
Future Database Engine Development:

You Will Only Need One Programming Language

Tianzheng Wang

Simon Fraser University

tzwang@sfu.ca

Database systems must make good use of the hardware
for high performance. This is usually done by imple-
menting their core components (storage engine, opti-
mizer and query execution engine) in a low-level pro-
gramming language (PL) such as C/C++ that can di-
rectly “talk to the hardware.” But these PLs tradition-
ally lacked high-level abstractions, lowering DBMS de-
veloper productivity. Some systems [18, 16, 10] then
mix di↵erent PLs to balance productivity and perfor-
mance. For example, Presto [16] and Spark [18] origi-
nally used Java but are now replacing their query en-
gines with new ones [12, 1] built in C++ for higher
performance. However, doing so brings such non-trivial
challenges as interacting with di↵erent PL runtimes [1].

Recent advances in PLs, in particular C++ and Rust,
have the potential of removing such need. They intro-
duce many desirable features that improve productiv-
ity without sacrificing performance. This means core
DBMS components could all be implemented in one PL
(although other non-performance critical parts may still
stick with higher-level PLs). To see why, let us first re-
view the requirements DBMSs pose for PLs.

What does a DBMS Need from a PL?
1 Di↵erent DBMS

components pose varying requirements on productiv-
ity and performance. The optimizer is logic-centric, so
there is a strong need for coding productivity to easily
express various optimizations. The storage and query
engines, however, need to handle parallelism and con-
currency by taking full advantage of the hardware, mak-
ing performance the top priority. Developers are will-
ing to tolerate extra complexity for better performance,
such as implementing lock-free indexes [11]. A query en-
gine also needs to implement complex relational algebra
and extensions, posing higher requirements on coding
productivity than storage engines. As a result, the de
facto standard for programming storage and query en-
gines has been traditional C/C++, whereas developers
may choose a higher-level PL for optimizers. This has
led to the state of mixing PLs for DBMS components.

1This paper targets PLs used to implement DBMSs them-
selves, instead of “database programming languages” which
explored the convergence of database systems and PLs [2].

The Case for Modern C++. At a first glance, C++may
be too “low-level” as a native language. However, mod-
ern C++ (17, 20 and later) comes with features that
improve performance and productivity. For example,
C++20 allows dynamic memory allocations at compile-
time, improving performance by shifting calculations to
compile-time and generating smaller binaries [6]. They
can also improve productivity as the compiler can de-
tect certain undefined behaviors and leaks at compile-
time [7]. In a DBMS, memory used by optimizers typi-
cally has a lifespan of queries, yet for storage engines the
lifespan is a transaction, requiring di↵erent allocators.
Some may be a bump allocator that reclaims all memory
chunks as a whole, while others should support “real”
deallocations of individual chunks. The polymorphic
memory resource (std::pmr) [17] provides a promising
solution, with a set of utilities to manage runtime poly-
morphism of memory allocations with unified interfaces.

Another example is C++20 coroutines [5] which are
being adopted by recent work [9, 13]. Traditionally,
query engines implement the iterator model with little
PL support and thus an operator must manually main-
tain states and intermediate data, such as current scan
cursor position. C++20 coroutines can help alleviate
this problem with a generator-based model. A scan op-
erator’s get_next can be turned into a coroutine that
directly yields each valid row without having to main-
tain the current row cursor, simplifying implementation.

Future Directions. I believe it is now feasible to sat-
isfy the needs of core DBMS components using a single
PL, and many more modern PL features remain to be
explored. Beyond C++, Rust [15] and Carbon [4] have
gained much attention. It is promising to quantitatively
compare these PLs for DBMS implementation. Earlier
e↵orts such as EXODUS [3] and the E programming
language [14, 8] have contributed to PL designs. Revis-
iting them and devising new PLs for DBMS implemen-
tation is also promising. Despite the new PL features,
compiler and ecosystem support often fall short for se-
rious DBMS development. It is time again for DBMS
developers to participate and influence PL and compiler
design to push the desired features early into future PLs.

SIGMOD Record, December 2023 (Vol. 52, No. 4) 39



REFERENCES
[1] A. Behm, S. Palkar, U. Agarwal, T. Armstrong,

D. Cashman, A. Dave, T. Greenstein,
S. Hovsepian, R. Johnson, A. Sai Krishnan,
P. Leventis, A. Luszczak, P. Menon, M. Mokhtar,
G. Pang, S. Paranjpye, G. Rahn, B. Samwel,
T. van Bussel, H. van Hovell, M. Xue, R. Xin, and
M. Zaharia. Photon: A fast query engine for
lakehouse systems. In Proceedings of the 2022
International Conference on Management of
Data, SIGMOD ’22, page 2326–2339, New York,
NY, USA, 2022. Association for Computing
Machinery.

[2] M. J. Carey and D. J. DeWitt. Of objects and
databases: A decade of turmoil. In Proceedings of
the 22th International Conference on Very Large
Data Bases, VLDB ’96, page 3–14, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers
Inc.

[3] M. J. Carey, D. J. DeWitt, D. Frank,
M. Muralikrishna, G. Graefe, J. E. Richardson,
and E. J. Shekita. The architecture of the
EXODUS extensible DBMS. In Proceedings on the
1986 International Workshop on Object-Oriented
Database Systems, page 52–65, 1986.

[4] C. Carruth. Carbon language: An experimental
successor to C++. CppNorth, 2022.

[5] Coroutines. https://en.cppreference.com/w/
cpp/language/coroutines, 2022.

[6] A. Fertig. C++20 dynamic allocations at
compile-time, 2021.
https://andreasfertig.blog/2021/08/
cpp20-dynamic-allocations-at-compile-time/.

[7] B. Filipek. constexpr dynamic memory allocation,
C++20, 2021. https://www.cppstories.com/
2021/constexpr-new-cpp20/.

[8] E. N. Hanson, T. M. Harvey, and M. A. Roth.
Experiences in DBMS implementation using an
object-oriented persistent programming language
and a database toolkit. In Conference Proceedings
on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA ’91, page
314–328, New York, NY, USA, 1991. Association
for Computing Machinery.

[9] Y. He, J. Lu, and T. Wang. Corobase:
Coroutine-oriented main-memory database

engine. PVLDB, 14(3):431–444, Nov 2020.
[10] M. Kornacker, A. Behm, V. Bittorf,

T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,
M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Ku↵,
D. Kumar, A. Leblang, N. Li, I. Pandis,
H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL
engine for Hadoop. 2015.

[11] J. J. Levandoski, D. B. Lomet, and S. Sengupta.
The Bw-Tree: A B-tree for new hardware
platforms. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages
302–313, 2013.

[12] P. Pedreira, O. Erling, M. Basmanova,
K. Wilfong, L. Sakka, K. Pai, W. He, and
B. Chattopadhyay. Velox: Meta’s unified
execution engine. PVLDB, 15(12):3372–3384, Aug
2022.

[13] G. Psaropoulos, T. Legler, N. May, and
A. Ailamaki. Interleaving with coroutines: A
practical approach for robust index joins.
PVLDB, 11(2):230–242, Oct 2017.

[14] J. E. Richardson, M. J. Carey, and D. T. Schuh.
The design of the E programming language. ACM
Trans. Program. Lang. Syst., 15(3):494–534, Jul
1993.

[15] Rust Foundation. Rust programming language,
2022.

[16] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips,
W. Xie, Y. Sun, N. Yegitbasi, H. Jin, E. Hwang,
N. Shingte, and C. Berner. Presto: SQL on
everything. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages
1802–1813, 2019.

[17] std::pmr::polymorphic_allocator.
https://en.cppreference.com/w/cpp/memory/
polymorphic_allocator, 2022.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, USA, 2012. USENIX
Association.

40 SIGMOD Record, December 2023 (Vol. 52, No. 4)


