
Technical Perspective:
Conjunctive Queries with Comparisons

Stijn Vansummeren
UHasselt, Data Science Institute

stijn.vansummeren@uhasselt.be

Query processing, the art of e�ciently executing a rela-
tional query on a given database, is a foundational and core
area in data management research. Established at the dawn
of relational database systems in the 1970’s, relational query
processing remains a highly relevant and vibrant research
topic today as recent work shows that, apart from its ap-
plication in traditional database scenarios, it is also highly
e↵ective in optimizing machine learning workloads [1].

Join ordering is a crucial part of e�ciently processing re-
lational queries. In the join ordering problem, we are given
a join query like

Q1 = R(A,B) 1 S(B,C) 1 T (C,D),

and we need to determine the order in which we will execute
this join. It could be, for example that the subquery R 1
S yields a very large subresult compared to the full join
output, while S 1 T is very selective. In that case, we
should first execute S 1 T , and then R 1 (S 1 T) to avoid
wastefully computing the unnecessary tuples in R 1 S that
do not join with any tuple in T . Most practical systems
use statistics of the input relations to estimate the sizes of
subresults, and reorder joins based on these estimates. Since
size estimates are di�cult to always get correct, however, we
are not guaranteed to always obtain an optimal join order.

A seminal result by Yannakakis [2] states that instead of
looking at data statistics we may obtain optimal join orders
by looking at query structure. In particular, because the
hypergraph of our query Q1 above is ↵-acyclic [2] it can

be executed in instance-optimal time eO(IN +OUT) on any
database, where IN denotes the size of the input database;
OUT denotes the size of the query output; and the notation
eO suppresses a logO(1) factor. The core insight required
to obtain this result is that for ↵-acyclic join queries we
may remove so-called “dangling tuples” from the input in
eO(IN) time, after which any reasonable join order allows

to compute Q1 in eO(OUT) time. Here, an input tuple is
dangling if it does not appear as part of a tuple in the output.

The paper “Conjunctive Queries with Comparisons” by
Wang and Yi generalizes Yannakakis’ result from equi-join
queries to theta-joins involving comparisons. Join queries
with comparisons naturally appear in OLAP and spatio-
temporal queries, but also in machine learning over rela-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

tional data. Consider some simple examples.

Q2 = R(A,B) 1 S(B,C) 1 T (C,D) s.t. A  C

Q3 = R(A,B) 1 S(B,C) 1 T (C,D) s.t. A  D

The comparison A  C in Q2 is called a short compari-
son because it can be applied after joining two relations,
while A  D in Q3 is a long comparison because more than
two relations need to be joined before it can be applied.
Long comparisons are particularly important in the context
of machine learning over relational data. Note that process-
ing queries like Q2 and Q3 by first computing the equi-join
between R,S, T and then filtering afterwards yields a com-
plexity of eO(IN + EJ) where EJ is the size of the equi-join
result, which may be significantly larger than OUT.

Wang and Yi generalize Yannakakis’ result to join queries
containing multiple comparisons, both short and long. They
require that the query is ↵-acyclic in terms of equi-joins (cf.
Yannakakis) while the comparisons must be Berge-acyclic.
Using this structure, they propose a novel way for remov-
ing dangling tuples in the presence of comparisons in eO(IN)
time. This non-trivial insight hinges on grouping the data of
input relations on equi-join attributes; computing minimum
or maximum values of the comparison attributes per group;
propagating the minima/maxima to other relations; and fil-
tering the dangling tuples using orthogonal range searching.
Once dangling tuples are removed, the minima/maxima are
again used to enumerate the output tuples with constant de-
lay, which implies eO(OUT) total time for output construc-

tion. The total time is hence eO(IN + OUT).
While we have restricted ourselves in our discussion so far

to join queries, i.e., queries without projections, Wang and
Yi also discuss join queries with projections (a.k.a. conjunc-
tive queries) and they show how queries that are not acyclic
according to their definition can be transformed, based on
generalized hypertree decompositions, into acyclic queries.
Furthermore, they empirically show that while the complex-
ity analysis above focuses on asymptotic complexity, and
may therefore hide large constant, the algorithm is very ef-
ficient in practice.

In short, this is an exemplary paper that proposes founda-
tional innovation for query processing on the highly relevant
class of conjunctive queries with comparisons.

References
[1] D. Olteanu. The Relational Data Borg is Learning. Proc.

VLDB Endow., 13(12):3502–3515, 2020.
[2] M. Yannakakis. Algorithms for Acyclic Database Schemes.

In Very Large Data Bases, pages 82–94. IEEE, 1981.

SIGMOD Record, March 2023 (Vol. 52, No. 1) 53

