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Database systems must make good use of the hardware
for high performance. This is usually done by imple-
menting their core components (storage engine, opti-
mizer and query execution engine) in a low-level pro-
gramming language (PL) such as C/C++ that can di-
rectly “talk to the hardware.” But these PLs tradition-
ally lacked high-level abstractions, lowering DBMS de-
veloper productivity. Some systems [18, 16, 10] then
mix di↵erent PLs to balance productivity and perfor-
mance. For example, Presto [16] and Spark [18] origi-
nally used Java but are now replacing their query en-
gines with new ones [12, 1] built in C++ for higher
performance. However, doing so brings such non-trivial
challenges as interacting with di↵erent PL runtimes [1].

Recent advances in PLs, in particular C++ and Rust,
have the potential of removing such need. They intro-
duce many desirable features that improve productiv-
ity without sacrificing performance. This means core
DBMS components could all be implemented in one PL
(although other non-performance critical parts may still
stick with higher-level PLs). To see why, let us first re-
view the requirements DBMSs pose for PLs.

What does a DBMS Need from a PL?
1 Di↵erent DBMS

components pose varying requirements on productiv-
ity and performance. The optimizer is logic-centric, so
there is a strong need for coding productivity to easily
express various optimizations. The storage and query
engines, however, need to handle parallelism and con-
currency by taking full advantage of the hardware, mak-
ing performance the top priority. Developers are will-
ing to tolerate extra complexity for better performance,
such as implementing lock-free indexes [11]. A query en-
gine also needs to implement complex relational algebra
and extensions, posing higher requirements on coding
productivity than storage engines. As a result, the de
facto standard for programming storage and query en-
gines has been traditional C/C++, whereas developers
may choose a higher-level PL for optimizers. This has
led to the state of mixing PLs for DBMS components.

1This paper targets PLs used to implement DBMSs them-
selves, instead of “database programming languages” which
explored the convergence of database systems and PLs [2].

The Case for Modern C++. At a first glance, C++may
be too “low-level” as a native language. However, mod-
ern C++ (17, 20 and later) comes with features that
improve performance and productivity. For example,
C++20 allows dynamic memory allocations at compile-
time, improving performance by shifting calculations to
compile-time and generating smaller binaries [6]. They
can also improve productivity as the compiler can de-
tect certain undefined behaviors and leaks at compile-
time [7]. In a DBMS, memory used by optimizers typi-
cally has a lifespan of queries, yet for storage engines the
lifespan is a transaction, requiring di↵erent allocators.
Some may be a bump allocator that reclaims all memory
chunks as a whole, while others should support “real”
deallocations of individual chunks. The polymorphic
memory resource (std::pmr) [17] provides a promising
solution, with a set of utilities to manage runtime poly-
morphism of memory allocations with unified interfaces.

Another example is C++20 coroutines [5] which are
being adopted by recent work [9, 13]. Traditionally,
query engines implement the iterator model with little
PL support and thus an operator must manually main-
tain states and intermediate data, such as current scan
cursor position. C++20 coroutines can help alleviate
this problem with a generator-based model. A scan op-
erator’s get_next can be turned into a coroutine that
directly yields each valid row without having to main-
tain the current row cursor, simplifying implementation.

Future Directions. I believe it is now feasible to sat-
isfy the needs of core DBMS components using a single
PL, and many more modern PL features remain to be
explored. Beyond C++, Rust [15] and Carbon [4] have
gained much attention. It is promising to quantitatively
compare these PLs for DBMS implementation. Earlier
e↵orts such as EXODUS [3] and the E programming
language [14, 8] have contributed to PL designs. Revis-
iting them and devising new PLs for DBMS implemen-
tation is also promising. Despite the new PL features,
compiler and ecosystem support often fall short for se-
rious DBMS development. It is time again for DBMS
developers to participate and influence PL and compiler
design to push the desired features early into future PLs.
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