
Efficiently Making Cross-Engine Transactions Consistent

Jianqiu Zhang1
⇤

Kaisong Huang1 Tianzheng Wang1 King Lv2

1Simon Fraser University 2Huawei Cloud Database Innovation Lab
{jianqiuz, kha85, tzwang}@sfu.ca {lvjinquan}@huawei.com

ABSTRACT
Database systems are becoming increasingly multi-engine.
In particular, a main-memory engine may coexist with a
traditional storage-centric engine in a system to support
various applications. It is desirable to allow applications to
access data in both engines using cross-engine transactions.
But existing systems are either only designed for single-
engine accesses, or impose many restrictions by limiting cross-
engine transactions to certain isolation levels and operations.
The result is inadequate cross-engine support in terms of
correctness, performance and programmability.

This paper describes Skeena, a holistic approach to cross-
engine transactions. We propose a lightweight snapshot
tracking structure and an atomic commit protocol to e�-
ciently ensure correctness and support various isolation levels.
Evaluation results show that Skeena maintains high perfor-
mance for single-engine transactions and enables cross-engine
transactions which can improve throughput by up to 30⇥ by
judiciously placing tables in di↵erent engines.

1 Introduction
Traditional database engines are storage-centric: they assume
data is storage-resident and optimize for storage accesses.
Modern database servers often feature large DRAM that
fits the working set or entire databases, enabling memory-
optimized database engines [10, 13, 14, 22] that perform dras-
tically better with lightweight concurrency control, indexing
and durability designs.
Now suppose you are a database systems architect, and

inspired by recent advances, built a new memory-optimized
engine. But soon you found it was di�cult to attract users:
some do not need such fast speed; some say“I want it only for
some tables or part of my application.” A common solution
is to integrate the new engine into an existing system that

⇤Currently with ByteDance.

©ACM 2022. This is a minor revision of the paper entitled Skeena: Effi-
cient and Consistent Cross-Engine Transactions, published in SIGMOD’22,
978-1-4503-9249-5/22/06, June 12-June 17, 2022, Philadelphia, PA, USA.
DOI: https://doi.org/10.1145/3514221.3526171. Permission to make digi-
tal or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

Common SQL Layer (parser, networking...)

Transaction S:
SELECT * FROM Orders...

Storage-Centric EngineMemory-Optimized Engine

Products

Transaction T:
SELECT * FROM Products, Orders

Orders
Sub-xct S1

Sub-xct T1

Sub-xct T2

Figure 1: Multi-engine database system. Data accesses are
routed to the corresponding storage engines.

initially uses a traditional engine. The result is a multi-
engine database system (Figure 1). The application can
judiciously use tables in both engines. Although engines
share certain components (e.g., SQL parser), each engine is
autonomous with its own indexes, concurrency control, etc.
Some systems [2, 9, 18] already take this approach for easier
migration and compatibility.

1.1 Cross-Engine Transactions: Necessary but
Poorly-Supported

As an experienced architect—perhaps even before users did—
you realized it was necessary to support cross-engine trans-
actions. For example, a financial application may use a
memory table for fast trading and keep other data in the
traditional engine for low cost; yet the user may need to
access both engines for recent and historical trading data
in one ACID transaction [8]. The application may use a
unified SQL interface to access all engines, but since each
engine is an autonomous “package,” the system has to use
each engine’s own transaction abstractions; we refer to them
as sub-transactions. A transaction consists of at least one
sub-transaction. In Figure 1, S is a single-engine transaction
that consists of S1, while T is cross-engine that consists of
T1 (memory-optimized) and T2 (storage-centric).

Cross-engine transactions can be very useful, but existing
support is inadequate. First, although simply starting and
committing sub-transactions su�ce to support single-engine
transactions, doing so does not ensure correct cross-engine
execution. A transaction over two engines that both use
snapshot isolation (SI) [3] can still see inconsistent snapshots.
Even if both engines ensure serializability, the overall exe-
cution is not necessarily serializable. Atomicity will also be
at risk if a sub-transaction fails to commit. Second, prior
solutions were not designed for modern multi-engine systems,
which are fast-slow where a (much faster) memory-optimized
engine and a (much slower) storage-centric engine coexist in

SIGMOD Record, March 2023 (Vol. 52, No. 1) 27

a single node. It is then vital for the cross-engine solution to
impose low (if any) overhead, especially on the faster engine
to retain its high performance. Prior solutions [4, 6, 20, 21]
ignored this hidden requirement by assuming storage-centric
engines. Finally, past solutions are often at odds with (1)
keeping engine autonomy for maintainability as engines are
typically developed by di↵erent teams (but of the same ven-
dor), and (2) easing application development. They often
require non-trivial application changes and limit functional-
ity, by forcing users to pre-declare whether a transaction is
cross-engine or to use certain isolation levels [9]; both can
be complex and a↵ect performance.

1.2 Skeena
This paper presents Skeena, a holistic approach to e�cient
and consistent cross-engine transactions for multi-versioned,
fast-slow systems. We make three key observations. (1) As
prior work [4] noted, inconsistent snapshots can be avoided
by carefully selecting a snapshot in each engine. This requires
e�ciently tracking snapshots that can be safely used by later
transactions. (2) In addition to using correct snapshots and
enforcing sub-transactions commit orders, for serializability it
su�ces to require each engine use commit ordering, i.e., forbid
schedules where commit and dependency orders mismatch [1,
20]. Many concurrency control protocols exhibit this property,
including the widely-used 2PL and optimistic concurrency
control (OCC) [15]. (3) Engines are developed and/or well
understood by the same vendor, potentially allowing non-
intrusive changes to engines for more optimizations.
Based on these observations, we design Skeena to consist

of (1) a cross-engine snapshot registry (CSR) for correct and
e�cient snapshot selection and (2) an extended pipelined
commit protocol for atomicity and durability. Skeena can be
easily plugged into an existing system.
Conceptually, CSR maintains mappings between commit

timestamps (therefore snapshots) in one engine and those
in another. A transaction may start by accessing any en-
gine using the latest snapshot s. Upon accessing another
engine E, it queries CSR using s to select a snapshot in E to
avoid incorrect executions. With CSR, one only needs to set
each engine to use a serializable protocol that exhibits com-
mit ordering to guarantee serializability. Later, we discuss
techniques that make CSR lightweight and easy to maintain.

Leveraging the fact that engines can communicate via fast
shared memory (e.g., in the same address space), Skeena
extends pipelined commit [12] to ensure atomicity and dura-
bility. Upon commit, the worker thread detaches the trans-
action and places it on a commit queue, before continuing to
work on the next request. Meanwhile, a background thread
monitors the queue and durable log sequence numbers in both
engines to dequeue transactions whose sub-transactions’ log
records have been persisted. This way, Skeena ensures cross-
engine transactions are not committed (i.e., with results made
visible to the application) until all of its sub-transactions are
committed, while avoiding expensive 2PC.

We adopted Skeena in MySQL to enable cross-engine trans-
actions across its storage-centric InnoDB and ERMIA [14], an
open-source memory-optimized OLTP engine. This required
83 LoC out of over 200k LoC in MySQL codebase. Evaluation
on a 40-core server shows that Skeena retains the memory-
optimized engine’s high performance, and incurs very low
overhead for cross-engine transactions. By judiciously plac-
ing tables in both engines, Skeena can help improve the

Table 1: Multi-engine vs. distributed and federated systems.

Multi-Engine Federated Distributed

Engine Internals Transparent Opaque Transparent

Engine Types Heterogeneous Heterogeneous Homogeneous

Autonomy Almost full Full Low

Scalability Up/out Out Out

throughput of realistic workloads by up to 30⇥. Skeena is
open-sourced at https://github.com/sfu-dis/skeena.

2 Background
In this section, we give the necessary background for cross-
engine transactions and motivate our work.

2.1 Modern Fast-Slow Multi-Engine Systems
Several systems already adopted the fast-slow architecture:
SQL Server supports memory tables managed by its Hekaton
main-memory engine [10,17]; PostgreSQL supports additional
engines through foreign data wrappers, which are used by
Huawei GaussDB to integrate a main-memory engine [2].
Multi-engine systems bear similarities to distributed and

federated systems [4,6,7], but are unique in several ways. As
Table 1 summarizes, a multi-engine system integrates engines
developed and/or understood by the same vendor; whereas
federated systems consist of opaque systems from di↵erent
vendors. Distributed systems typically involve a cluster that
runs the same engine. Fast-slow systems integrate di↵erent
engines that vary in performance. Ine�cient cross-engine
support may penalize single-engine transactions, defeating
the purpose of adopting a fast engine; mitigating such over-
head is the major goal of our work. Multi-engine systems
can also allow slightly trading autonomy for performance
and compatibility, e.g., by managing schemas in all engines
centrally. They can scale up and out, whereas the other two
types of systems mainly focus on scaling out. We focus on
single-node cases and leave scaling out as future work.

2.2 Database Model and Assumptions
Now we lay out the preliminaries for analyzing cross-engine
transactions in fast-slow systems.

Multi-Versioning. Given the popularity of multi-versioning
in real systems, we target multi-versioned systems in this
paper. We model databases as collections of records, each of
which is a totally-ordered sequence of versions [1]. Updating
a record appends a new version to the record’s sequence. In-
serts and deletes are special cases of updates that append a
valid and special “invalid” version, respectively. Obsolete ver-
sions (as a result of deletes/updates) are physically removed
only after no transaction will need them, using reference
counting or epoch-based memory management.

Reading a record requires locating a proper version. This
is usually realized by maintaining a global, monotonically in-
creasing counter that can be atomically read and incremented.
In a multi-engine system, engines maintain their own times-
tamp counters; for now, we assume single-engine transactions
and expand to cross-engine cases later. Each transaction is
associated with a begin timestamp and a commit timestamp,
both drawn from the counter. Upon commit, the transaction

28 SIGMOD Record, March 2023 (Vol. 52, No. 1)

obtains its commit timestamp that determines its commit
order by atomically incrementing the counter. Each version
is associated with the commit timestamp of the transaction
that created it. Transactions access data using a snapshot
(aka read view), which is a timestamp that represents the
database’s state at some point in (logical) time.
Isolation Levels. For read committed, we always read the

latest committed version. SI allows the transaction to read
the latest version created before its begin timestamp obtained
upon transaction start or the first data access. A transaction
can update a record if it can see the latest committed version.
Serializability can be achieved by locking or certifiers that
forbid certain dependencies [23].

Cross-Engine ACID Properties. Compared to single-engine
systems, a multi-engine system must maintain ACID proper-
ties for both single- and cross-engine transactions:
• Atomicity: All the sub-transactions should eventually

reach the same commit or abort conclusion, i.e., either all
or none of the sub-transactions commit.

• Consistency: All transactions (single- or cross-engine)
should transform the database from one consistent state to
another, enforcing constraints within and across engines.

• Isolation: Changes in any engine made by a cross-engine
transaction must not be visible until the cross-engine trans-
action commits, i.e., all sub-transactions have committed.

• Durability: Changes made by cross-engine transactions
should be persisted while guaranteeing atomicity.

Enforcing cross-engine ACID requires careful coordination
of sub-transactions to avoid anomalies, as we describe next.

2.3 Cross-Engine Anomalies
The relative ordering of sub-transaction begin/commit events
determines correctness, as certain ordering may lead to
anomalies and violate ACID requirements, as described next.

Issue 1: Inconsistent Snapshots. There are two cases where
a transaction may be given an inconsistent snapshot. In
Figure 2(a), S started in E1 with snapshot 1000, and T
started in E2 with snapshot 100. Suppose another transaction
in E1 committed by incrementing E1’s timestamp counter
to 3000. Then, T accesses E1, which assigns T1 its latest
snapshot 3000, and S2 obtains snapshot 200 in E2. Compared
to S, T sees a newer version of the database in E1, but an
older version in E2. This would require S and T start before
each other, which is impossible under SI [1]. This corresponds
to the “cross” phenomenon in distributed SI (DSI) [4].

Another anomaly may make partial results visible. In Fig-
ure 2(b), T first commits T1 with timestamp 4000. Before T2

is committed, none of T ’s changes should be visible to other
transactions. Meanwhile, U starts in E2 with timestamp
250, and opens U1: since U1 started after T1 committed, by
definition it should see T1’s changes. Thus, U sees partial
results: T ’s results are visible in U ’s snapshot in E1, but
not E2. This anomaly corresponds to the serial-concurrent
phenomenon in DSI [4]. Compared to inconsistent (skewed)
snapshots which concern the order in which sub-transactions
are opened, isolation failure arises when sub-transaction be-
gin and commit actions are interleaved and inflict di↵erent
write-read dependency orders in di↵erent engines.

Issue 2: Serializability. Even if both engines guarantee full
serializability, the overall execution may not be serializable.
In Figure 3(a), S and T are concurrently executing in two
engines that o↵er serializability. Each engine runs a serializ-
able schedule, with an anti-dependency shown in Figure 3(b).

(a) Skewed snapshot (b) Isolation failure

Engine E1
Timeline:

Engine E2
Timeline:

1000

S1
(Begin)

T2
(Begin)

100

3000

T1
(Begin)

S2
(Begin)

200

4000

T1
(Commit)

U2
(Begin)

250

5000

U1
(Begin)
T2

(Commit)

300

Figure 2: Inconsistent snapshots. (a) S uses an older/newer
snapshot in E1/E2. (b) U sees T1’s results, but not T2’s.

Engine E1 Engine E2

T1R(A0)
T2W(B1)

S1W(A1)
S2R(B0)

Ti
m

e

(a) Overall schedule

T1 S1

(b) Dependency in E1
(top) and E2 (bottom)

T2 S2

(c) Overall dependency

T1 S1

T2 S2

T SE1

E2

Figure 3: Non-serializable execution of cross-engine transac-
tions. (a–b) Each engine executes a serializable schedule. (c)
Overall cyclic dependency between T and S.

However, as shown in Figure 3(c), the overall execution ex-
hibits write skew with cyclic dependencies (T ! S ! T),
indicating non-serializable execution.

Issue 3: Atomicity and Durability. A cross-engine transac-
tion should commit either all or none of its sub-transactions.
Distributed systems usually solve this problem with 2PC, but
newer engines may not support it [24]. 2PC’s coordination
overhead can also be heavyweight for shared memory, slowing
down the (faster) main-memory engine. As we describe later,
additional checks are needed in addition to a traditional 2PC
prepare-commit protocol. Thus, 2PC may not be the best
choice for single-node multi-engine systems.

2.4 State-of-the-Art and Motivation
Prior work can avoid the anomalies [4, 20], but did not con-
sider fast-slow systems, leading to missing or limited cross-
engine support in real systems, motivating our work. For
example, MySQL supports multiple engines and users may
issue multi-engine transactions, but correctness is undefined.
SQL Server supports cross-engine transactions with many
restrictions [9], e.g., if both the traditional engine and Heka-
ton use SI, cross-engine transactions are not allowed, yet SI
is among the most popular isolation levels in Hekaton [9].
These significantly limit the use of cross-engine transactions.

3 Design Principles
We distill a set of desired properties and design principles
that a cross-engine mechanism like Skeena should follow:
• Low Overhead. The mechanism should introduce as low

overhead as possible. It should try not to penalize single-
engine transactions, especially those in the faster engine.

• Engine Autonomy. Engines should be kept as-is, or only
be minimally modified to work with the cross-engine mech-
anism or optimize for performance.

• Full Functionality. The mechanism should support various
isolation levels for both single- and cross-engine transac-
tions, unless it is limited by individual engine capabilities.

• Easy Adoption. The application should not be required

SIGMOD Record, March 2023 (Vol. 52, No. 1) 29

to make logic changes. It should only need to declare the
“home” engine of each table in the schema.

4 Skeena Design
Skeena targets fast-slow systems with a memory-optimized
and a storage-centric engine. We first give an overview of
Skeena, and then discuss its design in detail.

4.1 Overview
Skeena ensures correct snapshot selection and atomic commit.
As Figure 4 shows, Skeena consists of (1) the cross-engine
snapshot registry (CSR) that tracks valid snapshots and
(2) a pipelined commit protocol for atomically committing
cross-engine transactions. Now we describe the high-level
transaction workflow under Skeena.
Initialization. Transactions (single- or cross-engine) can

keep using the database system’s unified APIs (e.g., SQL),
without additionally specifying whether a transaction will be
cross-engine. Figure 4 shows an example program written
in the same way as without Skeena. Skeena does not force
transactions to run under specific isolation levels. However,
the system may allow users to specify an isolation level
(e.g., SET TRANSACTION ISOLATION LEVEL [18]) which can
be detected and enforced by Skeena across all engines.
Data Accesses. The system routes requests to the target

engine which uses a sub-transaction to access data. Skeena
requires no change to the existing routing mechanism. Upon
start or accessing the first record, the sub-transaction obtains
a snapshot. Depending on whether the transaction is single-
or cross-engine, the system may directly give the latest snap-
shot in the engine, or use CSR to obtain a snapshot that
would not cause anomalies (steps 2 – 4). If such a snapshot
does not exist, the transaction will be aborted.
Finalization. To commit, a cross-engine transaction con-

sults CSR to verify that committing it would not lead to
inconsistent snapshots for future transactions; single-engine
transactions commit without using CSR. After passing verifi-
cation, the transaction will further go through the pipelined
commit protocol (step 4). If the verification fails, we abort
the transaction by rolling back all the sub-transactions.
Next, we describe how Skeena facilitates the above trans-

action workflow, beginning with CSR.

4.2 Cross-Engine Snapshot Registry
The key to avoiding inconsistent snapshots is to ensure the
sub-transactions of di↵erent cross-engine transactions follow
the same start order in each engine [4]. That is, if T ’s sub-
transaction T1 uses an older snapshot than S1 does in engine
E1, then T2 should also use an older snapshot compared to
that of S2 in E2. For example, in Figure 4, T first started
as a single-engine transaction accessing Orders in E1, using
snapshot 80. When T accesses Products in E2, T needs to
use a snapshot (s) in E2 such that s is between the snapshots
of its “neighbors” in E1, i.e., S1 and U1. Thus, T may use
any valid E2 snapshot between 1200 and 3000 (inclusive),
although using 3000 would allow it to see fresher data.

To facilitate such a snapshot selection process, CSR tracks
valid snapshots (i.e., commit timestamps of past cross-engine
transactions) that can be safely used by future cross-engine
transactions. Conceptually, CSR is a table of many-to-many
mappings, where each “row” (CSR entry) is a pair of snap-
shots (i.e., commit timestamps), one from each engine as

Engine E2

Products

Engine E1

Orders

Cross-Engine Snapshot Registry

Cross-engine transaction T:
BEGIN
SELECT … FROM Orders …
SELECT … FROM Products …
UPDATE Products SET …
COMMIT

E1 Snapshot E2 Snapshot
40 (S) 1200

80 (T) ?

160 (U) 3000

.

Commit Queue
R: 50, nil

T: 90, 2000

U: 200, 4000

. . .

1

2

2

3

4

4
Enqueue/
dequeue

1
2
3
4

0

Figure 4: Skeena overview. 0 – 1 Transactions access data
without explicitly declaring whether they are cross-engine.
2 Upon accessing another engine, the transaction 3 queries
CSR for a snapshot. 4 Cross-engine transactions use CSR for
commit check and finish with the pipelined commit protocol.

Algorithm 1 Snapshot selection for cross-engine transactions.

1 def select_snapshot(e1_snap, engine &e2):
Find existing snapshots that could be used

3 candidates[] = CSR.forward_scan_1st(e1_snap)
if candidates is empty:

5 # No existing mapping, obtain the latest from e2
e2_snap = e2.timestamp_counter

7 else:
Use the latest snapshot mapped to s <= e1_snap

9 e2_snap = max(candidates)
CSR.map(e1_snap, e2_snap)

11 return e2_snap

shown in Figure 4. When a transaction crosses from engine
e1 to engine e2 as Algorithm 1 shows, it uses its snapshot
in e1 (e1_snap) as the key to query CSR for a snapshot in
e2. This is done with a non-inclusive forward scan over CSR
(line 3). The scan returns e2 snapshots that are mapped
to e1_snap or the latest snapshot before e1_snap. If the
return set is empty, we use the latest e2 snapshot (lines 4–6).
Otherwise, we take the latest e2 snapshot from the returned
set to avoid anomalies (lines 7–9) and set up the mapping
at line 10. Under SI, the algorithm is executed only once
per transaction when it becomes cross-engine. Subsequent
accesses continue to use the previously acquired snapshots.
In addition to acquiring snapshots, committing a cross-

engine transaction implicitly limits the ranges of snapshots
(future) for cross-engine transactions: the commit timestamp
of a previous transaction T in fact is the snapshot of a
future transaction that will read the results generated by
T . Thus, CSR also sets up new mappings when committing
cross-engine transactions. Similar to tracking snapshots,
we ensure that committing a cross-engine transaction—i.e.,
adding a new mapping entry to CSR—would not add skewed
snapshots to CSR. Suppose a transaction with two sub-
transactions, sub_t1 and sub_t2. Upon commit, we issue a
reverse scan and a forward scan over CSR using the commit
timestamps of a sub-transaction (e.g., sub_t1) to obtain the
lower and higher bounds for the other commit timestamp.
If sub_t2’s commit timestamp falls between the bounds, we
can safely commit this cross-engine transaction and set up a
new mapping in CSR. Otherwise, the transaction is aborted.

30 SIGMOD Record, March 2023 (Vol. 52, No. 1)

Since a transaction may access engines in any order (from
the storage-centric engine and crosses over to the memory-
optimized engine, and vice versa), CSR needs to support
queries from either engine. CSR may be implemented using
a relational table in one of the supported engines with full-
table scan or two range indexes, each of which is built on
a “column” of the CSR table. However, this can create
dependency on a particular engine and incur much table and
index maintenance overhead. A practical design must also
support concurrency. We address these issues next.

4.3 Lightweight Multi-Index CSR
We take advantage of the properties of fast-slow systems to
devise a lightweight CSR that mitigates the above issues.

Anchor Engine. Compared to storage-centric engines, it is
much cheaper to obtain snapshots in main-memory engines.
This is often as simple as manipulating an 8-byte counter
in a lock-free manner without using a mutex. For example,
ERMIA [14] only needs to read the counter; Hekaton [10]
increments the counter using atomic fetch-and-add (FAA) [11].
But obtaining a snapshot in a storage-centric system can be
much more complex. For example, MySQL InnoDB needs
to take multiple mutexes to compute watermark values [25].

Leveraging the existence of a fast and a slow engine, Skeena
designates an anchor engine and always follows the snapshot
order in the anchor engine. The anchor engine should be the
one where it is cheaper to acquire a snapshot (e.g., memory-
optimized). Then a transaction always starts by acquiring the
latest snapshot from the anchor engine, and uses it to query
CSR later. This allows us to maintain one-to-many mappings
(instead of many-to-many mappings), which simplifies CSR
to become a range index that uses snapshots in the anchor
engine as “keys” and lists of snapshots in the other engine as
“values.” We currently use Masstree [16], a fast in-memory
index, but any concurrent range index would su�ce. A side
e↵ect is transactions that only access the slower engine also
become cross-engine. As Section 5 shows, the overhead is
negligible compared to data accesses which may involve the
storage stack while CSR is fully in-memory.

Multi-Index. Since CSR tracks cross-engine snapshots and
commit histories, its size can grow quickly, slowing down
query speed over time; entries that are no longer needed
should also be cleaned up. Our solution is to partition CSR
by snapshot ranges, reminiscent of multi-rooted B-trees [19].
The result is a multi-index CSR (Figure 5). Each partition
is an index and covers a unique range of snapshots so that
a transaction only uses a single index. In Figure 5, the first
two indexes cover mappings in the ranges of [30, 400] and
[401, 500], respectively. Each partition covers a fixed number
of keys. A new index is created when the current open index
is full. There is always one and only one open index that can
accept new mappings; other indexes are read-only but can
continue to serve existing transactions for snapshot selection.
Since inactive indexes are read-only, a transaction that needs
to set up a new mapping in an inactive index will be aborted.

Snapshot Acquisition and Commit Check. With multiple in-
dexes and an anchor engine, a transaction acquires snapshots
by (1) obtaining a snapshot S from the anchor engine, (2)
locating the index I that covers S, and (3) using S to query I
and if needed, create a new entry in I following Algorithm 1
with e1_snap = S and CSR at line 3 being I. Note that
steps 2 and 3 are only executed if the transaction accesses
the non-anchor engine. For example, if the main-memory

Snapshot >= 550

Snapshot >= 401

Snapshot >= 30

[30, 400] [401, 500] [550, +∞)
Anchor engine snapshot ranges:

. . .

Inactive (read-only) indexes Active index

Figure 5: Multi-index CSR. Each index covers a range of
anchor snapshots, and is recycled in its entirety later.

engine is the anchor and the transaction only accesses an
in-memory table, steps 2 and 3 are never executed. For
step 2, we track all the indexes in a list/array. Each entry
records the minimum snapshot of the partition and a pointer
to the index. Since we keep only one open index, entries in
the list are sorted by snapshot ranges. We search for I by
traversing the list backwards and stopping at the first entry
whose smallest snapshot is smaller than or equal to the given
snapshot. In step 3, a new entry is inserted if and only if I
is open; otherwise the transaction is aborted. Commit check
follows a similar logic and can proceed only if I is open.

4.4 CSR Concurrency and Maintenance
Now we discuss how Skeena handles concurrent accesses and
manages/recycles indexes in multi-index CSR.
Concurrency. Although latches can be a potential bottle-

neck in multicore systems, a latch-based solution in Skeena
can be e�cient thanks to the fast-slow property: compared to
executing transactions in the slower engine, using latches and
high-performance indexes present negligible overhead and
little impact on overall performance. Each index is protected
by a mutex, and we protect the array of all indexes using
a reader-writer lock for mutual exclusion between threads
that only query an index without modifying the list using
the reader mode and those that may add or remove an index
using the writer mode. A transaction starts by latching the
index list in shared (reader) mode to locate the target index
I. Then the thread latches I for exclusive access to run
Algorithm 1. If the thread needs to create a new index, it
(1) releases the list latch, (2) re-acquires the latch in writer
mode to allow inserting to the list, and (3) checks if such an
index has been inserted by another thread between steps 1
and 2, and if so, retries the entire process after releasing the
list latch; otherwise we (4) append the new index with a new
mapping to the list. Commit check follows the same logic.
Index Maintenance. Using multiple indexes simplifies

garbage collection (GC) as we can delete an entire index
once its mappings are no longer needed, instead of issuing
many key delete operations. To recycle, we first iterate over
all the active transactions to find the oldest anchor-engine
snapshot (min_snap). Then we remove stale indexes that
cover ranges below min_snap. If long-running transactions
prevent min_snap from growing, one may remove unused
indexes covering newer but still unused ones, reminiscent of
GCing long version chains in multi-versioned systems [5].

4.5 Commit Protocol
Once all accesses are finished, Skeena checks whether both
sub-transactions can commit using engine-level commit times-
tamps that represent the sub-transactions’ commit ordering.
Some OLTP engines already break the commit process into
pre- and post-commit [10, 14], making it easy to obtain com-
mit timestamps. During pre-commit, the engine assigns a

SIGMOD Record, March 2023 (Vol. 52, No. 1) 31

commit timestamp and uses it to determine whether the
transaction can commit correctly. If such interfaces are not
available, the engines need to be modified to do so. This is
straightforward by breaking a monolithic “commit” function
into a pre- and post-commit function, given engines in a
fast-slow system are maintained by the same vendor.

With the pre- and post-commit interfaces, Skeena commits
a cross-engine transaction in three steps. (1) Pre-commit
both sub-transactions to obtain commit timestamps. (2) Use
the timestamp obtained from the anchor engine to conduct
the commit check. (3) If the check passes, post-commit both
sub-transactions. From a high-level, Skeena’s commit proto-
col resembles 2PC: step 1 may correspond to 2PC’s prepare
phase that collects commit decisions from each engine; step 3
may correspond to 2PC’s commit phase. But Skeena di↵ers
from 2PC by requiring an additional check (step 2) even after
all the engines have pre-committed the transaction. So an
“all-yes” result from the 2PC-equivalent prepare phase does
not necessarily mean a cross-engine transaction can commit.

Before both sub-transactions are post-committed, changes
by either should be kept invisible, yet from the perspective of
an engine, a post-committed (sub-)transaction is fully com-
mitted with its results visible. Skeena must ensure partial
results are not visible until all sub-transactions are post-
committed. We observe that a simple yet e↵ective solution is
to extend the pipelined commit protocol [12] which was ini-
tially for hiding log flush latency. Skeena maintains a global
commit queue (or a partitioned queue to avoid introducing
a bottleneck) of transactions whose log records are not per-
sisted yet. Upon commit, we first push both sub-transactions
onto the commit queue upon post-commit. Results by these
transactions are now visible internally but are not returned
to applications until their log records are persisted. Thus,
single-engine and read-only transactions must also use com-
mit pipelining as they may read cross-engine transactions’
results. A commit daemon then monitors both engines’ logs
to dequeue transactions once their log records are persisted.

4.6 Durability and Recovery
In a multi-engine system, each engine implements its own
approach to durability and crash recovery. A sub-transaction
still follows its corresponding engine’s approach to persist
data and log records. To ensure atomicity of cross-engine
transactions, Skeena can record the pre- and post-commit of
cross-engine transactions, by maintaining a standalone log or
piggybacking on individual engines. During recovery, each en-
gine executes its recovery mechanism and rolls back changes
done by cross-engine transactions whose sub-transactions are
not fully committed. Alternatively, the recovery procedure
may inspect each engine’s log and truncate at the first “hole”
where only one sub-transaction of a cross-engine transaction
is committed. This is safe because commit pipelining ensures
results from partially committed cross-engine transactions
were never made visible to applications.

4.7 Serializability
As noted by prior work [20], disallowing anti-dependencies
(i.e., using commit order as dependency order) in all engines
is su�cient for cross-engine serializability. This translates
into choosing a concurrency control protocol for each engine
where a sub-transaction can only commit if its read records
are not concurrently modified by a newer transaction. A
wide range of engines exhibit this property based on 2PL (by

blocking readers and writers) and OCC (by verification at
commit time). Some protocols [23] can tolerate certain safe
anti-dependencies, but would require implementing verifica-
tion in Skeena, tightly coupling Skeena with engine design
and sacrificing engine autonomy. Thus, we take the former
approach that imposes no engine-level changes.

4.8 Discussions
In essence, Skeena is a coordinator that enforces correct
snapshots and atomic commit in fast-slow systems. Since
Skeena does not implement extra concurrency control logic
to avoid tight coupling with engines, to achieve an overall
isolation level (e.g., SI), each engine needs to run at least
at it (e.g., SI). Thus, the overall isolation level guaranteed
by Skeena is at most the lowest level across all engines. For
example, if two engines respectively use RC and SI, then
Skeena can only guarantee RC overall.

Skeena can be applied to systems that (1) support multiple
engines and (2) follow the database model in Section 2.2.
Both are widely available in practice. For example, MySQL,
SQL Server and PostgreSQL already support multiple en-
gines. Moreover, Skeena does not require significant engine-
level changes. The most notable (yet simple) change (mainly
for conventional engines) is exposing commit ordering via a
pre-commit interface. Skeena only expects the commit/abort
decision of sub-transactions, without dictating engine inter-
nals, such as whether cascading abort is possible or how
writes and versions are organized. The remaining e↵ort is
mainly put into integrating Skeena with existing multi-engine
support. These changes are not intrusive or complex; more
details can be found in the full version of this paper [25].

5 Evaluation
We empirically evaluate Skeena under microbenchmarks and
realistic workloads. Through experiments, we show that:
• Skeena retains the high performance of memory-optimized

engines in fast-slow systems;
• Skeena only incurs a very small amount of overhead for

cross-engine transactions;
• By judiciously placing tables in di↵erent engines, Skeena

can e↵ectively improve performance for realistic workloads.

5.1 Experimental Setup
We integrated ERMIA [14], a memory-optimized engine into
MySQL to co-exist with its storage-centric InnoDB. Both
engines share MySQL’s SQL layer and thread pool. The
integration e↵ort required < 2000 LoC because MySQL
already comes with well-defined interfaces for adding new
engines. The application specifies each table’s home engine
in its schema, which is already supported by MySQL. We
then modified 83 LoC in InnoDB for it to use Skeena to
choose read views and commit sub-transactions. CSR itself is
implemented as a separate module of ⇠600LoC.For ERMIA,
we modified its commit pipelining to consider both engines.

We run experiments on a dual-socket server equipped with
two 20-core Intel Xeon Gold 6242R CPUs (80 hyperthreads
in total), 384GB of main memory and a 400GB Micron
SSD with peak bandwidth of 760MB/s. Each CPU has
35.75MB of cache and is clocked at 3.1GHz. All experiments
are conducted in MySQL 8.0 with InnoDB and ERMIA
under SI (repeatable read in InnoDB). We report the average
throughput and latency of three 60-second runs.

32 SIGMOD Record, March 2023 (Vol. 52, No. 1)

ERMIA is memory-optimized so all records are in heap
memory. For InnoDB, we test both the memory- and storage-
resident cases: the memory-resident variant (InnoDB-M) uses
a large enough bu↵er pool to avoid accessing storage; the
storage-resident variant (InnoDB) uses a small bu↵er pool
that would mandate accessing the storage stack. To stress
test Skeena, we store persistent data (such as data files and
logs) in tmpfs, so that I/O is as fast as memory, making it
easier to expose Skeena’s overhead. More experiments using
SSDs can be found in the full version of this paper [25].

5.2 Benchmarks
We use microbenchmarks and TPC-C to test Skeena and
explore the e↵ect of cross-engine transactions.
Microbenchmarks. In each engine, we create 250 tables,

each of which contains a certain number of records depending
on whether the experiment is memory- or storage-resident for
InnoDB. Each record is 232-byte, consisting of two INTEGERs
and one VARCHAR. For memory-resident experiments, each
table contains 25000 records, bringing the total data size
of 250 tables to ⇠1.35GB; the bu↵er pool size in InnoDB
is set to 32GB. For storage-resident experiments, we set
each table to contain 250000 records, and the total data
size is ⇠13.5GB; we set the bu↵er pool to be 2GB. We then
devise three transaction types: read-only, read-write and
write-only. Each transaction accesses ten records uniform
randomly chosen from the created tables. In particular, for
read-write transactions, eight out of the ten accesses are
point reads and two are updates.

TPC-C. We use TPC-C for the dual-purpose of (1) testing
Skeena under non-trivial transactions, and (2) exploring the
benefits of cross-engine transactions in realistic scenarios.
We set the scale factor to be the number of connections and
each connection works on a di↵erent home warehouse, but
1% of New-Order and 15% of Payment transactions may
respectively access a remote warehouse. InnoDB bu↵er pool
size is set to be 32GB which is large enough to hold all the
data (⇠14GB). This way, the entire workload is memory-
resident, allowing us to stress Skeena since data accesses do
not involve I/O, although they are still done via the bu↵er
pool. By gradually moving tables from InnoDB to ERMIA,
we make the a↵ected transaction cross-engine and distill
several useful suggestions on how to optimize performance in
fast-slow systems. We focus on the results of these suggested
table placements in this paper. More experiments (including
storage-resident ones and the impact of storing each table in
ERMIA) can be found in the full version of this paper [25].

5.3 Single-Engine Performance
An important goal of Skeena is to ensure single-engine trans-
actions (especially those in the faster engine, ERMIA) pay lit-
tle additional cost. We evaluate this by turning Skeena on and
o↵ under six ERMIA- and InnoDB-only variants. To stress
test Skeena, we use the memory-resident InnoDB (InnoDB-M)
and the storage-resident InnoDB with tmpfs (InnoDB). Ta-
ble 2 summarizes the results; variants with Skeena turned on
carry an S su�x. Skeena incurs negligible overhead with the
slightly more complex logic in commit pipelining. Note that
“single-engine” transactions in InnoDB-S/InnoDB-MS are in
fact cross-engine, by following the start order in the anchor
engine (ERMIA) even if they do not access any records in ER-
MIA. This means CSR will only maintain a single mapping
(using ERMIA’s initial snapshot) which incurs a constant but

Table 2: Throughput (TPS) of single-engine microbench-
marks (80 connections) and TPC-C (50 connections). Skeena
(-S) incurs negligible overhead.

Scheme Read-only Read-write Write-only TPC-C

ERMIA 1,427,071 1,252,146 1,091,606 7,550
ERMIA-S 1,430,137 1,253,368 1,095,056 7,546
InnoDB-M 1,326,710 930,249 710,697 626
InnoDB-MS 1,310,809 915,406 711,425 612
InnoDB 456,672 420,328 194,446 277
InnoDB-S 453,781 420,474 194,412 261

1 40 80 160
of connections

(a) Read-only

0

35

70

105

140

K
T

P
S

1 40 80 160
of connections

(b) Read-write

0

30

60

90

120

1 40 80 160
of connections

(c) Write-only

0

25

50

75

100

ERMIA

ERMIA-S

30% InnoDB

50% InnoDB

80% InnoDB

InnoDB-MS

InnoDB-M

Figure 6: Throughput under memory-resident microbench-
marks. CSR cost can be comparable to data accesses, causing
InnoDB-M to outperform cross-engine cases.

very small amount of overhead (up to 5.6%). Compared to
InnoDB, InnoDB-M performs up to over ⇠ 3⇥ better thanks
to its large bu↵er pool. InnoDB-M and InnoDB-MS perform
similarly to ERMIA under the read-only microbenchmark,
but fall behind as we add more writes, signifying the benefits
of memory-optimized engines. ERMIA-S performs as well as
ERMIA since CSR is never used. These results verify that
Skeena retains the advantage of memory-optimized engines.

5.4 Cross-Engine Performance
Now we explore the behavior of cross-engine transactions
using microbenchmarks. For each transaction, we vary the
percentage of InnoDB and ERMIA accesses out of ten ac-
cesses. For example, with 30% InnoDB, three accesses per
transaction are done in InnoDB, the remaining seven ac-
cesses go to ERMIA. For cross-engine transactions we mark
the percentage of InnoDB accesses and note whether the
experiment is memory- or storage-resident as needed.

InnoDB is more heavyweight, so more accesses in it should
lower performance, e.g., transactions with 30% InnoDB ac-
cesses should perform better than pure InnoDB transactions.
But Figures 6(a)–(b) show the opposite: InnoDB-MS outper-
forms the cross-engine 30–80% InnoDB. The reason is two-fold.
First, ERMIA writes a commit log record for read-only trans-
actions. So with more ERMIA accesses, CSR becomes larger
and slower to access. This is non-negligible for read-intensive
workloads, which are lightweight in ERMIA. Second, un-
der InnoDB-MS, CSR is very small and only maintains one
mapping. However, under 30–80% InnoDB, more ERMIA
accesses lead to more mappings in CSR, which then becomes
more expensive to query. The memory-resident write-only
workload follows the expectation in Figure 6(c), although the
di↵erence is not significant due to InnoDB’s low raw perfor-
mance. Under storage-resident workloads, Skeena’s overhead

SIGMOD Record, March 2023 (Vol. 52, No. 1) 33

1 10 20 30 40 50

of connections

(a) Full-Mix

0
2
4
6
8

K
T

P
S

1 10 20 30 40 50

of connections

(b) New-Order

0
3
6
9

12
15

1 10 20 30 40 50

of connections

(c) Payment

0
2
4
6
8

10

1 10 20 30 40 50

of connections

(d) Delivery

0
0.5

1
1.5

2
2.5

K
T

P
S

1 10 20 30 40 50

of connections

(e) Stock-Level

0
1
2
3
4

1 10 20 30 40 50

of connections

(f) Order-Status

0
2
4
6
8

10

Archive

InnoDB

Payment-Opt

ERMIA

New-Order-Opt

Figure 7: TPC-C throughput under select table placement
schemes that optimize for di↵erent application scenarios.

becomes negligible, with more ERMIA accesses leading to
higher performance: 30% InnoDB is up to 75%/40% faster
than InnoDB for read-only/write-only workloads.

5.5 Effect of Cross-Engine Transactions
Applications may use cross-engine transactions to improve
performance (using a main-memory engine) and/or reduce
storage cost with the storage-centric engine, by placing di↵er-
ent tables in di↵erent engines. We use TPC-C to explore this
aspect by analyzing several recommended table placement
schemes distilled from our experiments [25]:
• New-Order-Opt: The Customer and Item tables are placed

in ERMIA to optimize the New-Order transaction.
• Payment-Opt: Only Customer is placed in ERMIA to opti-

mize the Payment transaction that heavily uses Customer.
• Archive: All the tables except History are placed in

InnoDB, leveraging its cheaper storage cost.
The first two schemes improve performance with select

use of main-memory tables, while Archive reduces storage
cost of in-memory databases using a traditional engine. Fig-
ure 7 compares them to baselines that only use ERMIA or
InnoDB. New-Order-Opt and Payment-Opt improve the per-
formance of the a↵ected transactions compared to InnoDB.
Since Archive executes almost fully in ERMIA, its perfor-
mance overlaps with ERMIA (History is never queried and
occupies less than 600MB). In reality, such workloads can
run for longer and occupy more space; placing the relevant
tables in InnoDB can drastically reduce storage cost.

6 Summary
Cross-engine transactions can be very useful in modern fast-
slow multi-engine systems, but were poorly supported with
various limitations. This paper proposes Skeena, a holistic
approach to e�cient and consistent cross-engine transactions,
to solve this problem. Skeena consists of a cross-engine
snapshot registry (CSR) that tracks snapshots and a commit
protocol for multi-engine systems. Skeena can be easily
adopted by real systems, as demonstrated by our experience
with MySQL. Evaluation on a 40-core server shows that

Skeena incurs negligible overhead and maintains the benefits
of memory-optimized engines, enabling new use cases of
memory-optimized OLTP engines.

7 References
[1] A. Adya. Weak consistency: A generalized theory and

optimistic implementations for distributed transactions,
Mar. 1999. PhD Thesis MIT/LCS/TR-786.

[2] H. Avni et al. Industrial-strength OLTP using main
memory and many cores. PVLDB, 13(12), Aug. 2020.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. SIGMOD, page 1–10, 1995.

[4] C. Binnig et al. Distributed snapshot isolation: Global
transactions pay globally, local transactions pay locally.
VLDBJ, 23(6):987–1011, Dec. 2014.

[5] J. Böttcher, V. Leis, T. Neumann, and A. Kemper.
Scalable garbage collection for in-memory MVCC
systems. PVLDB, 13(2):128–141, Oct. 2019.

[6] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of multidatabase transaction management.
VLDBJ, 1(2):181–240, Oct. 1992.

[7] P. Chairunnanda, K. Daudjee, and M. T. Özsu.
ConfluxDB: Multi-master replication for partitioned
snapshot isolation databases. PVLDB, 7(11), 2014.

[8] P. Dave. SQL Server – memory optimized tables,
transactions, isolation level and error, 2019.

[9] K. Delaney. SQL Server in-memory OLTP internals for
SQL Server 2016. Microsoft SQL Server Docs, 2016.

[10] C. Diaconu et al. Hekaton: SQL Server’s
memory-optimized OLTP engine. SIGMOD, 2013.

[11] Intel Corporation. Intel 64 and IA-32 architectures
software developer manuals. 2023.

[12] R. Johnson et al. Aether: A scalable approach to
logging. PVLDB, 3(1):681–692, Sept. 2010.

[13] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based on
virtual memory snapshots. ICDE, pages 195–206, 2011.

[14] K. Kim, T. Wang, R. Johnson, and I. Pandis. ERMIA:
Fast memory-optimized database system for
heterogeneous workloads. SIGMOD, 2016.

[15] H. T. Kung and J. T. Robinson. On optimistic methods
for concurrency control. ACM TODS, 6(2), June 1981.

[16] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness
for fast multicore key-value storage. EuroSys, 2012.

[17] Microsoft. Microsoft SQL Documentation, 2016.
[18] Oracle. MySQL 8.0 reference manual. 2021.
[19] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki.

PLP: Page latch-free shared-everything OLTP.
PVLDB, 4(10):610–621, July 2011.

[20] Y. Raz. The principle of commitment ordering, or
guaranteeing serializability in a heterogeneous
environment of multiple autonomous resource mangers
using atomic commitment. VLDB, pages 292–312, 1992.

[21] R. Schenkel, G. Weikum, N. Weißenberg, and X. Wu.
Federated transaction management with snapshot
isolation. Transactions and Database Dynamics, 2000.

[22] M. Stonebraker et al. The end of an architectural era:
(it’s time for a complete rewrite). VLDB, 2007.

[23] T. Wang, R. Johnson, A. Fekete, and I. Pandis.
E�ciently making (almost) any concurrency control
mechanism serializable. VLDBJ, 26(4), 2017.

[24] E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The
end of a myth: Distributed transactions can scale.
PVLDB, 10(6):685–696, Feb. 2017.

[25] J. Zhang, K. Huang, T. Wang, and K. Lv. Skeena:
E�cient and consistent cross-engine transactions.
SIGMOD, page 85–96, 2022.

34 SIGMOD Record, March 2023 (Vol. 52, No. 1)

