we have q ⊆ q′;

• weakly most-specific fitting CQ for E if q fits E and
for every CQ q′ that fits E, q′ ⊆ q implies q ≡ q′.

There can clearly be at most one strongly most-specific
fitting CQ up to equivalence, for any collection of labeled
examples. In contrast, the existence of multiple weakly
most-specific fitting CQs is not excluded a priori. It turns
out, however, that also weakly most-specific fitting CQs
are unique and in fact the two notions coincide and are
characterized by the product of the positive examples.

Theorem 6.1. For all CQs q and collections of labe-
led examples E = (E+, E−), the following are equivalent:

1. q is a strongly most-specific fitting for E,

2. q is a weakly most-specific fitting for E,

3. q fits E and is equivalent to the canonical CQ of
Πe∈E+(e) (which must then be well-defined).

Since Algorithm P computes the canonical CQ of
the direct product of the positive examples, it in fact
produces a most-specific fitting CQ. This also means
that most-specific fitting CQs always exist (if any fitting
CQ exists). In contrast, Algorithm M and Algorithm B
do not in general produce a most-specific fitting:

Example 6.2. Recall that for the collections En of
labeled examples from Example 5.1, there exists a fitting
CQ with a single atom, which is thus output by Algo-
rithms M and B. In contrast, we had seen in Example 5.1
that Algorithm P produces a CQ of exponential size. We
claim that, in fact, every most-specific fitting CQ q for
En must be of size at least k = Πn+1

i=2 pi. Indeed, let q be
any most-specific fitting CQ q and let q′ be the query that
expresses the existence of a directed cycle of length k.
Since q fits En and q′ is a (strongly) most-specific fitting
CQ, it follows that q′ ⊆ q. Consequently, q′ must contain
a directed cycle. However, as we argued in Example 4.1,
the length of any such directed cycle must be a multiple
of k. Therefore, q must be of size at least k.

More generally, the example shows that no fitting
algorithm with the Occam property will always output
a most-specific fitting CQ.

Most-General Fitting CQs. For most-general fittings,
the story gets more complicated. There are again two
natural ways to define “most-general fitting CQs” for a
collection of labeled examples E: a CQ q is a

• strongly most-general fitting CQ for E if q fits E
and for every CQ q′ that fits E, we have q′ ⊆ q;

• weakly most-general fitting CQ for E if q fits E and
for every CQ q′ that fits E, q ⊆ q′ implies q ≡ q′.

This time, however, the two notions do not coincide.
While every strongly most-general fitting CQ is clearly
also weakly most-general, the converse fails:

Example 6.3. Consider a schema consisting of three
unary relation symbols P1, P2, P3. Let E = (E+, E−)
where E+ = ∅ and E− consists of the single-fact instance
{P1(a)}. Then q :- P2(x) and q′ :- P3(x) are weakly
most-general fitting CQs for E and there is no strongly
most-general fitting CQ.

Another natural variation is the following [14]:

• a finite set of CQs {q1, . . . , qn} is a basis of most-
general fitting CQs for E if each qi fits E and for all
CQs q′ that fit E, we have q′ ⊆ qi for some i ≤ n.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 13



It is easy to see that a strongly most-general fitting CQ
is simply a fitting CQ that forms a basis of size 1, and
that every member of a minimal basis of most-general
fitting CQs is a weakly most-general fitting.
Unlike for most-specific fitting CQs, the existence of

a fitting CQ does not, in general, imply the existence
of a most-general fitting CQ. For the strong version,
this is shown by Example 6.3. For the weak version, we
consider the following example [14].

Example 6.4. Let E = (E+, E−) be the collection
of labeled examples with E+ = {C1} and E− = {C2}.
Clearly, the Boolean CQ q0 :- R(x, x) fits E. It follows
from results in [14] that no weakly most-general fitting
CQ exists for E. Intuitively, this is because a CQ q fits
E if and only if its canonical instance, viewed as a graph,
is not two-colorable. A graph is two-colorable if and only
if it does not contain a cycle of odd length. Thus, each
fitting CQ for E must contain a cycle of odd length, and
for each such CQ q one can construct a strictly more
general fitting CQ q′ by increasing the length of this cycle.

Thus, one cannot reasonably require a fitting algo-
rithm to always output a most-general fitting CQ. Still,
one may wish for a fitting algorithm that, on inputs for
which a most-general fitting CQ exists, produces such a
CQ. The “most-general fitting” here may refer to weakly
most-general fitting CQs or to strongly most-general
ones, so there are two variants of this requirement. It is
not hard to see that the first variant implies the second.
As it turns out, even if we restrict attention to in-

stances of the fitting problem for which a strongly most-
general fitting CQ exists, Algorithm P, M and B are
not guaranteed to produce one. The following example
shows this for Algorithm P.

Example 6.5. For n > 1, let Tn be the database
instance with adom(Tn) = {a1, . . . , an} consisting of
all facts of the form R(ai, aj) with i < j. Let En =
(E+, E−) where E+ = {C1} and E− = {Tn}. The
following two queries both fit En:

q :- R(x, x)

q′ :- R(x1, x2), R(x2, x3), . . . , R(xn, xn+1).

Observe that q ⊊ q′. In fact, q is the fitting CQ for
En of smallest size while it can be shown that q′ is the
strongly most-general fitting CQ for En.

It is easy to see that Algorithm P outputs q on input E.
Therefore, Algorithm P does not, in general, output a
strongly most-general fitting CQ when such a CQ exists.

More generally, the example shows that no fitting
algorithm with the Occam property will always return
a strongly most-general fitting CQ whenever it exists.
Since Algorithms B and M have the Occam property, it
follows that they do not, in general, output a strongly
most-general fitting CQ when such a CQ exists.

Algorithms for Most-General Fitting CQs. Since none
of our three fitting algorithms produces most-general
fitting CQs even when they exist, it is natural to ask
whether there are fitting algorithms with this property.
The existence problem for weakly/strongly most-general
fitting CQs and the problem of constructing them, when
they exist, were studied extensively in [14]. Both of
these problems turn out to be decidable and we briefly
review the core insights underlying the algorithms.

Weakly most-general fitting CQs can be characterized
in terms of frontiers [14]. A frontier for a CQ q is a
finite set of CQs F (q) = {q1, . . . , qn} with the property
that q ⊊ qi for all i ≤ n, and for all CQs q′, if q ⊊ q′

then qi ⊆ q′ for some i ≤ n. Thus, a frontier for a CQ q
is a finite complete set of minimal generalizations of q.

Theorem 6.6 ([14]). For all queries q and collec-
tions of labeled examples E, the following are equivalent:

1. q is a weakly most-general fitting CQ for E,

2. q fits E, q has a frontier F (q) = {q1, . . . , qn} and
no qi ∈ F (q) fits E.

This characterization, together with known results
regarding the existence of frontiers for CQs [24, 13], was
used in [14] to obtain effective algorithms for the exis-
tence, verification, and construction problem for weakly
most-general fitting CQs. Regarding the computational
complexity, we only mention here that the existence
problem is ExpTime-complete [14]. It is worth to point
out, however, that the known lower bound only applies
when we do not require that the collection of labeled
data examples E given as an input has a fitting CQ.
Theorem 6.6 also sheds light on the shape of weakly

most-general fitting CQs. In fact, it is known that any
CQ that has a frontier must be c-acyclic [1, 24, 13]
which means that every cycle in the incidence graph of
the CQ contains an answer variable. By Theorem 6.6,
the same is true for weakly most-general fitting CQs.
This is crucially exploited by the algorithms in [14].

Strongly most-general fitting CQs and, more generally,
finite bases of most-general fitting CQs turn out to be
closely related to homomorphism dualities, a fundamen-
tal concept that originates from combinatorial graph
theory and has found diverse applications in different
areas, including the study of constraint satisfaction prob-
lems, database theory, and knowledge representation.
With adom(I), we denote the set of values used in

database instance I. Recall that a homomorphism
h : I → J from instance I to instance J (over the same
schema) is a function h : adom(I) → adom(J) such that
the h-image of every fact of I is a fact of J . We write
I → J to indicate the existence of a homomorphism from
I to J . A homomorphism duality is a pair of finite sets
of instances (F ,D) such that for all instances I, F → I
for some F ∈ F iff I ̸→ D for all D ∈ D. This notion

14 SIGMOD Record, December 2023 (Vol. 52, No. 4)



can be further refined by relativizing it: a pair (F ,D)
being a homomorphism duality relative to an instance
J is defined in exactly the same way except that only
instances I are considered that satisfy I → J .

Theorem 6.7 ([14]). For all Boolean CQs
q1, . . . , qn and collections of labeled examples E, the
following are equivalent:

1. {q1, . . . , qn} is a basis of most-general fitting CQs
for E

2. each qi fits E and ({Iq1 , . . . , Iqn}, E−) is a homo-
morphism duality relative to Πe∈E+(e).

This characterization (and an extension of it for non-
Boolean CQs), together with known results on the ex-
istence of homomorphism dualities, was used in [14] to
obtain effective algorithms for the existence, verifica-
tion, and construction of bases of most-general fitting
CQs. Regarding the computational complexity, we only
mention here that the existence problem is NExpTime-
complete [14]. The lower bound applies even if the
collection of labeled data examples E given as an input
is promised to have a fitting CQ. Note that since every
member of a minimal basis of most-general fittings CQs
is a weakly most-general fitting, it must be c-acyclic.

7. GENERALIZATION
By definition, a fitting algorithm constructs a CQ that

fits the labeled examples in its input. Ideally, we would
like the constructed CQ to correctly predict the label
also of unseen examples. This can only be expected
if those examples are drawn from the same probability
distribution (over the space of all examples) as the in-
put examples, and labeled according to the same target
CQ. If it is the case, then we can legitimately say that
the fitting generalizes from the input. This is formally
captured by the framework of PAC (Probably Approxi-
mately Correct) learning [39]. To give precise definitions,
we first introduce some terminology and notation. An
example distribution is a probability distribution D over
the space of all examples (for some fixed schema and
arity). Given CQs q, qt and an example distribution D,

errorD,qt(q) = Pr
(I,a)∈D

(a ∈ q(I)△ qt(I))

is the expected error of q relative to qt and D where
△ denotes symmetry difference. Hence, errorD,qt(q) is
the probability that q disagrees with qt on any example
drawn at random from the example distribution D.

(Polynomial) PAC Property A fitting algorithm has the
(polynomial) PAC property if there is a (polyno-
mial) function f(·, ·, ·, ·) such that for all CQs qt,
δ, ε ∈ (0, 1), m ∈ N and probability distributions
D over examples of size at most m, if the input

consists of at least f(1/δ, 1/ε, |qt|,m) many exam-
ples drawn from D that are labeled according to qt,
then with probability at least 1− δ, the algorithm
outputs a CQ q with errorqt,D(q) < ε.3

Other common definitions of efficient PAC learning do
not even demand that the learning algorithm produces
a fitting query, but require that the algorithm is weakly
polynomial. However, it is known that there is no such
efficient PAC learning algorithm for CQs. A detailed
discussion can be found in [17], also for subclasses of CQs
such as tree CQs and path-shaped CQs which are not
efficiently PAC learnable either. This is closely related
to the fact that there is no weakly polynomial fitting
algorithm for (these subclasses of) CQs, see Section 4.
A fundamental result in computational learning the-

ory states that every fitting algorithm with the Occam
property also has the polynomial PAC property, first
shown in [9]. This result is usually stated only for fitting
algorithms without a membership oracle, but the same
holds in the presence of such an oracle. This relies on the
fact that, in Section 5, we defined the Occam property in
terms of a target CQ rather than a smallest fitting CQ.
Since Algorithm M has the Occam property, we can

conclude that it has the polynomial PAC property. The
same applies to Algorithm B. Algorithms P, on the other
hand, lacks the polynomial PAC property. In fact:

Theorem 7.1 ([16, 15]). Let A be a fitting algori-
thm that either (i) always produces a most-specific fitting
or (ii) produces a strongly most-general fitting whenever
it exists. Then A lacks the polynomial PAC property.

The intuitive reason behind Theorem 7.1 is that ex-
tremal fittings tend to overfit to the input examples.
Most-specific fittings focus too much on the positive
examples in the input and tend to incorrectly predict
the label of unseen positive examples. Similarly, most-
general fittings focus too much on the negative examples
in the input. It is worth contrasting Theorem 7.1 with
the result from [5, 29] that, for concept classes with
finite VC dimension that are intersection-closed, fitting
algorithms that produce most-specific fittings have the
polynomial PAC property.
3We deviate here from standard textbook definitions of the
PAC model by including the bound m on the size of examples
as an argument to the sample complexity function f . Most
concept classes studied in the computational learning theory
literature have an example space that consists of examples
of bounded size. The example size can then be treated as a
constant and thus m can be omitted as an argument to the
function f . In contrast, fitting algorithms for CQs can receive
arbitrarily large database instances as inputs. The present
definition of the PAC property, following [35], allows the num-
ber of examples provided to the fitting algorithm to depend
on the example size. That is, if the input contains large exam-
ples, the fitting algorithm is accordingly given access to more
labeled examples. This is not needed for the positive results
mentioned below, but it makes the negative results stronger.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 15



8. COMPLETENESS FOR DESIGN
One application of fitting algorithms is in the context

of example-based specification (“query by example”):
rather than writing a formal specification, the user
provides data examples, and the system infers a query
through the use of a fitting algorithm. The premise
of this approach, which traces back to [41], is that
the user has a good grasp of the desired behavior of
the query that they are trying to construct, but not
necessarily of the query language. In such a setting, it
is desirable that the user is indeed able to obtain their
intended query as long as they provide a sufficiently
comprehensive (finite) set of examples. Whether this
is the case, in general, depends on the fitting algorithm,
and this is formalized by the following property:

Completeness for Design A fitting algorithm is complete
for design if for every CQ q, there exists a collection
of labeled examples E such that, on input E, the
fitting algorithm produces a CQ equivalent to q.

If a fitting algorithm is not complete for design, there
are CQs q for which the algorithm will simply never get
it right, no matter how many examples are provided.
It is not difficult to see that every fitting algorithm

that produces a most-specific fitting CQ, is complete
for design. Indeed, it suffices to pick any collection of
examples (labeled according to the query q) that includes
the canonical example of q. In particular, this shows
that Algorithm P is complete for design.

Similarly, it can be shown that every fitting algorithm
with the strong Occam property is complete for design.
Indeed, let q be any CQ, and E be any collection of
examples, labeled according to q, that includes, for ev-
ery CQ q′ of size at most p(|q|) not equivalent to q a
labeled examples that q fits but q′ does not. The fitting
algorithm, on input E, is guaranteed to produce a fitting
CQ of size at most p(|q|), which therefore, by construc-
tion, must be equivalent to q. Since Algorithm M and
Algorithm B have the Occam property with α = 0, it
follows that both are complete for design.
Completeness for design is also related to the notion

of unique characterizability [13]. More precisely, if a
class of queries admits unique characterizations (which
means that every query is uniquely characterized by a
finite set of data examples), then every fitting algorithm
for this class is complete for design. There is no im-
plication in the opposite direction. In fact, CQs are
not uniquely characterizable (cf. [13]), even though our
fitting algorithms are complete for design.

9. REFINEMENT-BASED APPROACHES
A different approach to the fitting problem has been

taken in the field of inductive logic programming (ILP)
which studies the following abstract problem [35]:

Given a background theory B and positive and
negative examples, find a theory Σ such that B ∪
Σ entails all positive examples and none of the
negative examples.

Traditionally, this problem is studied for the language
of first-order clauses. Thus, the background theory B
is a finite set of clauses, the examples are clauses, and
the sought theory can also be a set of clauses. Note
that this a very rich problem setting since first-order
clauses include, e.g., all Datalog programs. The CQ
fitting problem can be viewed as a special case when all
examples in the input (E+, E−) share the same database
I: the background theory is B = I, there is a positive
example R(a) for each (I,a) ∈ E+, a negative example
R(a) for each (I,a) ∈ E−, where R is a fixed relation
symbol that does not appear in I, and Σ is restricted to
be a single non-recursive Horn clause with head R(x).
Most ILP algorithms conform to a common

scheme [35]: start with some initial theory Σ, and, while
B ∪ Σ is not as required, iteratively adapt Σ as follows:

• if B ∪ Σ is too strong (entails a negative example),
generalize Σ, and

• if B ∪ Σ is too weak (does not entail a positive
example), specialize Σ.

Initially, generalization was done by dropping a clause
from Σ while specialization was done by adding a clause.
However, it was observed that the induced changes to Σ
are too coarse. To address this, Ehud Shapiro introduced
in a seminal paper refinement operators, which specialize,
respectively generalize a given clause [37]. Applied to the
task of finding a fitting CQ (or single Horn clause), this
amounts to navigating the containment lattice of CQs,
whose investigation goes back at least to the 1970s [36].

Formally, an upward (resp., downward) refinement op-
erator is a function ρ : CQ → 2CQ such that q ⊆ q′ (resp.,
q′ ⊆ q) for every q ∈ CQ and q′ ∈ ρ(q). Thus, an upward
refinement operator returns a set of more general queries,
while a downward refinement operator returns a set of
more specific queries. Intuitively, a refinement operator
induces a graph whose vertices are CQs (equivalent CQs
form a single vertex) and in which there is an edge from
q to q′ iff q′ ∈ ρ(q). ILP style fitting algorithms will then
search this graph using some strategy. Algorithm 9.1
depicts a template for such an algorithm based on an
upward refinement operator ρ and a prioritization strat-
egy S that determines which query to consider next in
search. It starts with the most specific query possible
and maintains a priority queue of queries to be visited.
In each round it selects the query with the highest pri-
ority and, if it does not fit, adds its refinements to the
queue, prioritized by S. Natural prioritization strategies
include breadth-first search (query gets lower priority
than all previously seen queries) and accuracy-based

16 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Algorithm 9.1: Algorithm R, parameterized by
refinement operator ρ and prioritization strategy S

Input : collection (E+, E−) of labeled examples
Output : fitting CQ or “None exists”

1 q0 := canonical CQ of ek⊤ for k the arity of (E+, E−);
2 PriorityQueue pq := {q0};
3 while not pq.isEmpty() do
4 q := pq.pop();

5 if q fits (E+, E−) then return q;
6 Insert every p ∈ ρ(q) into pq prioritized with S

7 return “None exists”

strategies (the priority is the accuracy of the considered
query over (E+, E−)). There is a natural counterpart of
Algorithm 9.1 based on downward refinement operators.

It has been observed that, to make Algorithm 9.1 a
complete and terminating algorithm for the CQ fitting
problem, the refinement operator ρ has to be ideal,
which we define next. An upward refinement operator
ρ is called proper if q′ ̸⊆ q for every q′ ∈ ρ(q) and all
q ∈ CQ, finite if ρ(q) is finite for every q ∈ CQ, and
complete if for every q1, q2 ∈ CQ with q1 ⊆ q2, there
is a sequence p1, . . . , pn of CQs with p1 = q1, pn = qn,
and pi+1 ∈ ρ(pi) for all i with 1 ≤ i < n. It is ideal
if it is proper, finite, and complete. Ideal downward
refinement operators are defined similarly.

There is an intimate connection between ideal refine-
ment operators and frontiers as defined in Section 6. We
call them upward frontiers here and use the dual notion
of downward frontiers, defined as expected. Frontiers
are also called covers in the ILP literature. It has been
shown that the existence of finite frontiers is a necessary
condition for the existence of ideal refinement operators,
and that finite frontiers do not always exist, both in the
upward and the downward case [19, 35]. This holds in
particular for CQs, and even more so for the broader
classes of theories Σ that ILP systems aim to support.
Thus, in practice one has to compromise, either by drop-
ping one of the three properties (finiteness, completeness,
properness), or by restricting the query class. Most ILP
systems use an incomplete refinement operator together
with heuristics [35, 21]. As our focus is on complete algo-
rithms, we discuss below restrictions of the query class.
A class of queries which enjoys finite frontiers is the

class of tree CQs. Indeed, every tree CQ has a polynomi-
ally sized upward frontier [6] and an exponentially sized
downward frontier [32, 31]. Moreover, for every q, q′ with
q ⊆ q′, there is only a finite number of queries p with
q ⊆ p ⊆ q′ [31]. Thus, the function returning the frontier
of a query is an ideal refinement operator, both in the
upward and downward case. Other classes of CQs that
have finite frontiers were studied in [13, 26]. It is not
known whether they admit ideal refinement operators.

How Algorithm R Fares. A general classification in
terms of our desired properties is difficult, since the
behavior depends on the refinement operator and pri-
oritization strategy used. We discuss only preliminary
observations for tree CQs. On the positive side, if the
downward frontier is used as a refinement operator, com-
bined with breadth-first search, the downward version of
Algorithm 9.1 will always return a weakly most-general
fitting (when it exists) [16]. Of course, this also means,
by Theorem 7.1, that it does not have the PAC property.
This can be fixed by extending the refinement operator
in a suitable way to achieve that the resulting algorithm
has the Occam property [16]. On the negative side, the
length of refinement paths along upward frontiers is not
bounded by an elementary function [31], which compro-
mises efficiency for the upward version of Algorithm 9.1.

An ideal downward refinement operator for tree CQs
developed in [32] has been implemented in the ELTL
incarnation of the DL Learner suite [11]. Since the prior-
itization strategy used there is quite involved, it is hard
to analyze whether ELTL satisfies our desired properties.
Experiments from [16] show that ELTL generalizes well
to unseen examples, which might be explained by the
fact that its prioritization strategy takes the query size
into account and gears search towards smaller CQs.

10. SUMMARY AND OUTLOOK
We identified a list of desirable properties of fitting al-

gorithms and their structural interactions (cf. Figure 1),
and used them to compare three fitting algorithms for
CQs (cf. Table 2). As mentioned in Section 4, Algo-
rithm B was successfully implemented and shown to per-
form competitively for the special case of tree CQs [16].

Our general motivation comes from the development of
interactive, example-aided methodologies for the synthe-
sis, refinement, and debugging of database queries. The
fitting problem is only one facet of this broader topic.
Other facets that require further study include example
generation and example-based query refinement.
Extending the scope of our analysis to other query

languages remains future work. A detailed analysis of
extremal fitting problems for UCQs can be found in [14].

We only considered exact fittings. When these are not
guaranteed to exist, the fitting problem is perhaps more
naturally viewed as a multi-objective optimization prob-
lem (with degree-of-fitting as one of the objectives). This
is future work but see [8, 28, 18] for some related work.

Acknowledgements. B. ten Cate is supported by the
European Union’s Horizon 2020 research and innovation
programme (MSCA-101031081). C. Lutz is supported by
DAAD project 57616814 (SECAI, School of Embedded
Composite AI) as part of the program Konrad Zuse
Schools of Excellence in Artificial Intelligence.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 17



11. REFERENCES
[1] B. Alexe, B. t. Cate, P. G. Kolaitis, and W.-C. Tan.

Characterizing schema mappings via data examples.
ACM Trans. Database Syst., 36(4):23:1–23:48, 2011.

[2] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan.
Designing and refining schema mappings via data
examples. In Proc. of SIGMOD, pages 133–144, 2011.

[3] D. Angluin. Queries and concept learning. Mach.
Learn., 2(4):319–342, Apr. 1988.

[4] M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse
engineering sparql queries. In Proc. of WWW, page
239–249, 2016.

[5] P. Auer and R. Ortner. A new pac bound for
intersection-closed concept classes. Machine Learning,
66:151–163, 2004.

[6] F. Baader, F. Kriegel, A. Nuradiansyah, and
R. Peñaloza. Making repairs in description logics more
gentle. In Proc. KR, pages 319–328, 2018.

[7] P. Barceló and M. Romero. The complexity of reverse
engineering problems for conjunctive queries. In Proc.
of ICDT, pages 7:1–7:17, 2017.

[8] P. Barceló, A. Baumgartner, V. Dalmau, and
B. Kimelfeld. Regularizing conjunctive features for
classification. J. Comput. Syst. Sci., 119:97–124, 2021.

[9] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K.
Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. J. ACM, 36(4):929–965, 1989.

[10] A. Bonifati, R. Ciucanu, and A. Lemay. Learning path
queries on graph databases. In Proc. of EDBT, pages
109–120, 2015.

[11] L. Bühmann, J. Lehmann, and P. Westphal.
DL-Learner - A framework for inductive learning on
the semantic web. J. Web Semant., 39:15–24, 2016.

[12] B. ten Cate and V. Dalmau. The product
homomorphism problem and applications. In Proc. of
ICDT, pages 161–176, 2015.

[13] B. ten Cate and V. Dalmau. Conjunctive queries:
Unique characterizations and exact learnability. ACM
Trans. Database Syst., 47(4):14:1–14:41, 2022.

[14] B. ten Cate, V. Dalmau, M. Funk, and C. Lutz.
Extremal fitting problems for conjunctive queries. In
Proc. of PODS, 2023.

[15] B. ten Cate, M. Funk, J. C. Jung, and C. Lutz.
Extremal fitting CQs do not generalize. CoRR,
abs/2312.03407, 2023.

[16] B. ten Cate, M. Funk, J. C. Jung, and C. Lutz.
SAT-based PAC learning of description logic concepts.
In Proc. IJCAI, pages 3347–3355, 2023.

[17] B. ten Cate, M. Funk, J. C. Jung, and C. Lutz. On the
non-efficient PAC learnability of conjunctive queries.
Inf. Process. Lett., 183:106431, 2024.

[18] B. ten Cate, P. G. Kolaitis, K. Qian, and W.-C. Tan.
Approximation algorithms for schema-mapping
discovery from data examples. ACM Trans. Database
Syst., 42(2):12:1–12:41, 2017.

[19] P. R. J. Laag van der Laag and S. Nienhuys-Cheng.
Existence and nonexistence of complete refinement
operators. In Proc. of ECML, pages 307–322, 1994.

[20] S. Cohen and Y. Y. Weiss. The complexity of learning
tree patterns from example graphs. ACM Trans.
Database Syst., 41(2):14:1–14:44, 2016.

[21] A. Cropper, S. Dumančič, R. Evans, and S. H.
Muggleton. Inductive logic programming at 30. Mach.
Learn., 111(1):147–172, 2022.

[22] V. Filipetto. Constructing queries from data examples,
2022. MSc Thesis. University of Amsterdam.

[23] G. Fletcher, M. Gyssens, J. Paredaens, and
D. Van Gucht. On the expressive power of the
relational algebra on finite sets of relation pairs. IEEE
Transactions on Knowledge and Data Engineering,
21:939–942, 2009.

[24] J. Foniok, J. Nesetril, and C. Tardif. Generalised
dualities and maximal finite antichains in the
homomorphism order of relational structures. Eur. J.
Comb., 29(4):881–899, 2008.

[25] M. Funk, J. Jung, C. Lutz, H. Pulcini, and F. Wolter.
Learning description logic concepts: When can positive
and negative examples be separated? In Proc. of
IJCAI, pages 1682–1688, 2019.

[26] M. Funk, J. C. Jung, and C. Lutz. Frontiers and exact
learning of ELI queries under DL-Lite ontologies. In
Proc. IJCAI, pages 2627–2633, 2022.

[27] G. Gottlob, N. Leone, and F. Scarcello. On the
complexity of some inductive logic programming
problems. New Generation Comput., 17(1):53–75, 1999.

[28] G. Gottlob and P. Senellart. Schema mapping discovery
from data instances. J. ACM, 57(2):6:1–6:37, 2010.

[29] S. Hanneke. Refined error bounds for several learning
algorithms. J. Mach. Learn. Res., 17:1–55, 2016.

[30] B. Kimelfeld and C. Ré. A relational framework for
classifier engineering. ACM SIGMOD Record, 47:6–13,
2018.

[31] F. Kriegel. Navigating the EL subsumption hierarchy.
In Proc. of DL, 2021.

[32] J. Lehmann and C. Haase. Ideal downward refinement
in the EL description logic. In Proc. of ILP, pages
73–87, 2009.

[33] H. Li, C.-Y. Chan, and D. Maier. Query from examples:
An iterative, data-driven approach to query
construction. Proc. VLDB Endow., 8(13):2158–2169,
2015.

[34] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[35] S. Nienhuys-Cheng and R. de Wolf. Foundations of

Inductive Logic Programming, volume 1228 of Lecture
Notes in Computer Science. Springer, 1997.

[36] G. Plotkin. Lattice theoretic properties of subsumption.
Technical report, Edinburgh University, Dept. of
Machine Intelligence and Perception, 1970.

[37] E. Y. Shapiro. An algorithm that infers theories from
facts. In P. J. Hayes, editor, Proc. of IJCAI, pages
446–451, 1981.

[38] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
reverse engineering. The VLDB Journal, 23(5):721–746,
2014.

[39] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27:1134–1142, 1984.

[40] R. Willard. Testing expressibility is hard. In Proc. of
CP, pages 9–23, 2010.

[41] M. M. Zloof. Query by example. In Proc. of AFIPS
NCC, pages 431–438. AFIPS Press, May 1975.

18 SIGMOD Record, December 2023 (Vol. 52, No. 4)



ML-Powered Index Tuning: An Overview of Recent
Progress and Open Challenges

Tarique Siddiqui Wentao Wu
Microsoft Research

{tasidd, wentwu}@microsoft.com

ABSTRACT
The increasing scale and complexity of workloads in
modern cloud services highlight a crucial challenge in
automated index tuning: recommending high-quality in-
dexes while ensuring scalability. This is further com-
plicated by the need for these automated solutions to
minimize query performance regressions in production
deployments. This paper directs attention to some of
these challenges in automated index tuning and explores
ways in which machine learning (ML) techniques pro-
vide new opportunities in their mitigation. In particu-
lar, we reflect on our recent efforts in developing ML
techniques for workload selection, candidate index fil-
tering, speeding up index configuration search, reduc-
ing the amount of query optimizer calls, and lowering
the chances of performance regressions. We highlight
the key takeaways from these efforts and underline the
gaps that need to be closed for their effective function-
ing within the traditional index tuning framework. Ad-
ditionally, we present a preliminary cross-platform de-
sign aimed at democratizing index tuning across mul-
tiple SQL-like systems—an imperative in today’s con-
tinuously expanding data system landscape. We believe
our findings will help provide context and impetus to
the research and development efforts in automated in-
dex tuning.

1. INTRODUCTION
Automated index tuning improves the performance

of databases by recommending indexes that accelerate
query execution. There has been extensive research over
the past decades [23,30], and index tuners have been de-
veloped for both commercial and open-source database
systems [14, 15, 29, 65].

Figure 1 presents the typical architecture of such an
index tuner [14, 15, 65]. It contains three major com-
ponents: (1) workload parsing/analysis, where an in-
put workload (of SQL queries) is parsed and analyzed;
(2) candidate index generation, which identifies a set of
candidate indexes for each query in the workload; and
(3) configuration enumeration, which searches for an in-

Candidate Index 
Generation

Configuration 
Enumeration 

Index Tuner

Query 
Optimizer
(Extended)

(𝑞𝑖, 𝐶)

𝑊 = 𝑞𝑖 , Γ

𝑐𝑜𝑠𝑡(𝑞𝑖 , 𝐶)

Best 𝐶 ⊆ {𝐼𝑗} 

w.r.t. 𝑊,Γ

Database
Server

What-If Calls

𝑊, Γ, {𝐼𝑗}

Workload 
Parsing/Analysis

𝑊,Γ

Figure 1: The architecture of an index tuner, where W is
the input workload and qi ∈ W is a single SQL query, Γ
is a set of tuning constraints, {Ij} is the set of candidate
indexes generated for W , and C ⊆ {Ij} represents an
index configuration during enumeration.

dex configuration from the candidate indexes that meets
the user-specified tuning constraints (e.g., the maximum
number of indexes allowed or the total amount of stor-
age taken by the indexes) while minimizing the total cost
of the workload.1 For a configuration C considered dur-
ing enumeration, the index tuner leverages the what-if
API, an extended functionality of the query optimizer,
to estimate the cost of each query on top of C with-
out actually building the indexes contained by C [16].
We refer to such query optimizer calls as “what-if (op-
timizer) calls” in this paper. A what-if call can be time-
consuming since it needs to invoke the query optimizer,
especially for complex queries.

Despite this success, the recent advances in data man-
agement have highlighted the existing challenges and
posed new ones. We discuss three key problems.

Problem #1: The growing scale and complexity of
database SQL query workloads in modern cloud envi-
ronments affect the quality of recommended indexes and
contribute to increased time, cost, and resource over-
heads for index tuning.

Cloud database services, such as Microsoft’s Azure
SQL Database [1], host millions of databases with large
and complex query workloads. Automatically and ef-
1A configuration is defined as a set of indexes.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 19



200 400 600 800
Size of Workload

0
400
800

1200
1600

Ti
m

e 
(m

in
s)

Total Tuning Time
Time on Optimizer Calls

(a) Tuning time

200 400 600 800
Number of queries

15
20
25
30
35
40

Co
nf

ig
s e

xp
lo

re
d 

 (i
n 

th
ou

sa
nd

s)

(b) Configurations explored

Figure 2: The growth in tuning time and configuration
exploration on increasing workload size.

ficiently tuning indexes at that scale and complexity is
a formidable task. In particular, the scalability of index
tuning depends on (1) the number of queries in the work-
load, (2) the number of candidate indexes and resulting
configurations that are enumerated, and (3) the number
of optimizer invocations or what-if calls. As depicted in
Figure 2, we see that the tuning time for a state-of-the-
art index advisor [14] grows significantly as we increase
the size of the workload. This is primarily because the
space of configurations to explore increases (Figure 2b),
resulting in a large number of expensive what-if calls
(consuming 70% to 80% of the overall tuning time).

Problem #2: Minimal DBA monitoring and the po-
tential impact on larger workloads in the cloud envi-
ronments underscores the imperative to mitigate per-
formance regressions stemming due to recommended in-
dexes by index tuners.

A major impediment to the goal of full automation
and scalability is the requirement that index implemen-
tations should not cause significant query performance
regressions [18]. One important reason for query perfor-
mance regression (QPR) is that index tuners use query
optimizer’s cost model (via what-if calls) to measure
the improvement in query performance (e.g., execution
time) due to recommended indexes [15, 16, 65]. While
cost models are much more efficient than directly exe-
cuting queries, they may not accurately capture the run-
time behavior of queries, resulting in a mismatch be-
tween the actual and estimated query performance. The
issue is further aggravated due to the scale, variety, and
complexity of workloads, which make it hard to collect
sufficient statistics or incorporate mechanisms for auto-
matically identifying and fixing QPR [18].

Problem #3: The current approach of building system-
specific and tightly-coupled index tuners is less tenable
in today’s fast-expanding landscape of rapidly growing
number and variety of data systems.

Modern enterprises manage several data systems, each
optimized for different use-cases, and frequently add
new ones. Data could reside in a variety of locations,
e.g., operational stores, data warehouses, or data lakes [3,

46,47]. Interestingly, only a limited number of database
systems, such as Oracle, Microsoft SQL Server, IBM
DB2, and PostgreSQL, support index tuning [14,15,29,
65]. This is surprising given that the process of index
tuning is largely system-independent, with core compo-
nents such as candidate index generation and configu-
ration search algorithms reusable across systems with
minimal changes. Yet, index tuners today are tightly
coupled with specific database systems, and developing
an index tuner for a new or evolving database system
requires massive engineering efforts.

1.1 Paper Overview
In this paper, we reflect on the recent efforts towards

addressing the above challenges. While improving the
scalability of index tuning and addressing query perfor-
mance regressions are not new problems, the recent fo-
cus has largely been towards leveraging ML-powered
techniques that can efficiently identify useful configu-
rations without sacrificing the quality of recommenda-
tions. Another notable difference compared to prior work
is that ML techniques require minimal changes to the
underlying query optimizer or to the database system,
and can potentially be integrated as “bolt-on” compo-
nent(s) within existing time-tested and commercially de-
ployed index tuning architectures [14].

Opportunity: ML-powered techniques have the po-
tential to interoperate with core index tuning compo-
nents to improve the scalability and reduce query per-
formance regressions, without significant changes to the
index tuning architecture, the query optimizer, or the
database system.

Figure 3 outlines an enhanced version of the index
tuning architecture depicted in Figure 1 after incorpo-
rating ML-based data-driven techniques. It introduces
novel software components and functionalities that im-
prove the performance of the end-to-end index tuning
workflow: (1) workload selection that aims to reduce
the size, complexity, and relevance of the input work-
load; (2) learned index filter that aims to prune spuri-
ous candidate indexes with little impact on query per-
formance; (3) MCTS-based enumerator that aims to im-
prove the effectiveness of index configuration enumer-
ation; (4) learned cost models that aim to reduce the
number of what-if calls; and (5) ML-based performance
regression predictor that aims to reduce the chance of
query performance regression. We provide an overview
of these new functionalities below, and the rest of this
paper covers more details of each functionality as well
as discussions on the opportunities and open challenges
based on lessons learnt from our own experiences.

Workload Selection. We focus on two complementary
sub-problems of workload compression and workload

20 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Compression

Forecasting

Workload 
SelectionInput

Workload
+

Constraints 

      DBMS

MCTS-based
Enumerator

Optimizer

Recommended 
Indexes

Syntactically
Relevant 
Indexes

(query, config)

optimizer
estimated cost

Learned 
Index Filter

Learned 
Cost Models

Ml-based Performance 
Regression Predictor

Training 
Index-Specific 
Cost Models

(query, config) learned cost

1
2 3

4

5

Figure 3: ML-powered techniques (shaded) for improving index tuning.

forecasting. Workload compression selects a small sub-
set of queries from a large input workload, tuning which
has the potential to result in as high-quality recommen-
dations as tuning the entire workload. Workload fore-
casting, on the other hand, predicts arrival rate of queries
for just-in-time recommendation of indexes, reducing
the size of workload that needs to be tuned at given point
as well as improving the relevance of recommended in-
dexes for queries in the near future (Section 2).

Learned Index Filter. After selecting SQL queries for
tuning, the index tuner parses and analyzes the queries
to generate synthetically relevant indexes based on in-
dexable columns [15] (e.g., columns that appear in fil-
ter and join predicates appearing in the where clause, as
well as columns that appear in the group-by and order-
by clauses). It then tries to identify candidate indexes
from the syntactically relevant indexes. Many of such
candidate indexes are turned out to be spurious, mean-
ing that they have little impact on query performance
and can be safely pruned. A learned index filter is de-
veloped based on this observation (Section 3.1).

MCTS-based Enumerator. As mentioned, configura-
tion enumeration aims to find the best configuration from
the candidate indexes provided. A classic approach to
configuration enumeration is greedy search [15], which
suffers from scalability problems when facing a large
search space with many candidate indexes and queries.
The MCTS-based enumerator aims to improve the ef-
fectiveness of configuration enumeration in large search
space by identifying configurations that show promise
and potential early on. It leverages reinforcement learn-
ing (RL) techniques internally (Section 3.2).

Learned Cost Models. The what-if calls used by in-
dex tuner can be expensive, especially when facing large
and complex workloads. One important observation we
made is that many queries and configurations explored
during configuration enumeration are similar. This opens
up the door of leveraging ML techniques to learn in-situ

lightweight cost models for clusters of similar queries
and configurations during configuration enumeration, de-
spite the fact that learning a generic cost model is ex-
tremely challenging. We can significantly reduce the
number of what-if calls by delegating many of them to
the cost models learned (Section 3.3).

ML-based Performance Regression Predictor. The
what-if calls used by the index tuner rely on the query
optimizer’s estimated costs, which can be off from the
actual query execution time and result in QPR. An ML-
based QPR predictor trained on top of query execution
data can forecast and therefore avoid QPR firsthand. We
highlight the challenges of addressing QPR for produc-
tion systems, giving an overview of recent efforts and
the unsolved challenges that remain open (Section 4).

Cross-platform Index Tuner. Finally, to democratize
the ML-powered index tuning techniques over multiple
systems, we discuss the problems with the current ap-
proach of developing system-specific index tuners in to-
day’s expanding data system landscape. Towards ad-
dressing this, we propose an architecture for a cross-
platform index tuner, along with abstractions that will
allow (the same) index tuning technologies to simulta-
neously benefit many data systems (Section 5).

1.2 Scope and Limitations
Our primary focus in this paper is on improving the

classical offline index tuning process as used in com-
mercial tools (e.g., [9, 14, 15, 19, 29, 50, 65, 69]), and
the adapted versions of them have also been deployed in
modern cloud database services [18]. Notably, there has
been significant research efforts on online index tuning
techniques [6,10,11,41,43,44,48,49,52,53,54], where
the index tuner can create/drop indexes on the fly to han-
dle workload and data drifts. However, perhaps due to
the inherent complexity and variety that comes with dy-
namic, ad-hoc, and non-stationary workloads, a consen-
sus has not yet been reached on critical open questions
of online index tuning such as the architecture, the op-

SIGMOD Record, December 2023 (Vol. 52, No. 4) 21



timization problem formulation, the optimality guaran-
tee of the recommended indexes, and the performance
evaluation criteria. Consequently, to the best of our un-
derstanding, such techniques have yet to find substantial
adoption in commercial systems.

Meanwhile, there is a line of recent efforts on using
ML for holistic database (knob) tuning (e.g., [5, 34, 63,
66, 68, 76, 77, 80]) that goes beyond the scope of in-
dex tuning and therefore this paper. There is also lots
of related work on using ML for improving other spe-
cific aspects or components of database systems, such
as physical data layout (e.g., [26, 74]), buffer pool size
(e.g., [62]), and query optimizer (e.g., [38, 39, 64, 75,
78]), which we omit in this paper as well.

Moreover, there are common challenges faced by ap-
plying ML techniques to solving data management prob-
lems that are not restricted to index tuning per se. There
has been recent work on addressing such general chal-
lenges, such as reducing the overhead of generating train-
ing data [67] and dealing with data updates/drifts [32].
An in-depth discussion on these issues is worthwhile but
beyond the scope of this paper.

2. WORKLOAD SELECTION
The focus of workload selection has been in two di-

rections: 1) selecting queries to tune, referred to as work-
load compression, and 2) knowing when a query will
arrive, referred to as workload forecasting. We discuss
representative research efforts in each direction.

2.1 Workload Compression
A key factor affecting the scalability of index tuning

is the number of SQL queries in the workload. In a typi-
cal cloud database service, a workload can contain hun-
dreds or even thousands of queries. Tuning such a large
workload in a reasonable amount of time is challenging.
It is therefore natural to ask whether index tuning can
be sped up significantly by finding a substitute workload
of smaller size while qualitatively not degrading the re-
sult of the application. It is crucial that this compressed
workload can be found efficiently; otherwise, the very
purpose of compression is negated.

Prior workload compression techniques based on sam-
pling and clustering [13,20] often fail to effectively cap-
ture the similarity between queries and miss out less
frequent queries that may lead to substantial improve-
ment in performance due to indexes. Furthermore, real
workloads have typically more variety in query struc-
tures, which makes identifying relevant queries more
challenging. To address these issues, we have developed
ISUM, an indexing-aware and efficient workload sum-
marization technology [58]. ISUM employs two main
techniques to identify relevant queries.

Measuring Potential Improvement: We develop a new

technique to efficiently estimate the potential in perfor-
mance improvement of a query due to indexes without
requiring optimizer calls, which are key scalability bot-
tlenecks. Our idea is to leverage statistics such as table
size, selectivity, and costs of queries while eschewing
parts of query optimization unrelated to indexing, to es-
timate improvement so that it is highly correlated with
the optimizer estimated improvements.

Capturing Indexing-aware Similarity: On selecting a
query, it is also important to quantify the improvement
in performance on unselected queries in the workload
due to indexes from the selected query. We represent
each query as a set of features (derived from indexable
columns [15]) such that two queries with similar fea-
tures will likely result in similar sets of indexes. We
weigh the features using statistics to capture their rele-
vance to indexes. For instance, features on larger tables
are more important, and similarly, the importance of in-
dexable columns can vary depending on whether they
occur as part of the filter or join predicates. We can fur-
ther leverage ML techniques to automatically derive the
weights of the features based on table size, selectivity,
and position of the columns. Our feature representation
also allows us to quantify the similarity between queries
with different structures.

Combining both techniques, we measure the improve-
ment due to each query over the entire workload, and
develop a linear-time algorithm that selects queries in
decreasing order of their estimated improvement.

Takeaway #1: A workload compression technique for
scalable index tuning requires efficient estimation of (1)
potential performance improvement due to indexes, and
(2) indexing-aware similarity between queries, both us-
ing minimal optimizer calls (a key scalability bottleneck).

Figure 4 presents an example of running ISUM on the
TPC-DS benchmark workload. Overall, we observe that
ISUM can lead to a median of 1.4× and a maximum of
2× performance improvements compared to prior tech-
niques for the same compressed workload sizes. Fur-
thermore, given an input workload consisting of queries
along with their costs, the time to select the compressed
workload is small (<1%) compared to the tuning time of
the compressed workload [58].

Open Challenge #1: The benefits of shortened tun-
ing time gained from compression is often offset by the
overhead involved in parsing queries, gathering statis-
tics, and assessing the improvements brought by recom-
mended indexes across the entire input workload.

Workload compression techniques, including ISUM,
require that statistics such as selectivity, optimizer esti-
mated cost of each query, and other physical plan char-
acteristics are provided as input. We observe that most

22 SIGMOD Record, December 2023 (Vol. 52, No. 4)



20 21 22 23 24

Size of Compressed 
 Workload

0

20

40

60

Im
pr

ov
em

en
t (

%
)

Full Workload
Compressed Workload

Figure 4: Workload compression on TPC-DS.

database systems expose functionality to collect such in-
formation. For database systems where such informa-
tion is not available, we need to make an optimizer call
for each query in the workload, which is expensive for
large input workloads.

Open Challenge #2: Existing workload compression
methods focus on specific optimization goals, but there
is a need for a more adaptable workload characteri-
zation approach that allows for ad-hoc constraints and
user-directed query selection.

Workload compression techniques use pre-defined cri-
teria for selecting queries. However, in practice, one
may also want to obtain a representative subset with
varying constraints, e.g., 100 most expensive queries
while ensuring that every table in the database occurs in
at least 5 queries, consuming at least a certain fraction
of resources such as CPU and I/O. Thus, the specifica-
tion for picking a representative subset of a workload
depends on the task at hand and requires varying crite-
ria and optimization goals. Additionally, it is crucial to
characterize compressed workloads for interpretability.
One direction to explore is to report the estimated im-
provement and drill-downs on how each query in the
compressed workload represents queries in the work-
load that were not tuned. Altogether, tighter integra-
tion of workload characterization mechanisms into a tra-
ditional index tuning engine and their evaluation for a
broader set of tasks is an interesting area for future work.

2.2 Workload Forecasting
Workload forecasting allows index tuners to make just-

in-time recommendations for the workload expected to
arrive in near future. Furthermore, workload forecasting
can reduce the number of queries that index tuners need
to analyze in each cycle.

As one of the representative works, Ma et al. [37]
develop a workload forecasting technique and leverage
it to improve index tuning. It uses a two-phase frame-
work. In the first phase, raw queries are pre-processed
and clustered based on query templates (i.e., query in-
stances without parameter binding). Clustering is nec-
essary, as it is computationally infeasible to build mod-
els to capture and predict the arrival patterns for each

template. In the next phase, an ML-based forecasting
model is trained for each cluster that predicts how many
queries the application will execute in the future (e.g.,
one hour from now, one day from now, etc.).

Takeaway #2: Predicting arrival rates of queries in
near-future can help reuse traditional offline index tuners
for scalable and just-in-time index selection.

Workload forecasting partially mitigates the inabil-
ity of offline index tuning in handling dynamic work-
loads (a core focus of online index tuning [11]) while
reusing the offline index tuners. The empirical findings
show that when using forecasting, the throughput and
latency of MySQL executing real workloads improve
by 5× and 78% over the 16-hour period when the in-
dexes are added or removed after every hour. Similarly,
over PostgreSQL, the technique achieves 180× better
throughput and 99% better latency [37].

Open Challenge #3: A more holistic forecasting of
future workloads, combining both arrival times as well
as query instances (e.g., predicate values), is desired to
enhance the quality of index recommendations.

Prior work on index tuning as well as workload fore-
casting assumes that the query expressions remain un-
changed over time. However, the recommended indexes
may be sub-optimal when the expressions themselves
evolve over time, e.g., a recurring analytical query that
looks at last two days of sales data, or a query template
that changes bindings based on the day the query runs
or the same query template used by different teams with
different parameter bindings. Our analysis of enterprise
workloads shows that while literal values may change
over time, there are high-level patterns that can be learnt
to predict the potential bindings in advance. Thus, an
interesting direction for future work is to predict entire
query instances in addition to the arrival times. There
has also been recent work along the line of robust in-
dex selection [51], with the idea of selecting indexes that
are optimal considering the dynamic nature of the work-
load, which can be combined with workload forecasting
to yield even better indexes.

3. SPEEDING UP INDEX TUNING
Searching for the best configuration in a large space

with many candidate indexes is inherently challenging.
In fact, even a restricted version of the index selection
problem is NP-hard [17] and/or even hard to approxi-
mate [12]. State-of-the-art index search algorithms, such
as the greedy algorithm [14, 15, 30], therefore rely on
heuristics to reduce the search space. However, scal-
ability and efficiency remain challenging even in such
reduced search spaces. We discuss how we can take a
data-driven perspective by leveraging ML techniques to

SIGMOD Record, December 2023 (Vol. 52, No. 4) 23



0.5 0.6 0.7 0.8 0.9 1.0
CDF of query-syntactic index pairs

0
20
40
60
80

100
Co

st
 Im

pr
ov

em
en

t (
%

)

TPC-H
TPC-DS

DSB
Real-M

Figure 5: Cost improvement for different fraction of
query and syntactically relevant index pairs.

speed up different components of index tuning.

3.1 Filtering Spurious Indexes
Index tuners perform syntactic analysis (e.g., using a

set of rules) to select an initial set of indexes for each
query, called syntactically-relevant indexes, for evalua-
tion [15]. However, as showcased in Figure 5, we ob-
serve that 60% to 70% of such indexes are spurious—
they actually do not result in significant improvement in
query performance [59]. Thus, these spurious indexes
can be filtered out and the optimizer calls made on these
indexes can be avoided.

To prune such indexes early in the search process, we
learn a workload-agnostic model that uses structure and
statistics information in the input (query, index) pair to
identify when the index may not lead to a significant
improvement in cost [59]. We then use this model to
remove a large number of spurious indexes. Our key in-
sight is that we can probe the original physical plan of
the query (i.e., the plan generated with existing indexes)
to estimate the potential for improvement in the cost of
the query due to a given index. For instance, if a join
or sort operation is already efficient due to extensive fil-
tering from earlier operations, adding an index that op-
timizes this operation is less beneficial. Similarly, if a
filter column is not selective, we can easily prune an in-
dex that uses it as the leading key column. Furthermore,
in many cases, we can compare the ordering of physical
operators in the original plan with the structure of the
index to identify spurious indexes. Altogether, we cap-
ture many such signals and train a regression model to
automatically learn rules to predict spurious indexes.

Takeaway #3: Many syntactically-relevant indexes do
not lead to improvement in performance. ML models
trained on top of domain-specific signals can filter such
spurious indexes in orders of magnitude less time com-
pared to making what-if (optimizer) calls.

As shown in Figure 6, we find that index filtering
models can be accurately learnt using (query, index) pairs

TPC-H TPC-DS DSB REAL-M0.0
0.2
0.4
0.6
0.8

F1
 S

co
re

Datasets

DTA
LR

LGBM
XGBoost

RF
MLP

RFClassifier
MLPClassifier

Figure 6: Learned Index Filter.

generated from 3 to 4 databases and workloads and can
remove more than 70% spurious indexes with a low rate
(typically less than 10%) of false negatives [59].

3.2 Search by Reinforcement Learning
Given the large number of possible index configura-

tions during configuration enumeration for cloud-scale
workloads, it is practically impossible to have one what-
if optimizer call for every configuration and every query
enumerated. This raises a trade-off between exploration
(of new configurations) and exploitation (of promising
configurations that are already known) when determin-
ing which configurations are worth what-if calls. We
develop a new index search framework based on Monte
Carlo tree search (MCTS) [72], a classic reinforcement
learning (RL) technology [8, 61], to make better deci-
sions on this exploration/exploitation trade-off. In par-
ticular, we adapt the classic greedy search algorithm,
typically used during configuration search [14], to han-
dle the trade-off in a data-driven manner as follows:
• Exploitation: We can expand configurations that show

promise, e.g., ones that contain the best configuration
found by the greedy algorithm so far as a subset;

• Exploration: We can consider configurations that have
been overlooked but may have potential for improve-
ment, e.g., ones that are not the winner configuration
found by the greedy algorithm, but have similar costs
and can be utilized by more queries.
From this viewpoint, the existing greedy search ap-

proach can be viewed as one extreme—it relies on full
exploitation of what has been found with no exploration.
Our RL-based approach, on the other hand, encourages
more exploration, offering a principled way of tackling
the above exploitation/exploration trade-off.

Takeaway #4: RL-based techniques help navigate ex-
ploration and exploitation trade-offs more effectively on
deciding which (query, configuration) to evaluate next.

Figure 7 presents evaluation results on the TPC-DS
benchmark and a customer workload (Real-M) with the
maximum desired configuration size K set to 20. We
compare the MCTS-based approach with both the vanilla
greedy search algorithm and its variants (shown as two-
phase greedy and AutoAdmin greedy in Figure 7) pro-
posed in [15] and used in the Database Tuning Advisor
(DTA) developed for Microsoft SQL Server [14], which
represents the current state of the art [30]. As depicted
in the figure, MCTS outperforms the greedy search algo-

24 SIGMOD Record, December 2023 (Vol. 52, No. 4)



rithms consistently on both workloads w.r.t. the varying
number of what-if calls.

Open Challenge #4: Integrating MCTS-based search
into commercial index tuning tools such as DTA remains
an open problem, considering additional requirements
such as anytime tuning, incremental handling of input
workloads, and supporting reproducibility (difficult due
to randomness inherent to MCTS).

When the input workload is large and/or complex,
we may want to run index tuning with a specific time-
bound [14], or we may want to stop the tuning after
some time without specifying a budget initially. There-
fore, the search algorithm is desired to have the anytime
property, i.e., it should progressively find better config-
urations over time. This also requires incremental han-
dling of more queries as input to the search algorithm
and maintaining and reasoning about the intermediate
state to minimize redundant work. Furthermore, the fi-
nal recommended indexes can vary due to randomness
in MCTS/RL, which affects reproducibility. Handling
these challenges in a commercial tuning tool like DTA
requires non-trivial adaptations to the MCTS algorithm.

We note that there has been other recent work on ML-
based configuration search [31, 33, 44, 45, 55], primar-
ily targeting an online index tuning scenario. This line
of work may be adaptable to offline index tuning but it
shares the same challenges, as highlighted above, when
it comes to integration with existing index tuners. No-
tably, the recent work by Kossmann et al. [31] proposed
training an RL agent that can be used for offline index
tuning, where test workloads are presumably similar to
training workloads observed by the RL agent. Whether
this approach can be further extended to tune completely
unseen workload remains an open question.

3.3 Reducing What-If Optimizer Calls
To achieve the best possible improvement in perfor-

mance, the number of optimizer calls made during in-
dex configuration search can remain considerable de-
spite pruning of spurious indexes and judicious enumer-
ation of configurations. To further improve the efficiency,
we find that a significant number of optimizer calls for
costing (query, configuration) pairs can potentially be
replaced by more efficient data-driven cost models.

Developing a general cost model that is independent
of databases and workloads is hard due to the large va-
rieties in the schema, query structures, and data distri-
butions, despite the intensive efforts in the past decade
(e.g., [4,24,35,40,42,57,60,70,71,73,79]). Our key ob-
servation to developing a lightweight cost model in the
specific context of index tuning is that many queries in
large workloads are self-similar, e.g., multiple instances
of the same stored procedure or query template param-

 0

 10

 20

 30

 40

 50

 60

 70

1000 2000 3000 4000 5000

Im
p
ro

v
e
m

e
n
t 
(%

)

# of episodes/what−if calls

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(a) TPC-DS (K = 20)

 0

 10

 20

 30

 40

 50

1000 2000 3000 4000 5000

Im
p
ro

v
e
m

e
n
t 
(%

)

# of episodes/what−if calls

Vanilla Greedy
Two−phase Greedy

Auto−Admin Greedy
MCTS Greedy

(b) Real-M (K = 20)
Figure 7: Evaluation of MCTS configuration search.

eterized differently. Many indexes explored during tun-
ing can also be similar (e.g., sharing the same prefix of
key columns, or influencing the same set of operators
in the plan), which leads to similar configurations and
results in similar cost reductions. As a result, the num-
ber of unique cost values is often much smaller than the
number of index configurations explored during tuning
(e.g., on average only 6 unique costs over 81 configura-
tions explored per query for the TPC-H workload).

To leverage these characteristics, we group similar
queries with the same query template and then learn a
cost model for each group [59]. For efficient in-situ
learning during index configuration enumeration, we de-
velop an iterative training procedure (with optimality
guarantees) and select diverse training instances (e.g.,
queries with different selectivities, indexes affecting dif-
ferent operators in the query, etc.) that minimize the
number of optimizer calls for training each cost model
(e.g., less than 50 optimizer calls per model on average
across workloads). We show that it is possible to use
low-overhead ML models that are significantly more ef-
ficient than making what-if optimizer calls. A key char-
acteristic of these models is that they are agnostic of the
search algorithm (thus can be used by any algorithm),
and do not require changes to the query optimizer.

Takeaway #5: ML-based cost models can be used as
a generalized cache for similar (query, configuration)
pairs, thereby avoiding many “similar” what-if calls.

Figure 8 depicts the effectiveness of different ML al-
gorithms when used to train per-template cost models,
with tree-based models achieving Q-error as low as 1.2.
Furthermore, we find that combing ML-based cost mod-
els with filtering models for pruning spurious indexes

SIGMOD Record, December 2023 (Vol. 52, No. 4) 25



TPC-H TPC-DS DSB REAL-M
1

5

9

13
Q-
er
ro
r

Datasets

LR
LGBM

XGBoost
RF

MLP

Figure 8: Learned Index Cost Model.

(see Section 3.1) helps scale index tuning to large work-
loads without sacrificing the quality of the recommended
indexes. For instance, for a TPC-DS workload with over
900 queries, combining index filtering and costing mod-
els can give index recommendations with similar quality
as DTA but in 3× less time.

Open Challenge #5: Creating ML-based cost mod-
els across queries with different templates and across
workloads can further improve the scalability by reduc-
ing training overhead (i.e., optimizer calls).

The per-template cost models are less effective for
workloads with many templates. There is a significant
potential for reducing the number of optimizer calls as
well as the number of models if we can generalize cost
models across templates. There has been recent work on
zero-shot cost models [25]; however, such techniques
require a physical query plan (and thus an optimizer
call) for featurization. Furthermore, in our current ap-
proach, we re-train during every tuning session from
scratch due to limited mechanisms for meta-learning or
fine-tuning learned models to capture workload and data
drifts. This is another area where there are some inter-
sections with online index tuning work [6, 44, 48].

4. PERFORMANCE REGRESSION
An important requirement of automated index tuning

for production systems is creating or dropping indexes
should not cause significant query performance regres-
sions (QPR), where a query’s execution cost increases
dramatically after changing the indexes [21]. Such re-
gressions are a major impediment for fully-automated
and scalable index tuning [18]. When an index tuner
searches for optimal configurations, it compares esti-
mated improvements of query performance based on the
optimizer’s estimated costs. Due to well-known limita-
tions in the optimizer’s estimates, such as errors in car-
dinality estimation [27] or cost modeling [71], using the
optimizer’s estimates can result in significant cost esti-
mation errors. The following trade-off is at the heart of
why it is hard to achieve scalability and low rate of QPR
in index tuning simultaneously:

Efficiency vs. Accuracy Trade-off: Optimizer’s es-
timated costs are much faster to compute, but they can
be erroneous and result in low-quality recommendations

and query performance regressions. On the other hand,
actual query execution time is much more accurate but it
can only be obtained with significantly higher overhead,
affecting the scalability of index tuning.

One idea to reduce query performance regression is to
selectively use execution time during index tuning along
with optimizer’s estimated cost. Towards this end, Ding
et al. [21] proposed a suite of ML techniques that learn
over query execution telemetry collected from tens of
databases to predict whether or not a new plan due to a
selected index configuration has regressed with respect
to another plan. Active learning techniques have been
used to selectively collect query execution data for ML
model training by deploying the same target database on
non-production servers [36]. Furthermore, techniques
for fixing QPR have also been proposed [21, 22].

Takeaway #6: Leveraging optimizer’s estimated costs
for index tuning, while verifying selected configurations
at each step of configuration enumeration through ma-
chine learning models trained on query execution statis-
tics, can reduce query performance regressions.

Unfortunately, from the scalability perspective, the
inference process in [21] is expensive since it requires
query optimizer calls to obtain the physical plans of the
queries. Indeed, the focus of [21] was not scalability,
targeting a closed-loop continuous tuning scenario where
index tuning time is perhaps trivial considering the work-
load execution time, especially if there are query perfor-
mance regressions.

Open Challenge #6: Detecting configurations that
cause query performance regressions with both efficiency
and wide coverage, while preserving the scalability of
index tuning, remains a significant challenge for large-
scale workloads.

A promising direction, intersecting with challenges
discussed in Section 3.3, is to learn pre-trained cost mod-
els that bridge the gap between optimizer cost models
and the execution behaviour of queries. A challenge
that needs to be addressed is that such pre-trained mod-
els may not be accurate without requiring plan-level de-
tails that need what-if optimizer calls. Toward this end,
we can explore techniques similar to the ones used for
filtering spurious indexes (Section 3.1) where the origi-
nal physical plan is probed with properties provided by
an index to reason about potential improvement in the
cost, as showcased by the very recent work [56]. While
learning a generalized model that can work across work-
loads is challenging (as discussed earlier), we can nar-
row down the problem by focusing only on indexing-
specific improvements. If we can accurately learn such
models, it opens up opportunities to eschew both op-
timizer calls as well as query executions during index

26 SIGMOD Record, December 2023 (Vol. 52, No. 4)



tuning, thereby significantly improving the scalability.

5. CROSS-PLATFORM TUNING
The current database management landscape involves

many SQL-like systems, with only a few supporting in-
dex tuning. While the systems differ in SQL dialects
and functionalities (e.g., what-if API), the core ideas for
index tuning can often be reused. This is more true for
data-driven techniques discussed in this paper, where the
ML models have limited dependency on the dialects or
unique features of a particular system.

Open Challenge #7: There are many database sys-
tems (where indexes help improve performance) that ei-
ther have no or low-quality automated index tuning ca-
pabilities, forcing users to manually select indexes for
their workloads. Adding an index tuner to a new or
evolving database system requires substantial engineer-
ing overhead, despite that many core ideas in index tun-
ing are cross-platform reusable.

We hereby call for research efforts on developing a
cross-platform index tuner that can work across multiple
SQL-like systems, reusing core index tuning techniques
(e.g., data-driven ML models as well as the search al-
gorithms currently used in state-of-the-art index tuners).
Similar efforts have been made in other areas such as
query optimization [7,28]. A cross-platform index tuner
needs to adapt to the heterogeneity of features varying
across database engines, while reusing the common steps
as much as possible. We abstract such a system in Fig-
ure 9 with the following main components:
• Common Data Representation (IR) consisting of a ba-

sic set of elements that need to be captured across
systems, e.g., database, tables, columns, logical op-
erators, physical operators, and sub-plans. A cross-
language specification such as Subtrait [2] can poten-
tially be leveraged for IR.

• Common System Interaction APIs consisting of a com-
mon set of APIs that can be used to interact with the
database during index tuning. Examples of such APIs
include ones for query optimization in the presence
of one or more indexes, query execution, creation of
hypothetical indexes similar to the what-if API, and
building of statistics.

• Adapters providing the system-specific implementa-
tion of the common system interaction APIs that vary
across systems.

• Index Tuning Planner enabling cross-platform tuning
functionality. It considers system-specific features and
user requirements, and outputs an index tuning plan
(analogous to query execution plan in database sys-
tems). The index tuning task can be represented with
a small set of operators (e.g., enumerate, combine,
evaluate) that can be composed together and config-

PARSER
WHAT-IF CALLS
GET STATISTICS
GENERATE- 
RECOMMENDATIONS

COMMON INTERMEDIATE 
REPRESENTATION

POSTGRESQL

SQL SERVER

MySQL

SPARK SQL

…

COMMON SYSTEM 
INTERACTION APIs

SQL-LIKE
SYSTEM S SYSTEM-SPECIFIC 

ADAPTERS Planner

Operations

Search 
Algorithms

ML Models

SYSTEM-AGNOSTIC INDEX 
TUNING COMPONENTS

Figure 9: A Cross-Platform Design for Index Tuning.

ured to perform index tuning. The index tuning plan
can be an acyclic graph of these operators that is dy-
namically constructed and optimized by the planner
based on system features and user requirements.
Overall, a cross-platform index tuner consisting of the

components as envisioned above has the potential to de-
mocratize index tuning to many more systems than those
that are currently supported. In addition, such an in-
dex tuner will allow (a) borrowing of the best concepts
(implemented as operators) from different index-tuning
algorithms, (b) independent improvement and mainte-
nance of the functionality of operators, and (c) extensi-
bility by incorporating new techniques (implemented as
new operators) in the future without rewriting the algo-
rithms or changing unrelated operations.

6. CONCLUSION
In this paper, we have highlighted the challenges in-

herent to automated index tuning, which are further ex-
acerbated within modern cloud environments, and we
have discussed recent efforts and opportunities in lever-
aging ML-powered techniques to address them. We pre-
sented an end-to-end analysis of the index tuning work-
flow, with a focus on the core components such as work-
load selection and configuration search. We described
the issue of query performance regression (QPR) and
discussed ML techniques for addressing QPR without
affecting index tuning scalability. We also sketched the
design of a cross-platform index tuner that extends the
current index-tuning software stack to support multiple
SQL-like systems. We believe this paper will help create
awareness of recent progress and highlight open chal-
lenges for future research in index tuning.

Acknowledgement. We thank Surajit Chaudhuri and
Vivek Narasayya for their valuable feedback on this work.

7. REFERENCES[1] Azure sql database.
https://azure.microsoft.com/en-us/
products/azure-sql/database/.

[2] Substrait: Cross-language serialization.
https://substrait.io/, 2022.

[3] J. Aguilar-Saborit and R. Ramakrishnan.
POLARIS: the distributed SQL engine in azure
synapse. Proc. VLDB Endow., 13(12):3204–3216,
2020.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 27



[4] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal,
and S. B. Zdonik. Learning-based query
performance modeling and prediction. In ICDE,
pages 390–401, 2012.

[5] D. V. Aken, D. Yang, S. Brillard, A. Fiorino,
B. Zhang, C. Billian, and A. Pavlo. An inquiry
into machine learning-based automatic
configuration tuning services on real-world
database management systems. Proc. VLDB
Endow., 14(7):1241–1253, 2021.

[6] D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan,
P. Senellart, and S. Bressan. Cost-model oblivious
database tuning with reinforcement learning. In
DEXA, pages 253–268, 2015.

[7] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J.
Mior, and D. Lemire. Apache calcite: A
foundational framework for optimized query
processing over heterogeneous data sources. In
SIGMOD, pages 221–230, 2018.

[8] C. Browne, E. J. Powley, D. Whitehouse, S. M.
Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. P. Liebana, S. Samothrakis, and S. Colton. A
survey of monte carlo tree search methods. IEEE
Trans. Comput. Intell. AI Games, 4(1):1–43, 2012.

[9] N. Bruno and S. Chaudhuri. Automatic physical
database tuning: A relaxation-based approach. In
SIGMOD, pages 227–238, 2005.

[10] N. Bruno and S. Chaudhuri. To tune or not to
tune? A lightweight physical design alerter. In
VLDB, pages 499–510. ACM, 2006.

[11] N. Bruno and S. Chaudhuri. An online approach
to physical design tuning. In ICDE, pages
826–835, 2007.

[12] S. Chaudhuri, M. Datar, and V. R. Narasayya.
Index selection for databases: A hardness study
and a principled heuristic solution. IEEE Trans.
Knowl. Data Eng., 16(11):1313–1323, 2004.

[13] S. Chaudhuri, A. K. Gupta, and V. R. Narasayya.
Compressing SQL workloads. In SIGMOD, pages
488–499, 2002.

[14] S. Chaudhuri and V. Narasayya. Anytime
algorithm of database tuning advisor for microsoft
sql server, June 2020.

[15] S. Chaudhuri and V. R. Narasayya. An efficient
cost-driven index selection tool for microsoft SQL
server. In VLDB, pages 146–155, 1997.

[16] S. Chaudhuri and V. R. Narasayya. Autoadmin
’what-if’ index analysis utility. In SIGMOD,
pages 367–378, 1998.

[17] D. Comer. The difficulty of optimum index
selection. ACM Trans. Database Syst.,
3(4):440–445, 1978.

[18] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic,
V. R. Narasayya, M. Radulovic, M. Stikic, G. Xu,

and S. Chaudhuri. Automatically indexing
millions of databases in microsoft azure SQL
database. In SIGMOD, pages 666–679, 2019.

[19] D. Dash, N. Polyzotis, and A. Ailamaki. Cophy:
A scalable, portable, and interactive index advisor
for large workloads. Proc. VLDB Endow.,
4(6):362–372, 2011.

[20] S. Deep, A. Gruenheid, P. Koutris, J. F. Naughton,
and S. Viglas. Comprehensive and efficient
workload compression. Proc. VLDB Endow.,
14(3):418–430, 2020.

[21] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri,
and V. R. Narasayya. AI meets AI: leveraging
query executions to improve index
recommendations. In SIGMOD, pages
1241–1258, 2019.

[22] B. Ding, S. Das, W. Wu, S. Chaudhuri, and V. R.
Narasayya. Plan stitch: Harnessing the best of
many plans. Proc. VLDB Endow.,
11(10):1123–1136, 2018.

[23] S. J. Finkelstein, M. Schkolnick, and P. Tiberio.
Physical database design for relational databases.
ACM Trans. Database Syst., 13(1), 1988.

[24] A. Ganapathi, H. A. Kuno, U. Dayal, J. L. Wiener,
A. Fox, M. I. Jordan, and D. A. Patterson.
Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In ICDE,
2009.

[25] B. Hilprecht and C. Binnig. Zero-shot cost models
for out-of-the-box learned cost prediction. Proc.
VLDB Endow., 15(11):2361–2374, 2022.

[26] B. Hilprecht, C. Binnig, and U. Röhm. Learning a
partitioning advisor for cloud databases. In
SIGMOD, pages 143–157. ACM, 2020.

[27] Y. E. Ioannidis and S. Christodoulakis. On the
propagation of errors in the size of join results. In
SIGMOD, pages 268–277, 1991.

[28] A. Jindal, K. V. Emani, M. Daum, O. Poppe,
B. Haynes, A. Pavlenko, A. Gupta,
K. Ramachandra, C. Curino, A. Müller, W. Wu,
and H. Patel. Magpie: Python at speed and scale
using cloud backends. In CIDR, 2021.

[29] A. Kane. The automatic indexer for postgres.
https://github.com/ankane/dexter, June
2017.

[30] J. Kossmann, S. Halfpap, M. Jankrift, and
R. Schlosser. Magic mirror in my hand, which is
the best in the land? an experimental evaluation of
index selection algorithms. Proc. VLDB Endow.,
13(11):2382–2395, 2020.

[31] J. Kossmann, A. Kastius, and R. Schlosser.
SWIRL: selection of workload-aware indexes
using reinforcement learning. In EDBT, pages
2:155–2:168, 2022.

28 SIGMOD Record, December 2023 (Vol. 52, No. 4)



[32] M. Kurmanji and P. Triantafillou. Detect, distill
and update: Learned DB systems facing out of
distribution data. Proc. ACM Manag. Data,
1(1):33:1–33:27, 2023.

[33] H. Lan, Z. Bao, and Y. Peng. An index advisor
using deep reinforcement learning. In CIKM,
pages 2105–2108, 2020.

[34] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A
query-aware database tuning system with deep
reinforcement learning. Proc. VLDB Endow.,
12(12):2118–2130, 2019.

[35] J. Li, A. C. König, V. R. Narasayya, and
S. Chaudhuri. Robust estimation of resource
consumption for SQL queries using statistical
techniques. Proc. VLDB Endow.,
5(11):1555–1566, 2012.

[36] L. Ma, B. Ding, S. Das, and A. Swaminathan.
Active learning for ml enhanced database
systems. In SIGMOD, pages 175–191, 2020.

[37] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane,
A. Pavlo, and G. J. Gordon. Query-based
workload forecasting for self-driving database
management systems. In Proceedings of the 2018
International Conference on Management of
Data, pages 631–645, 2018.

[38] R. Marcus, P. Negi, H. Mao, N. Tatbul,
M. Alizadeh, and T. Kraska. Bao: Making learned
query optimization practical. SIGMOD Rec.,
51(1):6–13, 2022.

[39] R. C. Marcus, P. Negi, H. Mao, C. Zhang,
M. Alizadeh, T. Kraska, O. Papaemmanouil, and
N. Tatbul. Neo: A learned query optimizer. Proc.
VLDB Endow., 12(11):1705–1718, 2019.

[40] R. C. Marcus and O. Papaemmanouil.
Plan-structured deep neural network models for
query performance prediction. Proc. VLDB
Endow., 12(11):1733–1746, 2019.

[41] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon.
Cliffguard: A principled framework for finding
robust database designs. In SIGMOD, pages
1167–1182. ACM, 2015.

[42] D. Paul, J. Cao, F. Li, and V. Srikumar. Database
workload characterization with query plan
encoders. Proc. VLDB Endow., 15(4):923–935,
2021.

[43] R. M. Perera, B. Oetomo, B. I. Rubinstein, and
R. Borovica-Gajic. No dba? no regret!
multi-armed bandits for index tuning of analytical
and htap workloads with provable guarantees.
IEEE Transactions on Knowledge and Data
Engineering, 2023.

[44] R. M. Perera, B. Oetomo, B. I. P. Rubinstein, and
R. Borovica-Gajic. DBA bandits: Self-driving
index tuning under ad-hoc, analytical workloads

with safety guarantees. In ICDE, pages 600–611.
IEEE, 2021.

[45] R. M. Perera, B. Oetomo, B. I. P. Rubinstein, and
R. Borovica-Gajic. HMAB: self-driving hierarchy
of bandits for integrated physical database design
tuning. Proc. VLDB Endow., 16(2):216–229,
2022.

[46] R. Potharaju, T. Kim, E. Song, W. Wu, L. Novik,
A. Dave, P. Pirzadeh, A. Fogarty, G. Dhody, J. Li,
V. Acharya, S. Ramanujam, N. Bruno, C. A.
Galindo-Legaria, V. R. Narasayya, S. Chaudhuri,
A. Nori, T. Talius, and R. Ramakrishnan.
Hyperspace: The indexing subsystem of azure
synapse. Proc. VLDB Endow., 14(12):3043–3055,
2021.

[47] R. Potharaju, T. Kim, W. Wu, V. Acharya, S. Suh,
A. Fogarty, A. Dave, S. Ramanujam, T. Talius,
L. Novik, and R. Ramakrishnan. Helios:
Hyperscale indexing for the cloud & edge. Proc.
VLDB Endow., 13(12):3231–3244, 2020.

[48] Z. Sadri, L. Gruenwald, and E. Leal. Online index
selection using deep reinforcement learning for a
cluster database. In ICDE Workshops 2020, pages
158–161, 2020.

[49] K. Sattler, I. Geist, and E. Schallehn. QUIET:
continuous query-driven index tuning. In VLDB,
pages 1129–1132. Morgan Kaufmann, 2003.

[50] R. Schlosser, J. Kossmann, and M. Boissier.
Efficient scalable multi-attribute index selection
using recursive strategies. In ICDE, pages
1238–1249, 2019.

[51] R. Schlosser, M. Weisgut, L. Hübscher, and
O. Nordemann. Robust index selection for
stochastic dynamic workloads. SN Comput. Sci.,
4(1):59, 2023.

[52] K. Schnaitter, S. Abiteboul, T. Milo, and
N. Polyzotis. COLT: continuous on-line tuning. In
S. Chaudhuri, V. Hristidis, and N. Polyzotis,
editors, SIGMOD, pages 793–795. ACM, 2006.

[53] K. Schnaitter, S. Abiteboul, T. Milo, and
N. Polyzotis. On-line index selection for shifting
workloads. In ICDE Workshops, pages 459–468.
IEEE Computer Society, 2007.

[54] K. Schnaitter and N. Polyzotis. Semi-automatic
index tuning: Keeping dbas in the loop. Proc.
VLDB Endow., 5(5):478–489, 2012.

[55] A. Sharma, F. M. Schuhknecht, and J. Dittrich.
The case for automatic database administration
using deep reinforcement learning. CoRR,
abs/1801.05643, 2018.

[56] J. Shi, G. Cong, and X. Li. Learned index
benefits: Machine learning based index
performance estimation. Proc. VLDB Endow.,
15(13):3950–3962, 2022.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 29



[57] T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and
W. Le. Cost models for big data query processing:
Learning, retrofitting, and our findings. In
SIGMOD, pages 99–113. ACM, 2020.

[58] T. Siddiqui, S. Jo, W. Wu, C. Wang, V. Narasayya,
and S. Chaudhuri. Isum: Efficiently compressing
large and complex workloads for scalable index
tuning. In SIGMOD, pages 660–673, 2022.

[59] T. Siddiqui, W. Wu, V. R. Narasayya, and
S. Chaudhuri. DISTILL: low-overhead
data-driven techniques for filtering and costing
indexes for scalable index tuning. Proc. VLDB
Endow., 15(10):2019–2031, 2022.

[60] J. Sun and G. Li. An end-to-end learning-based
cost estimator. Proc. VLDB Endow.,
13(3):307–319, 2019.

[61] R. S. Sutton and A. G. Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[62] J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng,
P. Zhang, H. Qiao, Y. Shi, W. Cao, and R. Zhang.
ibtune: Individualized buffer tuning for
large-scale cloud databases. Proc. VLDB Endow.,
12(10):1221–1234, 2019.

[63] I. Trummer. DB-BERT: A database tuning tool
that "reads the manual". In SIGMOD, pages
190–203, 2022.

[64] I. Trummer, J. Wang, D. Maram, S. Moseley,
S. Jo, and J. Antonakakis. Skinnerdb:
Regret-bounded query evaluation via
reinforcement learning. In SIGMOD, pages
1153–1170, 2019.

[65] G. Valentin, M. Zuliani, D. C. Zilio, G. M.
Lohman, and A. Skelley. DB2 advisor: An
optimizer smart enough to recommend its own
indexes. In ICDE, pages 101–110, 2000.

[66] D. Van Aken, A. Pavlo, G. J. Gordon, and
B. Zhang. Automatic database management
system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM
international conference on management of data,
pages 1009–1024, 2017.

[67] F. Ventura, Z. Kaoudi, J. Quiané-Ruiz, and
V. Markl. Expand your training limits! generating
training data for ml-based data management. In
SIGMOD, pages 1865–1878. ACM, 2021.

[68] J. Wang, I. Trummer, and D. Basu. UDO:
universal database optimization using
reinforcement learning. Proc. VLDB Endow.,
14(13):3402–3414, 2021.

[69] K. Whang. Index selection in relational databases.
In Foundations of Data Organization, pages
487–500, 1985.

[70] W. Wu, Y. Chi, H. Hacigümüs, and J. F. Naughton.
Towards predicting query execution time for
concurrent and dynamic database workloads.
Proc. VLDB Endow., 6(10):925–936, 2013.

[71] W. Wu, Y. Chi, S. Zhu, J. Tatemura,
H. Hacigümüs, and J. F. Naughton. Predicting
query execution time: Are optimizer cost models
really unusable? In ICDE, pages 1081–1092,
2013.

[72] W. Wu, C. Wang, T. Siddiqui, J. Wang,
V. Narasayya, S. Chaudhuri, and P. A. Bernstein.
Budget-aware index tuning with reinforcement
learning. In SIGMOD, pages 1528–1541, 2022.

[73] W. Wu, X. Wu, H. Hacigümüs, and J. F.
Naughton. Uncertainty aware query execution
time prediction. Proc. VLDB Endow.,
7(14):1857–1868, 2014.

[74] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke,
Y. Li, U. F. Minhas, P. Larson, D. Kossmann, and
R. Acharya. Qd-tree: Learning data layouts for
big data analytics. In SIGMOD, pages 193–208.
ACM, 2020.

[75] X. Yu, C. Chai, G. Li, and J. Liu. Cost-based or
learning-based? A hybrid query optimizer for
query plan selection. Proc. VLDB Endow.,
15(13):3924–3936, 2022.

[76] B. Zhang, D. V. Aken, J. Wang, T. Dai, S. Jiang,
J. Lao, S. Sheng, A. Pavlo, and G. J. Gordon. A
demonstration of the ottertune automatic database
management system tuning service. Proc. VLDB
Endow., 11(12):1910–1913, 2018.

[77] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao,
B. Cheng, J. Xing, Y. Wang, T. Cheng, L. Liu,
M. Ran, and Z. Li. An end-to-end automatic cloud
database tuning system using deep reinforcement
learning. In SIGMOD, pages 415–432. ACM,
2019.

[78] W. Zhang, M. Interlandi, P. Mineiro, S. Qiao,
N. Ghazanfari, K. Lie, M. T. Friedman, R. Hosn,
H. Patel, and A. Jindal. Deploying a steered query
optimizer in production at microsoft. In Z. G.
Ives, A. Bonifati, and A. E. Abbadi, editors,
SIGMOD, pages 2299–2311, 2022.

[79] Y. Zhao, G. Cong, J. Shi, and C. Miao.
Queryformer: A tree transformer model for query
plan representation. Proc. VLDB Endow.,
15(8):1658–1670, 2022.

[80] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu,
K. Song, and Y. Yang. Bestconfig: tapping the
performance potential of systems via automatic
configuration tuning. In SoCC, pages 338–350,
2017.

30 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Reminiscences on Influential Papers

This issue’s contributors chose influential works
that create bridges from other research communi-
ties (human-computer interaction, computer archi-
tecture, and programming models) to the data man-
agement community. Their write-ups highlight the
importance of reaching across fields without forget-
ting the core. Enjoy reading!

While I will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pınar Tözün, editor

IT University of Copenhagen, Denmark

pito@itu.dk

Sourav S Bhowmick

Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Don Chamberlin in his recent keynote talk at
SIGMOD 2023 recalled that one of the goals behind
the design of SQL was to make it “easier to swal-
low by ordinary people” and “easy to understand [..]
without any special training”1. Since then 50 years
have gone by and SQL has become wildly successful
in the corporate world. However, during this time it
has also morphed into a query language with many
complex query semantics and features. While pow-
erful, research by the Computer Education commu-
nity has shown that SQL is difficult to understand,
learn, and use, diverging from its original goal w.r.t.
ease of use. Indeed, one needs specialized training
to use SQL and, in fact, this holds true for any
declarative query language in the market.

Two decades ago, fresh out from graduate school,
I observed that research in data management pri-

1
https://dl.acm.org/doi/10.1145/3555041.3589336

marily focused on data structures, algorithms, and
performance. Although database usability research
started 40 years ago, scant attention was paid to it
in practice. Hence, in addition to these traditional
issues, I started working on the usability aspects of
querying databases as envisioned by Don Chamber-
lin.

Given that the topic of usability has a strong
nexus with human-computer interaction (HCI), I
will select two work that influenced my career in
a fundamental way - one from the HCI community
and another from our Data Management commu-
nity. Furthermore, I am influenced more by novel,
visionary ideas than some specific techniques. So I
will diverge from the past authors of this column
and select work that are not considered as tradi-
tional technical papers - one is a visionary book that
influenced me to work on problems that are centered
around users and another is a keynote paper that
not only influenced my thinking on usability in the
context of database systems but also motivated me
to persist on my effort on this topic despite initial
setbacks and a lack of sufficient attention from the
Data Management community.

Ben Shneiderman.

Leonardo’s Laptop: Human Needs and the
New Computing Technologies.

MIT Press, pages 1-269, 2003.

I bought a signed copy of this visionary, intel-
lectually stimulating, and inspirational book from
Ben in CIKM 2005 (Figure 1). It was early days
when I was exploring usability and databases. In
this book, he asserted that “the old computing was
about what computers could do; the new comput-
ing is about what users can do” and used Leonardo
Da Vinci as the inspirational muse to lay down the
vision of new computing. Leonardo integrated art
with science to serve a practical purpose and pro-
duce something that also pleased his patrons. For

SIGMOD Record, December 2023 (Vol. 52, No. 4) 31



Figure 1: A signed copy of Leonardo’s Laptop.

example, he painted Mona Lisa, to please her hus-
band, Francesco del Giocondo, while demonstrating
his visual insights and knowledge of geology, plants,
and river ecology. So Ben posits that “technical ex-
cellence must be in harmony with user needs”. We
should build products that are usable, useful, and
enjoyable.

The book articulated two key steps for realizing
the new computing paradigm. First, the promo-
tion of good design w.r.t. the quality of user in-
terfaces and the underlying infrastructure. Second,
the promotion of inclusiveness by enabling diverse
variety of users, young and old, novice and expert,
able and disabled, which Ben referred to as“univer-
sal usability”. The book also proposed applications
of new computing in education, medicine, business,
and government.

Back then data management research was pri-
marily about old computing - devising novel data
structures and algorithms to demonstrate efficiency
and scalability of a software or a technique. Ben’s
book inspired me to explore about the new com-
puting paradigm in the context of databases. How
do we design quality query interfaces and infras-
tructure to support diverse database user needs?
My research on blending visual query formulation
and query processing, plug-and-play visual inter-
faces, user-friendly query visualization abstraction,

and understanding and quantifying aesthetics of vi-
sual query interfaces are all inspired by the vision
of new computing. The vision of universal usabil-
ity has recently inspired me to explore technologies
that can enable learners, young and old, able and
disabled, to learn about the topic of relational query
processing. This group of users has received scant
attention from the Data Management community
as research and products primarily target corpo-
rate users and developers. It is worth noting that
the push for universal usability of data management
tools “makes good business sense because it creates
larger audiences for commerce, entertainment, and
education”.

H. V. Jagadish, Adriane Chapman, Aaron Elkiss,
Magesh Jayapandian, Yunyao Li, Arnab Nandi, and
Cong Yu.

Making Database Systems Usable.

In Proceedings of ACM SIGMOD, pages 13-24,
2007.

This paper is an excerpt from the excellent keynote
talk by Jag in SIGMOD 2007, which I attended. As
remarked earlier, at that time, the Data Manage-
ment community primarily focused their attention
on data structures, algorithms, and performance is-
sues but not on user-level database usability. This
paper brought our attention to the fact that databases
are “hard to design, hard to modify, and hard to
query”. It systematically identifies the pain points
encountered by end users and posit that the usabil-
ity challenges in databases are much more than skin
deep. Simply slapping a user-friendly visual query
interface on top of a database system does not alle-
viate these challenges and called for rethinking the
underlying architecture of the database system to
address them. In particular, it presents the notion
of a presentation data model as a distinct layer on
top of the logical data model. It is envisioned to en-
able effective personalization and interaction with
the database through direct manipulation.

I have used this paper as a mental template for
addressing problems related to visual querying. For
instance, several of my work focused on blending
visual query formulation and processing by exploit-
ing the latency offered by visual query interfaces,
which demands rethinking of the underlying query
processing component in a visual querying environ-
ment. Similarly, our notion of plug-and-play visual
query interfaces is inspired by the need of different
presentation data model for different users for dif-
ferent data sources to facilitate more effective and

32 SIGMOD Record, December 2023 (Vol. 52, No. 4)



efficient visual querying.

Last but not the least, I believe this paper also
played a pivotal role in putting the attention of our
community back to database usability that was lost
for decades. Prior to 2007, I had a hard time pub-
lishing papers on usability and data management
in the Data Management venues. In fact, I barely
squeezed in a short paper in ICDE 2006. In several
major venues all the three reviewers would suggest
that I should submit these work to HCI venues - as
if usability of data systems is not our business! This
bleak landscape changed since 2010. Since then, I
observed more reviewers in our major venues were
open to such work and as a result I was able to pub-
lish regularly on this topic. Prior to 2007, often 3
out of 3 reviewers mentioned that usability is not
relevant to data management. Nowadays, some-
times it is 1 out of 3 - I believe that is progress!
Looking back, I strongly believe that this keynote
played a significant role in changing perception and
emphasizing “usability of a database as important
as its capability”.

Carsten Binnig

TU Darmstadt & DFKI, Germany

carsten.binnig@tu-darmstadt.de

Jun Rao and Kenneth A. Ross.

Cache Conscious Indexing for Decision-
Support in Main Memory.

In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 78-89, 1999.

First of all, I would like to thank Pınar for run-
ning this column over the last few years. The fact
why I like this column is that I am not only learn-
ing a lot about past papers of our community but
even more I like the fact that the column often tells
a very personal story of why a paper was influen-
tial to the career of an individual. Moreover, the
request of Pınar started my own thought process of
which paper I should choose which is an interesting
exercise on its own.

To answer this question, I was sitting down and
my mind was playing ping-pong with many different
ideas. I was happy to discover that there was a way
too long list of papers that I had read over my career
which inspired me. The bad point was, I had to pick
ONE. In the end, I decided to choose the paper
”Cache Conscious Indexing for Decision-Support in
Main Memory” which appeared in VLDB’99 from
Jun Rao and Kenneth A. Ross. I chose the paper

due to two reasons.

The first reason is maybe the more obvious one
since it was a pick that influenced my career. When
I was a PhD, I started to work with Donald Koss-
mann on database testing which was a highly im-
portant topic but at that time not at the core of
the database community. After my PhD, I really
wanted to shift towards a topic that was more at
the core of our community. Around 2008, I started
to work on ideas related to leveraging modern hard-
ware for in-memory databases in the context of my
(industrial) work on SAP HANA. In this realm, I
was reading many papers that contributed to this
line of work.

In this body of work, the paper from Ken was
starring out. For me personally, it is a “seminal”
paper since it early on explored modern CPU ar-
chitectures with multi-level caches for designing op-
timal memory-based index structures. The paper
looked into the question of how to redesign tree-like
in-memory index structures and make them cache-
conscious for read-mainly scenarios. In the years
after, we saw many papers along similar lines. The
paper itself combines a set of simple yet elegant
ideas to make an in-memory index cache conscious
such as avoiding pointers and using offset compu-
tation for the index traversal. As a consequence,
data can be kept more densely in the index nodes
without “wasting” space for large pointers to child
nodes thus making the index cache-friendly.

The result of the paper is an index structure called
CSSTree (Cache Sensitive Search Tree) which had
later on been followed by the CSB+-tree [1] (Cache
Sensitive B+-Tree) that supports also more write-
heavy workloads without giving up the cache-optimal
properties. Beyond these topics, Ken has also con-
tributed significantly to a broad range of other im-
portant topics regarding databases on modern hard-
ware (e.g., SIMD and GPUs). Today, the whole line
of databases on modern hardware is still highly ac-
tive, and new debates are needed in the context of
the cloud given the challenges that hardware is scal-
ing slower than data.

A second reason why I chose the paper is actu-
ally because I highly value Ken as a researcher. I
only had a few times where I could personally in-
teract with him. One occasion to meet and discuss
with him was his visit to Brown University when I
was there from 2014 to 2017. These few moments
were sufficient to impress me deeply. Firstly, Ken
is a very modest and quiet, but extremely knowl-
edgeable person. Secondly, while Ken is known for
his solid work on developing database algorithms
and data structures for modern hardware, I learned

SIGMOD Record, December 2023 (Vol. 52, No. 4) 33



that he also has a second, completely different area
of work, which is not even in computer science, but
in medicine. Personally, I find this strong ability to
research in-depth and breadth extremely fascinat-
ing.

[1] Jun Rao and Kenneth A. Ross. “Making B+-
Trees Cache Conscious in Main Memory.” In Pro-
ceedings of ACM SIGMOD, pages 475-486, 2000.

Peter Alvaro

University of California, Santa Cruz, CA, USA

palvaro@ucsc.edu

Eddie Kohler, Robert Morris, Benjie Chen, John
Jannotti, and M. Frans Kaashoek.

The Click Modular Router.

In ACM Transactions on Computer Systems, Vol-
ume 18, Issue 3, pages 263–297, 2000.2

I first read the Click paper in 2009 in Randy
Katz’s networking seminar at UC Berkeley. At that
time, I was a second-year graduate student in Joe
Hellerstein’s lab, studying data management sys-
tems but interested in distributed systems and lan-
guages. Riding the tailwind of Boon Loo’s disserta-
tion work on “Declarative Networking,” I was think-
ing a lot about transplanting other database ideas
(in particular, query languages and dataflow-based
execution) into new domains. I was (perhaps nar-
rowly) focused on the idea of“declarative”program-
ming, but I struggled to reconcile the ideology of
“what not how” with concerns such as modularity,
reuse, and performance. For example, small queries
can be quite beautiful, but they become unwieldy as
their complexity increases - and programmers tend
avoid them because they prevent low-level control
of execution.

During my first reading, the Click paper reaf-
firmed the view of the world I share with a small
number of colleagues: that query processing is a
rich way to model general computation. As Click
shows, routing is a special case of query execution.
With the right set of tweaks and extensions, the
zoo of routing and switching protocols that we had
been studying in class decompose into a set of sim-
ple operators (called“elements”) that process tuples
(i.e., packets) one-at-a-time, alongside a collection
of rules about how operators may be composed. An
instantiation of a router is hence a dataflow graph
that reacts to the insertion of tuples (e.g., those

2Extends the SOSP 1999 paper from the same authors
with the same title.

arriving via an external network interface) by out-
putting tuples (e.g., via an outgoing interface).

Reading more deeply, the paper began to upset
my understanding of the role of abstraction in sys-
tems programming and its relationship with reuse
and performance, teaching me a number of lasting
technical lessons. Critical to both the generality
and degree of reuse in Click is its ability to combine
operators whose interfaces are “pull” (as operators
in traditional query processing are, exposing iter-
ators) and those that are “push” (as operators in
streaming databases are, fronted by queues). This
generality was required to model interfacing with
the boundaries of systems where, for example, pack-
ets arrive at times outside of our control, and send-
ing packets requires waiting for a device to be ready.
Rather than being simply a workaround to handle
the edges of the system, however, it makes the pro-
gramming model surprisingly powerful. The “trick”
that makes permits programmers to intermix push
and pull operators (but only in ways that are “type-
safe,” since it does not make sense to directly com-
pose an operator that wants to push to its outputs
with an operator that wants to pull from its inputs)
is the explicit representation of queues. Rather than
hiding them inside streaming-style operators, pro-
grammers choose where queues are placed, which
influences when scheduling decisions are made. By
doing so, Click permits the implementation of oper-
ators that (like Eddies [1]) perform scheduling itself.

The Click programming model is not declarative
in the sense typically meant by our community. There
is no calculus or algebra that gives rise to a space
of plans to automatically cost and search: program-
mers of Click perform query planning by hand. In-
stead it offers what Kohler3 called “picture-frame
declarativity,”allowing implementers to operate freely
on both sides of the abstraction. Implementing a
new routing protocol is a matter of creating a new
query, and can be performed visually, at the level
of logical dataflow. Allowing programmers to ex-
plicitly place queues gives them control over when
scheduling decisions are made, without requiring
them to worry about how. Implementing completely
new functionality or scheduling policy requires peel-
ing back the abstraction and implementing a new
operator in low-level code. Hence Click elements
“frame” imperative processing, allowing program-
mers to enjoy the benefits of high-level program-
ming while maintaining control of the system. Click
is fast - faster than I knew a high-level programming
model could ever be.

3in a separate talk

34 SIGMOD Record, December 2023 (Vol. 52, No. 4)



It is hard to measure the impact of Click on my
own thinking and research. The explicit represen-
tation of queues as programmatic constructs rather
than hidden plumbing became a key feature of the
Dedalus language [2], which became the foundation
of my thesis work, some of which departed from
pure query languages to target streaming dataflow
systems. I have also lost count of how many times
I have read the paper. Each time, I find something

new. Every database researcher should read it of-
ten.

[1] Ron Avnur Joseph M. Hellerstein. “Eddies:
Continuously Adaptive Query Processing.” In Pro-
ceedings of ACM SIGMOD, pages 261-272, 2000.

[2] Peter Alvaro, William R. Marczak, Neil Con-
way, Joseph M. Hellerstein, David Maier, and Rus-
sell Sears. “Dedalus: Datalog in Time and Space.”
In Datalog Workshop, pages 262-281, 2010.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 35



ADVICE TO MID-CAREER RESEARCHERS 
 

We are starting a new series to provide advice to mid-career researchers. There are a number of programs that 
SIGMOD organizes for researchers at the beginning of their careers (PhD Symposium and the like) and senior people 
do not (or should not) need much help. There are considerable challenges for those who are about to transition from 
an early researcher to a more senior role. In academia, these are people who are about to get tenured that comes with 
starting to think of moving from shorter-term research objectives to longer-term ones. In industrial research, this 
corresponds to the transition from participating in projects to initiating and leading them. As a community we don’t 
seem to talk about these challenges much. That is the gap this series attempts to fill. We will get the views of senior 
researchers from diverse backgrounds and diverse geographies. We will continue as long as we find original advice 
and the views are not repetitions. 

M. Tamer Özsu 
University of Waterloo 

 

Once upon a Time, in a Computer Engineering Department …. 
 

Tiziana Catarci, Department of Computer, Control and Management Engineering, Sapienza University of Roma 
Italy

  
When I read Tamer’s introduction, talking about advice 
from senior researchers, I had to agree that I am now, 
indeed in that category. I am presently department chair 
and used to be vice-rector in the past, acting more like a 
manager than a researcher. However, I confess that I 
still have some small personal spaces in which I permit 
myself to feel like an enthusiastic young post-doc, stop 
reading documents and start thinking about new 
research issues. Actually, this is my first advice for 
those who are in their mid-career: do not just look ahead 
(“ad maiora” used to say in the ancient Roma), always 
keep within you the curiosity of the  PhD student that 
you used to be. 

When I started my career, everything was slower. We 
did not have Internet yet (I know, it is difficult to 
believe), so one had to conduct bibliographical search 
physically going to the libraries, meet colleagues in 
person, travel a lot to carry on joint research, at most 
phone people abroad (not too much because phone calls 
were expensive) or mail (not e-mail, physical mail) 
correspondences. Doing research was more complicated 
than today, the only advantage was that one had a lot of 
time to think and discuss, much less pressure, and the 
quality (rather than the quantity) of your publications 
was the key to academic success. I remember having a 
lot of fun and strong emotions when the paper envelope 
you were waiting for from a major conference or journal 
arrived. With a paper envelope you need to physically 
get it, open it, take the paper sheet, open it, read it… 

Well, I do not want to talk too much about prehistoric 
times, it is just to establish the scenario where I started, 
now things are very different also in Italy and laws have 
been changed several times (everything about academic 
career here is regulated by national laws, similarly to 
other European nations but with less autonomy for the 
universities on the average).  

I became assistant professor quite early (before the 
official completion of my PhD), but then I had to wait a 
lot for the issuing of a national competition for associate 
professor, since at that time the only possibility to 
advance your career was to win a position (in principle 
not associated with a specific university) among those 
available through a public call issued by the ministry of 
universities. 

So, my mid-career time came too late to enjoy it, I was 
almost ready to become full professor, indeed it 
happened a couple of years later, after a change in the 
national law, that canceled the global competition and 
introduced university-level competitions (always 
regulated as public calls with a comparative evaluation 
among the applicants and a mostly external committee). 
It was a pity since mid-career is the time in which you 
feel your position is more “solid” and you are “in” - so 
less pressure - but you are supposed to be still in your 
early academic years, so not much academic 
commitments, not much “distance” with post-docs and 

36 SIGMOD Record, December 2023 (Vol. 52, No. 4)



PhD students, the possibility of creating your own 
research group and do research having also a lot of fun.  

2010: new university law in Italy. The organization of 
universities in Italy changed a lot with the so-called 
“Legge Gelmini”, that was a sort of revolution, with 
pros and cons. It impacted the university in several 
respects, but the two that are more relevant here are the 
introduction of the national habilitation (similar but not 
identical to the one in other European countries), the 
creation of the agency for the evaluation of universities 
and research (ANVUR), and the change in the recruiting 
mechanisms. 

Recruiting Mechanism The idea behind the recruiting 
mechanism was to make it closer to the Anglo-Saxon 
one, with the introduction of two initial positions: a non-
tenured track (RTD-A, hybrid between a post-doc and 
an assistant professor) and a tenured one, RTD-B. RTD-
Bs could apply for becoming tenured associate 
professors after three years with the constraint of having 
got the national habilitation. Of course, the RTD-B path 
represents an improvement with respect to the previous 
situation.  Researchers have a clear deadline for getting 
to the point where they really become faculty members 
and their mid-career time arrives reasonably early. One 
problem is that the number of RTD-Bs is not freely 
established by the universities (or, even better, by the 
departments), instead it follows complex national rules 
(too complex and boring to explain here, but I am 
available for dedicated seminars in case some masochist 
is curious about them). RTD-As instead are not limited 
in number because they can be funded with research 
grants, so rich groups can have many (the reiteration of 
a traditional inequality of society). This creates the so-
called “funnel” problem and many good RTD-As 
cannot proceed in their academic career.  

However, the worst effect on the young people research 
in scientific sectors derives from the exaggerated 
importance given to numerical indices both in the 
university evaluation campaign and in the acquiring of 
the national habilitation. In order to achieve the 
habilitation, the RTD-Bs have to (1) overcome the 
threshold values of the bibliometric medians of their 
disciplinary fields and (2) conquer a set of “medals” 
(e.g., being the guest editor of a special issue 
whatsoever; being the leader of a project whatsoever; 
being invited to give a PhD course in any university; 

etc.). Note that the evaluation is carried by strictly 
referring to a specific scientific sector (SSD) and 
multidisciplinary research is viewed with suspicion, 
while it is nowadays considered the key to investigate 
the “big problems”. Therefore, RTD-Bs cannot mainly 
concentrate on curiosity-driven research, extend their 
vision, explore synergies with other realms, but they 
have to (quickly) develop the art of qualification-
proofing their CV. 

Note that another habilitation must be passed in the mid-
career if one wants to apply for a competition for full 
professorship.  

Very recently, in 2022, the recruiting mechanism was 
changed again canceling the RTD-A figure and 
introducing a single initial role with tenure, called RTT, 
which has a maximum of six years to get the habilitation 
and become associate professor. The RTT positions are 
limited nationwide, and each university has to comply 
with a set of constraints that it is not easy to prove 
satisfiable.  Probably the idea was to eliminate the 
funnel problem, but post-docs have been eliminated as 
well.   

Do not give up! Even if there is now too much 
bureaucracy in the academia (at least in some countries), 
and the research pace is getting too fast, nevertheless 
being a researcher and a professor is one of the best jobs 
you can get. And this is not mainly because it is an 
intellectually challenging work, one may meet and 
collaborate with great minds, and it is possible to work 
and have fun simultaneously. More importantly, it is 
possible to give a (small or big) contribution to building 
a better world. 

Professors may not only give disciplinary teachings to 
students. They might help develop their critical sense 
and cognitive mechanisms to be able to understand and 
navigate an increasingly complex world where it is 
more difficult to distinguish the true from the false. 

Carrying on our job, it is possible to advance research 
with scientific method for a better world (all small 
contributions count). This is especially important today 
for the kind of computing research that makes the digital 
revolution possible. 

SIGMOD Record, December 2023 (Vol. 52, No. 4) 37



Ethical Dimension The digital revolution represents an 
epochal turning point, at least comparable to that which 
occurred at the time of the industrial revolution in the 
19th century, resulting in a disruption of production 
processes and ways of life. The digital revolution affects 
the scope of the techniques and tools we use, but it is, 
first and foremost, a new way of seeing and interpreting 
the world, implying social, economic, urban, political 
and many other kinds of changes. 

The pervasiveness of the spread of digital tools, 
particularly those based on Artificial Intelligence, 
requires ethical reflection by researchers, and by those 
who develop the systems, those who make them 
available and those who use them. The ethical 
dimension has therefore become an essential feature of 
people doing computer science research, much more so 
than in the past. Take, for example, data management. 
We are used to thinking of data as an objective 
representation of the world, but this is not always the 
case; data is not the truth, or at least it is not the whole 
truth. Datasets, no matter how accurate, cannot take a 
perfect picture of reality and are dependent on humans 
to acquire, process and store them. Data are socially and 
politically oriented constructions; making a dataset 
means defining choice criteria that determine inclusions 
and exclusions. We need to make sure that the 
foundational choices are ethical, that the data reflect a 
worldview that is free of discrimination and attentive to 
people's well-being. Today this does not always happen: 
the large amount of data required for training by 
machine learning systems results in the use of 
unsupervised data, with all the ethical problems 
associated with this practice. In this way, artificial 
intelligence systems end up containing and conveying 
bias, producing discourses, or making decisions 
influenced by biases and stereotypes. 

Gender Problem Many studies point out the presence 
of a significant and long-lasting gender gap in the field 
of computing disciplines. The gender gap exists at all 
levels: university students, researchers, professors, 
public administration, and industry. Among STEM 
disciplines, Computer Science is the one with the 
highest gender unbalance, with the percentage of 
women enrolled in ICT graduate programs usually 
ranging between 10 and 20 percent depending on the 
country. As a result, the new digital society is designed 
almost exclusively by men, losing the value of diversity 

and, consciously or unconsciously, risking reinforcing 
prejudice. Therefore, it is especially important to 
encourage girls to undertake studies in digital 
disciplines and to support those who are at the beginning 
of their careers or at critical transitions, such as tenure. 
All of us need to be mentors for those younger ones. 

Summary. When you decide to pursue a career in the 
academy, you may encounter many difficulties, 
obstacles, and moments of discouragement, but also 
have great satisfaction, exaltation, and a lot of fun.  

By the time you get to the mid-career period, many 
doubts and problems are behind you (if you are still in 
the academy and did not give up) and a less stressful 
time begins with even more freedom to study, create 
your own group, and choose your own ventures. This is 
also the time when you may decide to impact the 
society, not just work for yourself, but do it to contribute 
to the creation of a better world and be a positive 
example for the younger generation. 

 

38 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Future Database Engine Development:
You Will Only Need One Programming Language

Tianzheng Wang
Simon Fraser University

tzwang@sfu.ca

Database systems must make good use of the hardware
for high performance. This is usually done by imple-
menting their core components (storage engine, opti-
mizer and query execution engine) in a low-level pro-
gramming language (PL) such as C/C++ that can di-
rectly “talk to the hardware.” But these PLs tradition-
ally lacked high-level abstractions, lowering DBMS de-
veloper productivity. Some systems [18, 16, 10] then
mix different PLs to balance productivity and perfor-
mance. For example, Presto [16] and Spark [18] origi-
nally used Java but are now replacing their query en-
gines with new ones [12, 1] built in C++ for higher
performance. However, doing so brings such non-trivial
challenges as interacting with different PL runtimes [1].

Recent advances in PLs, in particular C++ and Rust,
have the potential of removing such need. They intro-
duce many desirable features that improve productiv-
ity without sacrificing performance. This means core
DBMS components could all be implemented in one PL
(although other non-performance critical parts may still
stick with higher-level PLs). To see why, let us first re-
view the requirements DBMSs pose for PLs.

What does a DBMS Need from a PL?1 Different DBMS
components pose varying requirements on productiv-
ity and performance. The optimizer is logic-centric, so
there is a strong need for coding productivity to easily
express various optimizations. The storage and query
engines, however, need to handle parallelism and con-
currency by taking full advantage of the hardware, mak-
ing performance the top priority. Developers are will-
ing to tolerate extra complexity for better performance,
such as implementing lock-free indexes [11]. A query en-
gine also needs to implement complex relational algebra
and extensions, posing higher requirements on coding
productivity than storage engines. As a result, the de
facto standard for programming storage and query en-
gines has been traditional C/C++, whereas developers
may choose a higher-level PL for optimizers. This has
led to the state of mixing PLs for DBMS components.

1This paper targets PLs used to implement DBMSs them-
selves, instead of “database programming languages” which
explored the convergence of database systems and PLs [2].

The Case for Modern C++. At a first glance, C++may
be too “low-level” as a native language. However, mod-
ern C++ (17, 20 and later) comes with features that
improve performance and productivity. For example,
C++20 allows dynamic memory allocations at compile-
time, improving performance by shifting calculations to
compile-time and generating smaller binaries [6]. They
can also improve productivity as the compiler can de-
tect certain undefined behaviors and leaks at compile-
time [7]. In a DBMS, memory used by optimizers typi-
cally has a lifespan of queries, yet for storage engines the
lifespan is a transaction, requiring different allocators.
Some may be a bump allocator that reclaims all memory
chunks as a whole, while others should support “real”
deallocations of individual chunks. The polymorphic
memory resource (std::pmr) [17] provides a promising
solution, with a set of utilities to manage runtime poly-
morphism of memory allocations with unified interfaces.

Another example is C++20 coroutines [5] which are
being adopted by recent work [9, 13]. Traditionally,
query engines implement the iterator model with little
PL support and thus an operator must manually main-
tain states and intermediate data, such as current scan
cursor position. C++20 coroutines can help alleviate
this problem with a generator-based model. A scan op-
erator’s get_next can be turned into a coroutine that
directly yields each valid row without having to main-
tain the current row cursor, simplifying implementation.

Future Directions. I believe it is now feasible to sat-
isfy the needs of core DBMS components using a single
PL, and many more modern PL features remain to be
explored. Beyond C++, Rust [15] and Carbon [4] have
gained much attention. It is promising to quantitatively
compare these PLs for DBMS implementation. Earlier
efforts such as EXODUS [3] and the E programming
language [14, 8] have contributed to PL designs. Revis-
iting them and devising new PLs for DBMS implemen-
tation is also promising. Despite the new PL features,
compiler and ecosystem support often fall short for se-
rious DBMS development. It is time again for DBMS
developers to participate and influence PL and compiler
design to push the desired features early into future PLs.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 39



REFERENCES
[1] A. Behm, S. Palkar, U. Agarwal, T. Armstrong,

D. Cashman, A. Dave, T. Greenstein,
S. Hovsepian, R. Johnson, A. Sai Krishnan,
P. Leventis, A. Luszczak, P. Menon, M. Mokhtar,
G. Pang, S. Paranjpye, G. Rahn, B. Samwel,
T. van Bussel, H. van Hovell, M. Xue, R. Xin, and
M. Zaharia. Photon: A fast query engine for
lakehouse systems. In Proceedings of the 2022
International Conference on Management of
Data, SIGMOD ’22, page 2326–2339, New York,
NY, USA, 2022. Association for Computing
Machinery.

[2] M. J. Carey and D. J. DeWitt. Of objects and
databases: A decade of turmoil. In Proceedings of
the 22th International Conference on Very Large
Data Bases, VLDB ’96, page 3–14, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers
Inc.

[3] M. J. Carey, D. J. DeWitt, D. Frank,
M. Muralikrishna, G. Graefe, J. E. Richardson,
and E. J. Shekita. The architecture of the
EXODUS extensible DBMS. In Proceedings on the
1986 International Workshop on Object-Oriented
Database Systems, page 52–65, 1986.

[4] C. Carruth. Carbon language: An experimental
successor to C++. CppNorth, 2022.

[5] Coroutines. https://en.cppreference.com/w/
cpp/language/coroutines, 2022.

[6] A. Fertig. C++20 dynamic allocations at
compile-time, 2021.
https://andreasfertig.blog/2021/08/
cpp20-dynamic-allocations-at-compile-time/.

[7] B. Filipek. constexpr dynamic memory allocation,
C++20, 2021. https://www.cppstories.com/
2021/constexpr-new-cpp20/.

[8] E. N. Hanson, T. M. Harvey, and M. A. Roth.
Experiences in DBMS implementation using an
object-oriented persistent programming language
and a database toolkit. In Conference Proceedings
on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, page
314–328, New York, NY, USA, 1991. Association
for Computing Machinery.

[9] Y. He, J. Lu, and T. Wang. Corobase:
Coroutine-oriented main-memory database

engine. PVLDB, 14(3):431–444, Nov 2020.
[10] M. Kornacker, A. Behm, V. Bittorf,

T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,
M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff,
D. Kumar, A. Leblang, N. Li, I. Pandis,
H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL
engine for Hadoop. 2015.

[11] J. J. Levandoski, D. B. Lomet, and S. Sengupta.
The Bw-Tree: A B-tree for new hardware
platforms. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages
302–313, 2013.

[12] P. Pedreira, O. Erling, M. Basmanova,
K. Wilfong, L. Sakka, K. Pai, W. He, and
B. Chattopadhyay. Velox: Meta’s unified
execution engine. PVLDB, 15(12):3372–3384, Aug
2022.

[13] G. Psaropoulos, T. Legler, N. May, and
A. Ailamaki. Interleaving with coroutines: A
practical approach for robust index joins.
PVLDB, 11(2):230–242, Oct 2017.

[14] J. E. Richardson, M. J. Carey, and D. T. Schuh.
The design of the E programming language. ACM
Trans. Program. Lang. Syst., 15(3):494–534, Jul
1993.

[15] Rust Foundation. Rust programming language,
2022.

[16] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips,
W. Xie, Y. Sun, N. Yegitbasi, H. Jin, E. Hwang,
N. Shingte, and C. Berner. Presto: SQL on
everything. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages
1802–1813, 2019.

[17] std::pmr::polymorphic_allocator.
https://en.cppreference.com/w/cpp/memory/
polymorphic_allocator, 2022.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, USA, 2012. USENIX
Association.

40 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Peer-Reviewing Processes and Incentives:
Data Management Community Survey Results

Alexandra Meliou
Univ. of Massachusetts Amherst

Sourav Bhowmick
Nanyang Technological Univ.

Karl Aberer
EPFL

Divy Agrawal
UC Santa Barbara

Angela Bonifati
Lyon 1 University, CNRS & IUF

Vanessa Braganholo
Univ. Federal Fluminense

Floris Geerts
University of Antwerp

Wolfgang Lehner
TU Dresden

Divesh Srivastava
AT&T Chief Data Office

Figure 1: Summary of participants’ seniority (left) and reviewing experience (right). Most respondents were senior
researchers (71%), and about 16% overall have served in the role of PC chair.

ABSTRACT
Reviewing papers for conferences is an important and
hard task that brings several challenges. The Data Man-
agement community has been increasingly struggling
with high reviewer load, low-quality reviews and low
reviewer engagement, unethical reviewing practices as
well as undeclared and under-declared conflicts of inter-
est. In this article, we report the results of a survey we
conducted to gather the opinion of the Data Manage-
ment community regarding what could be done to ad-
dress these challenges. We reached out to about 1,200
members of the data management community with rele-
vant reviewing experience and collected 345 anonymous
responses. We plan to follow up with a subsequent re-
port, discussing in more depth particular proposals, in-
spired by the collective feedback from the community.

1. CHALLENGES AND MISSION
The Data Management research community has worked
towards important innovations in our submission and re-
viewing processes across many of our venues. Exam-
ples include the implementation of multiple submission
cycles, opportunities for author feedback and revisions,
promotion of reproducibility and data sharing, manual
checks for review quality, automated COI checks, etc.

However, we also struggle with pain points that have
been exacerbated in recent years, as we observe increased
reviewer fatigue and declining engagement, as well as
challenges with improper conflict declaration. These is-

sues compromise the effectiveness, efficiency, and in-
tegrity of our processes. We briefly discuss them here.

• High reviewer load: With several deadlines through
the year, author feedback phases [2], revision cycles,
and participation on multiple PCs, reviewers are often
overloaded. The issue is not simply with the number
of papers one is called to review, but with the fact that
reviewing responsibilities often span the entire year,
making it hard for reviewers to plan these around their
other career and personal responsibilities.

• Low-quality reviews and low reviewer engagement:
Our community has been observing an uptick on re-
views that are terse, dismissive, and unconstructive.
Some reviewers do not respond promptly, or at all, to
requests to contribute to discussion, or update their re-
views. Late reviews are widespread, reducing the ef-
fectiveness of the author feedback and discussion pro-
cesses. As an example, in the first three submission
cycles of SIGMOD 2024, only about 20% of submis-
sions had all three reviews by the review deadline; a
little under 20% of submissions were still missing at
least one review 5 days after the deadline; about a
dozen submissions were still missing reviews 10 days
after the deadline.

• Unethical reviewing practices: We want to ensure
processes that guard against coordination and collu-
sion between authors and reviewers to get papers ac-
cepted, resulting in dishonest reviews [3]. Such re-

SIGMOD Record, December 2023 (Vol. 52, No. 4) 41



Figure 2: Aggregate responses on the reviewing processes initiatives. There is strong support for amplifying the
recognition of good reviewers and for pacing reviewing deadlines; we observe clear opposition to de-anonymization
of reviews and requiring submitting authors to serve as reviewers. Other proposals received more split feedback.

views often are of low quality and superficially posi-
tive regardless of the content of the papers.

• Undeclared and under-declared conflicts: Authors
often fail to accurately declare conflicts of interest
(COI) with the PC, resulting in burdensome inefficien-
cies in paper assignment, and potential conflicts in as-
signments if those are not caught in time. Despite ef-
forts to support conflict entry, grace periods for COI
entry, and personalized reminders to authors who fail
to complete this task, the problem stubbornly persists.

Several of our executive bodies have called together
a task force to collect community feedback and pro-
pose policies and initiatives to help address these issues.
The joint task force is chaired by Sourav Bhowmick
(Nanyang Technological University) and Alexandra Me-
liou (University of Massachusetts Amherst), and includes
the following members: Karl Aberer (Chair of the ICDE
Steering Committee), Divy Agrawal (Chair of the ACM
SIGMOD Executive Committee), Angela Bonifati (Pres-
ident of the EDBT Executive Board and Association),
Vanessa Braganholo (PVLDB Advisory Board), Floris
Geerts (Chair of the PODS Executive Committee, ICDT
Council member), Wolfgang Lehner (Managing Editor
of PVLDB), Divesh Srivastava (President of the VLDB
Endowment Board of Trustees).

One of the first initiatives of the task force was the
release of a community survey. In this report, we discuss
survey participation, present the questions posed, and
summarize some aggregate results. The task force plans
to work on and release recommendations for possible
policies and initiatives in a subsequent report.

2. SURVEY DESCRIPTION AND RESULTS
The survey was advertised by direct email to a list

of about 1,200 data management researchers who have
served on relevant Program Committees in recent years.
We avoided broader advertisement on social media and
mailing lists such as DBWorld, as we wanted to keep

Figure 3: Participant support appears to correlate with
the measure’s severity. The majority support some
punitive deterrent for neglecting PC responsibilities, but
24% of respondents oppose any penalties.

the survey audience targeted to researchers who have
had some experience with reviewing tasks in data man-
agement venues. The landing page of the survey in-
troduced participants to the objectives of the survey,
summarizing the bullet point list in Section 1. The sur-
vey made responses optional, meaning that participants
could choose not to answer some of the questions. The
survey did not collect identifying information from the
participants, and we obtained Institutional Review Board
(IRB) approval for processing and analyzing the results.

A total of 379 people engaged with the survey in
some capacity (i.e., they at least clicked on the link)
and 345 submitted answers to at least one question. The
survey organized questions in the following sections:
(1) general information on the participants’ experience;
(2) feedback on reviewing process policies; (3) feedback
on submission policies; (4) expectations on the role of
Associate Editors and meta-reviewers; (5) feedback on
reviewing culture initiatives; and (6) general free-text
feedback. In the discussion of each question, we will
report the number of participants who engaged with the
question and submitted responses.

2.1 General Information on Participants
The first section of the survey requested information on

42 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Figure 4: Respondents were against reducing opportunities for revisions and author feedback, and they were split on
the idea of reducing submission page limits. All other proposals received majority support, with the strongest support
indicated for strict penalties for under-declared conflicts.

participants’ seniority and experience in reviewing and
conference organization. The question on experience
specified a list of data management venues (SIGMOD,
VLDB, PODS, ICDE, EDBT, ICDT), and asked partici-
pants to indicate whether they have served in reviewing,
meta-reviewing, or PC-Chair roles (multiple answers
could be selected). A total of 345 and 334 participants
responded to the seniority and experience questions, re-
spectively. The results are shown in Figure 1. The vast
majority of participants identified themselves as senior
researchers (71%); about 16% of all respondents have
served in the role of PC chair, and about 36% have
served in the role of Associate Editor or meta-reviewer.

2.2 Review Processes
In the subsequent section, the survey asked participants
to indicate whether they support or oppose possible poli-
cies relating to peer-reviewing practices. We included
8 policy suggestions organized in a Matrix table with
a Likert scale (opposed, neutral, in favor). To get ad-
ditional context on each proposed initiative, including
likely benefits and possible downsides, we instructed the
participants to hover over the information icon i⃝. We
supply the summary information for each policy pro-
posal in Figure 9.

A total of 305 participants responded to this question.
We show the aggregated responses in Figure 2. We ob-
serve that the community is particularly supportive of
amplifying the recognition of good reviewers, but it is
more split with respect to punishment for poor review-
ing performance (though the majority does support such
measures). There is also clear support for pacing re-
viewing deadlines. Some measures that met strong op-
position are de-anonymization of reviews, adding sub-
mitting authors to the reviewing pool, and reducing the
number of reviews per paper.

Our survey dove deeper into the topic of punitive de-
terrents with the question “Which of the following deter-
rents do you think our community may consider imple-
menting to avert problematic behaviors (e.g., late and/or
low-quality reviews, unresponsive reviewers)?” This

question also received 305 responses, and participant
support seems to correlate with the measure’s severity:
55% of participants support expunging reviewers from
the PC, 51% believe that PC chairs or a dedicated task
force should maintain and share lists of problematic re-
viewers, 46% support banning such reviewers from par-
ticipating in PCs for a number of years, and only 23%
supports banning such reviewers from publishing in the
corresponding venue. About 24% of respondents op-
pose punitive deterrents relating to PC duties and partic-
ipation. All these results are summarized in Figure 3.

This question also included an option to propose
"other" deterrents. A total of 28 respondents entered
suggestions for this option. Several emphasized making
issues public, but many used this field to highlight nu-
ances in how we judge reviewing performance and when
response should be escalated, caution on the sensitivity
of maintaining damning information, and suggestions to
prioritize training, feedback, and open communication.

2.3 Submission Processes
Our questions on policies and initiatives relating to sub-
mission processes were also organized in a Matrix table
with the same Likert scale (opposed, neutral, in favor).
Again, participants could access additional information
for each initiative by hovering over the information icon
i⃝ (more details in Figure 9).

A total of 303 participants responded to this question
(Figure 4). Respondents were against reducing opportu-
nities for revisions and author feedback, and they were
split on the idea of reducing submission page limits.
All other proposals received majority support, with the
strongest support indicated for strict penalties for under-
declared conflicts.

On the topic of aiding conflict declaration, we orga-
nized options in a Matrix table with the Likert scale:
not useful, somewhat useful, very useful. Participants
indicated a strong preference for automated COI entry
(Figure 5). Systems like CLOSET [1] can provide some
support for this function, but challenges with false pos-
itives and entity resolution issues remain. Ultimately,

SIGMOD Record, December 2023 (Vol. 52, No. 4) 43



Figure 5: Respondents showed a clear preference for automated methods for COI entry.

Figure 6: A significant majority of participants consider all of the above AE expectations somewhat or very important.

some COI information is not in the public domain, but
the community’s clear desire for such support perhaps
indicates that we should consider possible initiatives in
this direction. Out of the 301 respondents, only 61 con-
sidered an abstract deadline a very useful buffer for tak-
ing care of their COI entry, whereas having a short grace
period after the regular deadline was more popular (42%
consider it very useful and 45% somewhat useful).

2.4 AE Expectations
With the growth of our research community, many of
our PCs have grown larger to handle the increasing num-
ber of submissions. This has led to a hierarchical ap-
proach in PC organization, with a small set of PC mem-
bers acting in the role of Area Chairs, Associate Editors,
or meta-reviewers—for brevity, we will refer to all such
members as AEs from here on. Frequently, AEs do not
review papers directly but are responsible for handling
a set of submissions, coordinating discussions, identify-
ing issues with the reviews and taking appropriate ac-
tion, etc.

With a large number of submissions, PC-chairs are
often unable to keep a close eye on reviews and dis-
cussions of all submissions, so the function of AEs is
critical. However, we observe significant variability in
AEs’ involvement and submission handling, despite PC-
chairs often sharing expectations through guideline doc-
uments. We wanted to better understand, through the

Figure 7: Participants were asked to suggest an appro-
priate AE load in the context of a single submission cy-
cle with about 200 submissions.

survey, our community’s expectations of the AE role.
We posed to participants the question “Which of the fol-
lowing tasks do you consider important in the expecta-
tions for this role?” We organized AE actions in a Ma-
trix table with the Likert scale: not important, somewhat
important, very important. Figure 6 shows the aggregate
responses of 297 participants.

Based on the results, the most important functions of
AEs include initiating and ensuring the progress of dis-
cussions, evaluating reviews for quality and asking for
corrections, reading the reviews carefully and actively
participating in the discussion themselves, urging the
reviewers to support their positions with reasoned argu-
ments. We note, however, that all actions are recognized
by the majority of participants (76% or more) as some-
what or very important. The item that received the least
support, with 24% of participants noting it as not im-
portant, was empowering the AEs to disagree with and
overrule reviewers. However, we should highlight that

44 SIGMOD Record, December 2023 (Vol. 52, No. 4)



Figure 8: Most participants support these particular ini-
tiatives for fostering a more positive reviewing culture,
but there is some non-negligible opposition.

even in this case, the overwhelming majority (76%) rec-
ognized it as somewhat or very important.

In the context of AE responsibilities, we asked our
survey participants to indicate the number of papers that
they consider a reasonable load for this role. We rec-
ognize that this expectation can be affected by how this
load is distributed throughout the year. To alleviate this
ambiguity, we asked participants to consider a single
submission cycle with about 200 submissions in total,
when most reviewers are assigned 3–4 papers to review.
(To help the reader put this in context, this is close to
the number of submissions typically received in the July
cycle of SIGMOD). Out of the 297 participants who an-
swered this question, 45% recommend a load of 5–8
submissions, and 30% recommend a load of 8–10 sub-
missions (Figure 7).

2.5 Fostering Better Culture
We often observe that good and reliable reviewers do a
consistently good job, regardless of incentives. Ideally,
we want our community to have an established culture
of conscientious reviewing. However, PhD students are
not consistently trained to be good and conscientious re-
viewers.1 Our conferences can establish efforts that sup-
port such training, that both hone the reviewing skills
of participating researchers and promote good review-
ing practices as something valued in our community.

We proposed two potential initiatives that our orga-
nizing committees could undertake, and we asked par-
ticipants’ opinions on whether they were likely to sup-
port them. The Likert scale we used was: opposed, neu-
tral, in favor. We describe the information we gave to
participants about these initiatives below:
Shadow PCs of junior researchers. Junior researchers

are added to a shadow PC, and are assigned to papers
similar to the regular PC. They can remain anony-
mous to the AE and to other reviewers. Their reviews
are assessed for quality by the AE, and top shadow
reviewers are recognized with awards. High-quality
shadow reviews can be made available to the authors.

Reviewing workshops. This can be an event collocated
1We fully recognize that we can find many bad reviewers
amongst senior researchers as well. However, on the topic
of fostering a culture of conscientious reviewing, it is more
practical to reach out to our more junior members.

with our conferences, where junior researchers are
exposed to good and bad reviewing practices through
anonymized example reviews. They take a stab at re-
viewing a mock submission, and senior researchers
help them work on their reviews. Successful comple-
tion of the workshop earns participants a certificate,
which may help them get on PCs sooner.

We received responses from 299 participants, the ma-
jority of whom were in favor of both proposals (Fig-
ure 8). However, there is some non-negligible opposi-
tion as well (about 11% for the shadow PC). A subse-
quent free-form question in our survey provided some
clarity to this stance, as some participants suggested that
assigning junior people to the shadow PC may devalue
their abilities and contributions, and they would rather
allow people to jump into the regular PC directly. We
believe that it is meaningful to consider these concerns
and adjust and clarify the proposals accordingly. For
example, the primary target of the shadow PC may be
somewhat junior graduate students who want to gain ex-
perience in reviewing but who would not be normally in-
vited to regular program committees at this early stage
of their careers.

2.6 General Feedback
Our survey concluded with a free-form textbox, where
participants were invited to share further thoughts. We
were delighted with the engagement of our community
on this topic. We received 150 responses in the sugges-
tions textbox, totaling more than 16K words. Many re-
sponses thanked the task force for the initiative, and the
vast majority shared thoughts on the challenges and pro-
vided interesting suggestions. We found many opposing
views expressed in the feedback. For example, many
participants urge more detail and clarity in the meta-
reviews submitted by AEs, and others express opposi-
tion, arguing that meta-reviews sometimes increase con-
fusion when concerns and requests do not match well
with those of the reviewers. Another example of con-
flicting opinions relates to the opportunities for revisions
and feedback; many participants urge the community to
maintain these functions, and others argue that these ef-
forts have little benefit and only add to the workload of
reviewers and authors. We also saw a lot of input on
reviewing incentives and penalties, and COI handling.
There are also several novel suggestions on releasing
reviews of accepted papers (anonymously), and sugges-
tions for empowering reviewers to champion papers.

Given the extent of the feedback we received in this
part of the survey, we intend to summarize and discuss
more thoroughly these suggestions in a separate report.
Our task force is working on producing a list of possi-
ble initiatives, with discussion of the potential benefits,
drawbacks, and challenges in implementing each one.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 45



Requiring submitting authors to serve as reviewers. Every submitting author
will be added to the pool of reviewers and should contribute to the peer review
process.
Pros: + Increases the pool of reviewers significantly, resulting in reduced load

all around.
Cons: – Hard to vet reviewing strengths and expertise of authors, potentially

hurting review quality.
– Can make us more prone to unethical behaviors.
– Will make conflict declaration harder, as authors would now have to

declare conflicts with all other authors (not just with the PC).

Punitive deterrents for not meeting reviewing expectations. Reviewers who
do not meet expectations (e.g., are late in submitting reviews, do not engage in
discussions) may be added to blacklists that are shared with other PC chairs or
are banned from participating in PCs for some time.
Pros: + May improve review quality and timeliness.
Cons: – Effects of quality are unclear. We would likely need some ground work

to establish effective incentives or deterrents.
– Punitive deterrents may disincentivize people from signing on to PCs.

Amplify recognition of good reviewers. Currently, good reviewers are recog-
nized with awards. Perhaps we should amplify these incentives, with more signif-
icant recognitions awarded for consistent reviewing contributions across venues,
over a period of time. Alternatively, consider financial incentives, e.g., reduced
registration for PC members who perform their duties diligently.
Pros: + May improve review quality and timeliness.
Cons: – It is unclear if conference budgets can afford financial incentives.

– It is unclear whether existing reviewer awards have had much impact in
reviewing quality.

Reduce the number of reviews per paper. Assign papers to 2 reviewers at first.
Papers with 2 rejects are rejected. Papers with at least one borderline or positive
review get one more reviewer assigned.
Pros: + Reduces the number of papers that get 3 reviews, thus reducing the load

per reviewer.
Cons: – Might reduce acceptance rates

Restricting reviewers from participating in multiple PCs in a given year.
There is currently no formal coordination across our venues. The same people
may be invited to several committees, resulting in unmanageable reviewing load.
Junior members of the community may be more prone to overcommitting.
Pros: + Will reduce reviewer load across our venues, hopefully translating to

improved review quality and engagement.
Cons: – May be hard to implement in practice, as it requires coordination across

venues.
– If the effort is simply reduced to a recommendation included in the

invitation letter, it is unlikely to be heeded.

Pacing reviewing deadlines. Follow the example of conferences in other areas
(like Software Engineering), where there are two different deadlines for the re-
views. Half (or 1

3 ) of the reviews must be delivered on the first deadline, and the
rest can be delivered on the second deadline. Usually the first deadline is defined
in the middle of the review period.
Pros: + Allows PC chairs to identify early PC members that will potentially

deliver reviews late, and act sooner.

De-anonymizing reviews. Move our review processes towards an open science
paradigm, where reviews are eponymous and public (e.g., through a system like
OpenReview).
Pros: + More accountability in reviewing.

+ Public reviews would incentivize reviewers to do a conscientious job.
+ May shield from bad actors, and may make investigation of ethics issues

easier.
Cons: – Possibly harmful to diversity and to junior researchers, who may be

concerned to engage in public criticisms.
– Fear of possible retaliation

Increase the number of reviews per paper. By assigning a submission to more
than the standard 3 reviewers, we are more likely to get enough reviews on time,
and tolerate occasional low-quality reviews.
Pros: + Reduces the stress of chasing late reviewers

+ More likely to get sufficient expert and high quality reviews
Cons: – It increases overall reviewer load

Limiting submissions per author. Our conferences could limit the total number
of submissions by each author during the span of a year or of a reviewing cycle.
Pros: + May reduce load by restricting the number of submissions.

+ May curb “paper mills” and low-novelty submissions that clog our sys-
tems.

Cons: – Hard to determine the proper cutoff.

Sharing prior reviews when resubmitting to a new venue. Rejected papers
from one venue may get resubmitted to another, sometimes with few or no
changes. The submission may end up with the same reviewers who are disap-
pointed to see their feedback having been ignored, likely leading to another re-
jection; this wastes reviewing cycles. Possible solution: Require authors to share
previous reviews and explain how they addressed them.
Pros: + Encourages authors to implement changes and address reviewer com-

ments even when the work is submitted elsewhere.
+ Makes more effective use of reviewing efforts.

Cons: – Potential extra work for authors.

Restricting opportunities for revisions and author feedback. The combina-
tion of multiple deadlines per year, author feedback phase, and revisions, have
resulted in constant reviewing work for PCs.Very few of our papers get direct ac-
ceptances. With most submissions going through revision, we impose more work
on authors and reviewers. What if we do away with some established policies,
such as author feedback or revision cycles? Or, as a middle ground, narrow the
criteria for revisions.
Pros: + Reduces reviewing load.

+ Reduces author load with more papers getting direct accepts.
Cons: – May reduce overall acceptance rates.

Strict penalties, such as desk-rejection, for under-declared conflicts. Despite
efforts to improve accountability in conflict declaration, such as grace periods for
COI entry, targeted reminders to authors, etc., many authors continue to neglect
this critical task. Should we impose stricter penalties for such omissions?

Reduce submission page limit. Shorter papers would take less time to review,
thus reducing reviewer load. May require a shift in expectations for contributions.

Figure 9: Additional information on reviewing (top) and submission (bottom) policy proposals that participants were
asked to evaluate; they could access this information by hovering over the information icon i⃝ next to each option.

We will work to incorporate the community feedback
into this list of suggestions, and we will consider ways
of releasing some more detailed comments, as long we
do not compromise participants’ anonymity.

3. SUMMARY AND OUTLOOK
We are very happy with the community engagement
with the survey, and we found many of the suggestions
inspiring. Specifically, the survey has helped us better
understand intricacies of these challenges that we had
not appreciated earlier, and gave us inspiration for ex-
ploring more ideas. Our task force will work on making
progress towards specific and more thoroughly analyzed
proposals that we will share in a subsequent report. In

the meantime, we invite anyone to contact the task force
chairs with any thoughts or requests.

4. REFERENCES
[1] Sourav S. Bhowmick. CLOSET: Data-driven COI

detection and management in peer-review venues.
Commun. ACM, 66(7):70–71, jun 2023.

[2] Nachum Dershowitz and Rakesh M. Verma.
Rebutting rebuttals. Commun. ACM, 66(9):35–41,
aug 2023.

[3] Michael L. Littman. Collusion rings threaten the
integrity of computer science research. Commun.
ACM, 64(6):43–44, may 2021.

46 SIGMOD Record, December 2023 (Vol. 52, No. 4)


