Datalog in Wonderland

Mahmoud Abo Khamis
RelationalAI

Hung Q. Ngo
RelationalAI

Reinhard Pichler
TU Wien

Dan Suciu
University of Washington

Yisu Remy Wang
University of Washington

ABSTRACT
Modern data analytics applications, such as knowledge graph reasoning and machine learning, typically involve recursion through aggregation. Such computations pose great challenges to both system builders and theoreticians: first, to derive simple yet powerful abstractions for these computations; second, to define and study the semantics for the abstractions; third, to devise optimization techniques for these computations.

In recent work we presented a generalization of Datalog called Datalog\textregistered, which addresses these challenges. Datalog\textregistered is a simple abstraction, which allows aggregates to be interleaved with recursion, and retains much of the simplicity and elegance of Datalog. We define its formal semantics based on an algebraic structure called Partially Ordered Pre-Semirings, and illustrate through several examples how Datalog\textregistered can be used for a variety of applications. Finally, we describe a new optimization rule for Datalog\textregistered, called the FGH-rule, then illustrate the FGH-rule on several examples, including a simple magic-set rewriting, generalized semi-naïve evaluation, and a bill-of-material example, and briefly discuss the implementation of the FGH-rule and present some experimental validation of its effectiveness.

1. INTRODUCTION
The database community has developed an elegant abstraction for recursive computations, in the context of Datalog \cite{FGH,semiring}. Query evaluation and optimization techniques such as semi-naïve evaluation and magic-set transformation have led to efficient implementations \cite{magic,semiring}. Datalog and its optimization, however, are not sufficiently powerful to handle the computations commonly found in the modern data stack; for example, new applications often involve iterative computations with aggregations such as summation or minimization over the reals. Even under the Boolean domain, clean and practical fixpoint semantics require strong assumptions

\begin{itemize}
\item on the input rules such as stratification \cite{FGH}. In addition to difficult semantic questions, semi-naïve evaluation and magic-set transformation also impose strong assumptions about the input such as monotonicity in terms of set-containment. These assumptions typically do not hold in the new world.
\item A powerful abstraction to address these challenges can be found in the study of aggregation with the aid of semirings \cite{semiring}. This research line generalizes relational algebra beyond sets and multisets. The semiring semantics can capture a wide range of operations including tensor algebra.
\end{itemize}

In recent works \cite{semiring,suciu1,suciu2,suciu3}, we combine the elegance of Datalog and the power of semiring abstractions into a new language called Datalog\textregistered. We studied its semantics, optimization, and convergence behavior. In particular, we derived a novel optimization primitive called the FGH-rule, which serves as a key component for generalizing both semi-naïve evaluation and magic-set transformations to Datalog\textregistered. This article highlights our findings.

Semantics of Datalog\textregistered. A Datalog program is a collection of (unions of) conjunctive queries, operating on relations. Analogously, a Datalog\textregistered program is a collection of (sum-) sum-product queries on \(S\)-relations1 for some (pre-)semiring \(S\) \cite{semiring}. In short, Datalog\textregistered is like Datalog, where \(\land, \lor\) are replaced by \(\otimes, \oplus\). Recall that an \(S\)-relation is a function from the set of tuples to a (pre-) semiring \(S\); the domain of the tuples is called the key space, while \(S\) is the value space. The value space of standard relations is the Booleans (see Sec. 3).

Example 1.1. A matrix \(A\) over the real numbers is an \(\mathbb{R}\)-relation, where each tuple \(A[i,j]\) has the value \(a_{ij}\); \(\mathbb{R}\) denotes the sum-product semiring \((\mathbb{R}, +, \cdot, 1, 0)\). Both the objective and gradient of the ridge linear regression problem \(\min_x J(x)\), with \(J(x) = \frac{1}{2}\|Ax - b\|^2 + \frac{(\lambda/2)}{2}\|x\|^2\), are expressible in Datalog\textregistered, because they

1K-relations were introduced by Green et al. \cite{semiring}; we call them \(S\)-relations in this paper where \(S\) stands for “semiring”.

*Suciu and Wang were partially supported by NSF IIS 1907997 and NSF IIS 1954222. Pichler was supported by the Austrian Science Fund (FWF):P30930.
are sum-sum-product queries. The gradient $\nabla J(x) = A^tAx - A^tb + \lambda x$, for example, is the following sum-sum-product query:

$$\nabla[i] : \sum_{j,k} a[k,i] \cdot a[k,j] \cdot x[j] + \sum_j -1 \cdot a[j,i] \cdot b[j] + \lambda \cdot x[i]$$

The gradient has the same dimensionality as x, and the group-by variable is i. Gradient descent is an algorithm to find the solution of $\nabla J(x) = 0$, or equivalently to solve for a fixed point solution to the Datalog program $x = f(x)$ where $f(x) = x - \alpha \nabla J(x)$ for some step-size α.

Example 1.2. The all-pairs shortest paths (APSP) problem is to compute the shortest path length $P[x,y]$ between any pair x, y of vertices in the graph, given the length $E[x,y]$ of edges in the graph. The value space of $E[x,y]$ can be the reals \mathbb{R} or the non-negative reals \mathbb{R}_+. The APSP problem in Datalogc can be expressed very compactly as:

$$P[x,y] : \min(E[x,y], \min(P[x,z] + E[z,y]))$$

(1)

where $(\min,+)$ are the “addition” and “multiplication” operators in the tropical semirings; see Ex. 3.1.

By changing the semiring, Datalogc is able to express similar problems in exactly the same way. For example, (1) becomes transitive closure over the Boolean semiring, the $p + 1$ shortest paths over the Trop$^+$ semiring, and so forth.

In Datalog, the least fixpoint semantics was defined w.r.t. set inclusion [1]. To generalize this semantics for Datalogc, we generalize set inclusion to a partial order over S-relations. We define a partially ordered, pre-semiring (POPS, Sec. 3) to be any pre-semiring S [20] with a partial order, where both \oplus and \otimes are monotone operations. Thus, in Datalogc the value space is always some POPS. Given this partial order, the semantics of a Datalogc program is defined naturally, as the least fixpoint of the immediate consequence operator.

Optimizations. While Datalog is designed for iteration, Datalog engines typically optimize only the loop body but not the actual loop. The few systems that do, are limited to a small number of hard-coded optimizations, like magic-set rewriting and semi-naïve evaluation. Datalogc supports these classic optimizations, and more. We describe these optimizations in Sec. 4.1, but give here a brief preview, and start by illustrating how the semi-naïve algorithm extends to Datalogc. Consider the program computing the transitive closure of E:

$$P(x,y) : E(x,y) \lor \sqrt{\bigvee_{z} (P(x,z) \land E(z,y))}$$

(2)

We use parentheses like $E(x,y)$ for standard relations, whose value space is the set of Booleans, and use square brackets, like $E[x,y]$, when the value space is something else. The rule (2) deviates only slightly from standard Datalog syntax, in that it uses explicit conjunction and disjunction, and binds the variable z explicitly. After initializing $P_0(x,y) = \delta_0(x,y) = E(x,y)$, at the t'th iteration, the semi-naïve algorithm does the following:

$$\delta_t(x,y) = \left(\sqrt{\delta_{t-1}(x,z) \land E(z,y)} \right) \ominus P_{t-1}(x,y)$$

(3)

$$P_t(x,y) = P_{t-1}(x,y) \cup \delta_t(x,y)$$

By computing the δ relation so, we avoid re-deriving many facts in each iteration. Another way to see this is that, when δ is much smaller than P, then the join between δ and E in (3) is much cheaper than the join between P and E in (2). The set difference operation aims precisely to keep δ small. Somewhat surprisingly, the same principle can be extended to Datalogc, as we illustrate next.

Example 1.3 (APSP-SN). The semi-naïve algorithm for the APSP problem (Example 1.2) is:

$$\delta_t[x,y] = \left(\min(\delta_{t-1}[x,z] + E[z,y]) \right) \ominus P_{t-1}[x,y]$$

(4)

$$P_t[x,y] = \min(P_{t-1}[x,y], \delta_t[x,y])$$

The difference operator \ominus is defined as follows:

$$b \ominus a = \begin{cases} b & \text{if } b < a \\ \infty & \text{if } b \geq a \end{cases}$$

As in the standard semi-naïve algorithm, our goal is to keep δ small, by storing only tuples with a finite value, $\delta[x,y] \neq \infty$. We use the \ominus operator for that purpose. Consider the rule (4). If $b = \delta_{t-1}[x,z] + E[z,y]$ is the newly discovered path length, and $a = P_{t-1}[x,y]$ is the previously known path length, then $b \ominus a$ is finite iff $b < a$, i.e. only when the new path length strictly decreases. Correctness of the semi-naïve algorithm follows from the identity $\min(a,b \ominus a) = \min(a,b)$. We note that, recently, Budiu et al. [7] have developed a very general incremental view maintenance technique, which also leads to the semi-naïve algorithm, for the case when the value space is restricted to an abelian group.

We have introduced in [47] a simple, yet very general optimization rule, called the FGH-rule. The semi-naïve algorithm is one instance of the FGH-rule, but so are many other optimizations, as we illustrate in Sec. 4. For
a brief preview, we illustrate the FGH-optimization with the following example:

Example 1.4. Soufflé [24] is a popular open source Datalog system that supports aggregates, but does not allow aggregates in recursive rules. This means that we cannot write APSP as in rule (1). The common workaround is to stratify the program: we first compute the lengths of all paths between each pair of vertices, then take the minimum:

\[
P_{\text{all}}(x,y,d) \::= E(x,y,d).
\]
\[
P_{\text{all}}(x,y,d_1 + d_2) \::= E(x,z,d_1), P_{\text{all}}(z,y,d_2).
\]
\[
P[x,y] = \min_d \{ d \mid P_{\text{all}}(x,y,d) \}
\]

Of course, this program diverges on graphs with cycles, and is quite inefficient on acyclic graphs. The FGH-rule rewrites this naïve program into (1).

Organization. Sec. 2 discusses related work; Sec. 3 introduces the syntax and semantics of Datalog\(^2\); Sec. 4 describes the FGH-framework for optimizing Datalog\(^3\) programs, including magic-set transformation and semi-naïve evaluation; finally, Sec. 5 concludes.

2. RELATED WORK

Researchers have extended Datalog in many ways to enhance its expressiveness. Some of these extensions also reveal opportunities for various optimizations. This section surveys some existing research on Datalog extensions (Sec. 2.1) and their optimization (Sec. 2.2).

2.1 Datalog Extensions

Pure Datalog is very spartan: neither negation nor aggregate is allowed. Therefore, the literature on Datalog extensions is vast, and we will not attempt to cover the whole space. Instead, we focus on extensions that aim to support aggregates in Datalog. These include, but are not limited to, the standard MIN, MAX, SUM, and COUNT aggregates in SQL.

The main challenge in having aggregates is that they are not monotone under set inclusion, yet monotonicity is crucial for the declarative semantics of Datalog, and optimizations like semi-naïve evaluation. Consider the APSP Example 1.2. We could attempt to write it in Datalog, by extending the language with a min-aggregation:

\[
P(x,y,d) \::= E(x,y,d)
\]
\[
P(x,y,\min(d)) \::= P(x,z,d_1), E(z,y,d_2), d = d_1 + d_2
\]

However, the second rule is not monotone w.r.t. set inclusion. This is a subtle, but important point. For example, fix \(E = \{(b,c,20), (b',c,10)\}\): if \(P\) is \(\{(a,b,1)\}\), then the output of the rule is \(\{(a,c,21)\}\), but when \(P\) is the superset \(\{(a,b,1), (a,b',1)\}\), then the output is \(\{(a,c,11)\}\), which is not a superset of the previous output, \(\{(a,c,21)\} \nsubseteq \{(a,c,11)\}\).

Approaches to resolve the tension between aggregates and monotonicity mainly follow two strategies: break the program into strata, or generalize the order relation to ensure that aggregates become monotone.

Stratified Aggregates. The simplest way to add aggregates to Datalog while staying monotone is to disallow aggregates in recursion. Proposed by Mumick et al. [35], the idea is inspired by stratified negation, where every negated relation must be computed in a previous stratum. Ex. 1.4 is stratified: the first two rules form the first stratum and compute \(P_{\text{all}}\) to a fixpoint in regular Datalog\(^3\), and the last rule performs the min aggregate in its own stratum. Stratifying aggregates has the benefit that the semantics, evaluation algorithms, and optimizations for classic Datalog can be applied unchanged to each stratum. However, stratification limits the programs one is allowed to write – Ex. 1.2 is not stratified, and would therefore be invalid. Since Ex. 1.2 is equivalent to but more efficient than Ex. 1.4, disallowing the former leads to suboptimal performance. The stratification requirement can also be a cognitive burden on the programmer. In fact, the most general notion of stratification, dubbed “magic stratification” [35], involves both a syntactic condition and a semantic condition defined in terms of derivation trees.

Generalized Ordering. In this article, we follow the approach that restores monotonicity by generalizing the ordering on which monotonicity is defined. The key idea is that, although a program like that shown in Eq. (5) is not monotone according to the \(\subseteq\) on orders, we can pick another order under which \(P\) is monotone. Ross and Sagiv [39] define the ordering\(^4\) \(P \sqsubseteq P'\) as:

\[
\forall (x,y,d) \in P, \exists (x,y,d') \in P' : (x,y,d) \sqsubseteq (x,y,d')
\]

\[\text{where } (x,y,d) \sqsubseteq (x',y',d') \overset{\text{def}}{=} x = x' \land y = y' \land d \geq d'\]

That is, \(P\) increases if we replace \((x,y,d)\) with \((x,y,d')\) where \(d' < d\), for example \(\{(a,c,21)\} \nsubseteq \{(a,c,11)\}\). In general, to define a generalized ordering we need to view a relation as a map from a tuple to an element in some ordered set \(S\). For example, the relation \(P\) maps a pair of vertices \((x,y)\) to a distance \(d\). We will call such generalized relations \(S\)-relations. Different approaches in existing work have modeled \(S\) using different algebraic structures: Ross and Sagiv [39] require it to be a complete lattice, Conway et al. [9] require only a semi-lattice, whereas Green et al. [21] require \(S\) to be an \(\omega\)-continuous semiring. These proposals bundle the orderings

\(^3\)The second rule uses the built-in function \(+\).

\(^4\)If \((x,y)\) is not a key in \(P\), then \(\subseteq\) is only a preorder.
In this article, we will show how the FGH-rule can capture to work in the presence of aggregate-in-recursion. However, in contrast to prior work we decouple operations on S-relations from the ordering, and allow one to freely mix and match the two as long as monotonicity is respected.

Other Approaches. There are other approaches to support aggregates in Datalog that do not fall into the two categories above. We highlight a few of them here. Ganguly et al. [14] model min and max aggregates in Datalog with negation, thereby supporting aggregates via semantics defined for negation. Mazuran et al. [34] extend Datalog with counting quantification, which additionally captures \sum. Kemp and Stuckey [25] extend the well-founded semantics [16, 15] and stable model semantics [17] of Datalog to support recursive aggregates. Shkapsky et al. [42] is to use set-monotonic aggregation operators. Unlike PreM, pushing min and max aggregates into recursion [50], which evolved from earlier ideas on pushing extrema (min / max aggregate) into recursion [51], which, from the perspective of set-monotonic aggregation operators. Unlike PreM, pushing monotonic aggregates requires no preconditions, but may result in slightly less efficient programs.

In addition to new optimizations like aggregate push-down, classic techniques including semi-naive evaluation and magic-set transformation also exhibit interesting twists in extended Datalog variants. For example, Conway et al. [9] generalize the set-based semi-naive evaluation into one over S-relations where S is a semilattice, and Mumick et al. [35] adapt magic-set transformation to work in the presence of aggregate-in-recursion. In this article, we will show how the FGH-rule can capture both the magic-set transformation and the general semi-naive evaluation.

To evaluate a recursive Datalog program is to solve fixpoint equations over semirings, which has been studied in the automata theory [28], program analysis [10, 36], and graph algorithms [8, 32, 31] communities since the 1970s. (See [40, 23, 29, 20, 52] and references thereof). The problem took slightly different forms in these cases, but at its core, it is to find a solution to the equation $x = f(x)$, where $x \in S^n$ is a vector over the domain S of a semiring, and $f : S^n \to S^n$ has multivariate polynomial component functions. A literature review on this fixpoint problem can be found in [26].

3. DATALOG

Datalog* extends Datalog in two ways. First, all relations are S-relations over some semiring S. Second, the semiring needs to be partially ordered; more precisely, it needs to be a POPS.

POPS A partially ordered pre-semiring, or POPS, is a tuple $S = (S, \oplus, \odot, 0, 1, \sqsubseteq)$, where:

- $(S, \oplus, \odot, 0, 1)$ is a pre-semiring, meaning that \oplus, \odot are commutative and associative, have identities 0 and 1 respectively, and \odot distributes over \oplus.
- \sqsubseteq is a partial order with a minimal element, \bot.
- Both \oplus, \odot are monotone operations w.r.t. \sqsubseteq.

Pre-semirings have been studied intensively [20], and we need to straighten up some terminology before proceeding. A pre-semiring only requires \odot to be commutative: if \odot is also commutative, then it is called a commutative pre-semiring. All pre-semirings in this paper are commutative. If $x \odot 0 = 0$ holds for all x, then S is called a semiring. We call \odot strict if $x \odot z = 0$ for all x; throughout this paper, we will assume that \odot is strict.

When the relation $x \sqsubseteq y$ is defined by $\exists z : x \oplus z = y$, then \sqsubseteq is called the natural order. In that case, the minimal element is $\bot = 0$. Naturally ordered semirings appear often in the literature [20, 21, 11], but we do not require POPS to be naturally ordered (See Example 3.2).

S-Relations Fix a POPS S, and a domain D, which, for simplicity, we will assume to be finite. An S-relation is a function $R : D^k \to S$. We call D^k the key space and S the value space. When S is the set of Booleans, which we denote \mathbb{B}, then a \mathbb{B}-relation is a standard relation, i.e. a set. Next, we need to define sum-product, and sum-product expressions, which are generalizations of Conjunctive Queries (CQ), and Unions of Conjunctive Queries (UCQ):

$$T[x_1, \ldots, x_k] := \bigoplus_{x_{k+1}, \ldots, x_q \in D} \{A_1 \odot \cdots \odot A_m \mid C\}$$

$$F[x_1, \ldots, x_k] := T_1[x_1, \ldots, x_k] \odot \cdots \odot T_q[x_1, \ldots, x_k]$$

SIGMOD Record, June 2022 (Vol. 51, No. 2)
The sum-product expression (6) defines a new \(S \)-relation \(T \), with head variables \(x_1, \ldots, x_k \). It consists of a summation of products, where the bound variables \(x_{k+1}, \ldots, x_p \) range over the domain \(D \), and may be further restricted to satisfy a condition \(C \). Each factor \(A_n \) is either a relational atom, \(R_i[x_{n_1}, \ldots, x_{n_i}] \), where \(R_i \) is a relation name from some given vocabulary, or an equality predicate, \([x_t = x_u] \). The sum-sum-expression (7) is a sum of sum-product expressions, with the restriction that all summands have the same head variables.

Datalog The input to a Datalog\(^p \)** program consists of \(m \) EDB predicates\(^5 \) \(E = (E_1, \ldots, E_m) \), and the output consists of \(n \) IDB predicates \(P = (P_1, \ldots, P_n) \). The Datalog\(^p \) program has one rule for each IDB:

\[
P_1[vars_1] :: F_1[vars_1] \\
\vdots \\
P_n[vars_n] :: F_n[vars_n]
\]

where each \(F_i[vars_i] \) is a sum-sum-product expression using the relation symbols \(E_1, \ldots, E_m, P_1, \ldots, P_n \). We say that the program is **linear** if each product contains at most one IDB predicate.

Semantics The tuple of all \(n \) sum-sum-product expressions \(F = (F_1, \ldots, F_n) \) is called the Immediate Consequence Operator, or ICO. Fix an instance of the EDB relations \(E \). The ICO defines a function \(P \mapsto F(E, P) \) that maps the IDB instances \(P \) to new IDB instances. The **semantics** of a Datalog\(^p \) program is the least fixpoint of the ICO, when it exists. Equivalently, the Datalog\(^p \) program is the result returned by the following naïve evaluation algorithm:

\[
P_0 = \bot; \quad t = 0; \\
\text{repeat } P_{t+1} = F(E, P_t); \\
\quad t = t + 1; \\
\text{until } P_t = P_{t-1}
\]

The reader may have recognized that Datalog\(^p \) is quite similar to Datalog, with minor changes: the operations \(\lor, \land \) are replaced with \(\oplus, \ominus \), and multiple rules for the same IDB predicate are combined into a single sum-sum-product rule. Importantly, Datalog\(^p \) retains the same simple fixpoint semantics, but it generalizes from sets to \(S \)-relations. We illustrate this with two examples.

Example 3.1. Consider the one-rule program:

\[
P[x, y] :: E[x, y] \ominus \bigoplus_{z} (P[x, z] \otimes E[z, y])
\]

We will interpret it over several POPS and use it to compute quite different things.

\(^5\)EDB and IDB stand for extensional database and intensional database respectively [1].

Booleans Choose \(\mathbb{B} = \{\{0, 1\}, \lor, \land, 0, 1, \leq\} \) to be the value space, where \(0 \leq 1 \). Then the program in Eq. (9) becomes the transitive closure program in Eq. (2).

Tropical Semiring \(\text{Trop}^+ = (\mathbb{R}_+, \min, +, \ominus, 0, \geq) \) is a naturally ordered POPS, called the tropical semiring. When we choose it as value space, then the program in Eq. (9) becomes the APSP program in Eq. (1). We briefly illustrate its semantics on a graph with three nodes \(a, b, c \) and edges (we show only entries with value \(< \infty \)):

\[
E[a, b] = 1 \quad E[a, c] = 10 \quad E[b, c] = 1
\]

During the iterations \(t = 0, 1, 2, \ldots \) of the naïve algorithm, \(P \) “grows” as follows (notice that the order relation in \(\text{Trop}^+ \) is the reverse of the usual one, thus \(\ominus \) is the smallest value):

\[
t = 0 \quad \infty \quad \infty \quad \infty \\
t = 1 \quad 1 \quad 10 \quad 1 \quad \infty \\
t = 2 \quad 1 \quad 2 \quad 1 \quad \infty
\]

\(p \)-Tropical We can use the same program over a different POPS to compute the \(p + 1 \) shortest paths, for some fixed number \(p \geq 0 \). We need some notations. If \(x = \{x_0 \leq x_1 \leq \ldots \leq x_n\} \) is a bag of numbers, then we denote by \(\min_p(x) \) the smallest \(p + 1 \) elements of the bag \(x \). The \(p \)-tropical semiring is:

\[
\text{Trop}^+_p \overset{\text{def}}{=} (\mathbb{B}_{p+1}(\mathbb{R}_+ \cup \{\infty\}), +, \ominus, 0, 1)
\]

where \(\mathbb{B}_{p+1} \) represents bags of \(p + 1 \) elements, and:\(^6\)

\[
x \ominus_p y \overset{\text{def}}{=} \min_p(x \cup y) \quad x \ominus_p y \overset{\text{def}}{=} \min_p(x \setminus y)
\]

\[
0_p = \{\infty, \infty, \ldots, \infty\} \quad 1_p = \{0, \infty, \ldots, \infty\}
\]

\(\text{Trop}^+_p \) is naturally ordered. Now the program (9) computes the length of the \(p + 1 \) shortest paths from \(x \) to \(y \).

\(\eta \)-Tropical Finally, we illustrate how the same program can be used to compute the length of all paths that differ from the shortest path by \(\leq \eta \), for some fixed \(\eta \geq 0 \). Given any finite set \(\mathbf{x} \) of real numbers, define:

\[
\min_{\leq \eta}(\mathbf{x}) = \{u \mid u \in \mathbf{x}, u - \min(\mathbf{x}) \leq \eta\}
\]

In other words, \(\min_{\leq \eta} \) retains from the set \(\mathbf{x} \) the elements at distance \(\leq \eta \) from its minimum. Define the POPS:

\[
\text{Trop}^+_{\leq \eta} \overset{\text{def}}{=} (\mathbb{B}_{\leq \eta}(\mathbb{R}_+ \cup \{\infty\}), +, \ominus, 0, 1)
\]

where \(\mathbb{B}_{\leq \eta} \) is the set of finite sets \(\mathbf{x} \) where \(\max(\mathbf{x}) - \min(\mathbf{x}) \leq \eta \), and:

\[
x \ominus_{\leq \eta} y = \min_{\leq \eta}(x \cup y) \quad x \ominus_{\leq \eta} y = \min_{\leq \eta}(x \setminus y)
\]

\[
0_{\leq \eta} = \{\infty\} \quad 1_{\leq \eta} = \{0\}
\]

\(^6\)For sets or bags \(\mathbf{x}, \mathbf{y} \): \(\mathbf{x} \oplus \mathbf{y} = \{u + v \mid u \in \mathbf{x}, v \in \mathbf{y}\} \).
4. OPTIMIZING DATALOGO

Traditional Datalog has two major advantages: first, it has a clean declarative semantics; second, it has some powerful optimization techniques such as the semi-naïve evaluation, magic-set rewriting, and the PreM optimization [51]. Datalogo generalizes both: we have seen its semantics in Sec. 3, while here we show (following [26, 47]) that the previous optimizations are special cases of a general, yet very simple optimization rule, which we call the FGH-rule (pronounced “fig-rule”).

4.1 The FGH-Rule

Consider an iterative program that repeatedly applies a function \(F \) until some termination condition is satisfied, then applies a function \(G \) that returns the final answer \(Y \):

\[
X \leftarrow X_0 \\
\text{loop } X \leftarrow F(X) \text{ end loop} \\
Y \leftarrow G(X)
\]

We call this an FG-program. The FGH-rule provides a sufficient condition to compute the final answer \(Y \) by another program, called the GH-program:

\[
Y \leftarrow G(X_0) \\
\text{loop } Y \leftarrow H(Y) \text{ end loop}
\]

The FGH-Rule [47] states: if the following identity holds:

\[
G(F(X)) = H(G(X))
\]

then the FG-program (11) and the GH-program (12) are equivalent. We supply here a “proof by picture” of the claim:

\[
\begin{array}{ccccccc}
X_0 & \rightarrow & F & \rightarrow & X_1 & \rightarrow & F & \rightarrow & X_2 & \rightarrow & \ldots & \rightarrow & X_n \\
& \downarrow & G & \downarrow & G & \downarrow & G & \downarrow & & & & & \\
Y_0 & \rightarrow & H & \rightarrow & Y_1 & \rightarrow & H & \rightarrow & Y_2 & \rightarrow & \ldots & \rightarrow & Y_n
\end{array}
\]

Our goal is to use the FGH-rule to optimize Datalogo programs, and we proceed as follows. Consider two Datalogo programs \(\Pi_1 \) and \(\Pi_2 \) given below:

\[
\Pi_1 : \quad X : F(X) \\
Y : G(Y)
\]

\[
\Pi_2 : \quad Y : H(Y)
\]

Here \(X \) and \(Y \) are tuples of IDBs (for example \(X = (P_1, \ldots, P_n) \) with the notation in Sec. 3), and \(F, G, H \) represent sum-sum-product expressions over these IDBs. In both cases, only the IDBs \(Y \) are returned. Then, if the FGH-rule (13) holds, and, moreover, \(G(\bot) = \bot \), then \(\Pi_1 \) is equivalent to \(\Pi_2 \). We notice that, under these conditions, if \(\Pi_1 \) terminates, then \(\Pi_2 \) terminates as well.

We illustrate several applications of the FGH-rule in Sec. 4.2, then describe its implementation in an optimizer in Sec. 4.3.

4.2 Applications of the FGH-Rule

We start with some simple applications. Throughout this section we assume that the function \(H \) is given; we discuss in Sec. 4.3 how to synthesize \(H \).

Example 4.1 (Connected Components). We are given an undirected graph, with edge relation \(E(x,y) \), where each node \(x \) has a unique numerical label \(L[x] \). The task is to compute for each node \(x \), the minimum label \(CC[x] \) in its connected component. This program is a well-known target of query optimization in the literature [51]. A naïve approach is to first compute the reflexive and transitive closure of \(E \), then apply a min-aggregate:

\[
TC(x,y) :\, [x = y] \lor \exists z (E(x,z) \land TC(z,y)) \\
CC[x] :\, \min_y \{L[y] \mid TC(x,y)\}
\]
normal form (i.e. in sum-sum-product form), we obtain that run time from O This is a powerful optimization, because it reduces the positive closure which is shown in Fig. 1. More precisely, we need to prove their equivalence, by checking the FGH-rule An optimized program interleaves aggregation and recursion:

$$CC_1[x] := \min_y \{ L[y] \mid TC(x,y) \}$$ $$CC_2[x] := \min_y \{ \min \{ L[y] \mid CC[y] \mid E(x,y) \} \}$$

We prove their equivalence, by checking the FGH-rule which is shown in Fig. 1. More precisely, we need to check that $CC_1 \equiv G(F(TC)) = G(TC')$ is equivalent to $CC_2 \equiv H(G(TC)) = H(CC)$, which is shown in Fig. 2.

Example 4.2 (Simple Magic). The simplest application of magic-set optimization [5, 6] converts transitive closure to reachability, by rewriting this program:

$$\text{TC}(x,y) := [x = y] \lor \exists z (TC(x,z) \land E(z,y))$$ $$Q(y) := TC(a,y)$$

where a is some constant, into this program:

$$\text{TC}(x,y) := [x = y] \lor \exists z (TC(x,z) \land E(z,y))$$ $$Q(y) := TC(a,y)$$

(14)

This is a powerful optimization, because it reduces the run time from $O(n^2)$ to $O(n)$. Several Datalog systems support some form of magic-set optimizations. We check that (14) is equivalent to (15) by verifying the FGH-rule. The functions F,G,H are shown in Fig. 3. One can verify that $G(F(TC)) = H(G(TC))$, for any relation TC. Indeed, after converting both expressions to normal form (i.e. in sum-sum-product form), we obtain

$$TC(x,y) \xrightarrow{F} [x = y] \lor \exists z (TC(x,z) \land E(z,y))$$ $$G$$ $$TC(x,y) \xrightarrow{H} [x = y] \lor \exists z (TC(x,z) \land E(z,y))$$

Figure 1: Visualization of the FGH-rule used in Example 4.1.

Figure 2: Computing CC_1 and CC_2 from Ex. 4.1.

An optimized program interleaves aggregation and recursion:

$$CC_1[x] := \min_y \{ L[y] \mid TC'(x,y) \}$$ $$CC_2[x] := \min_y \{ \min \{ L[y] \mid CC[y] \mid E(x,y) \} \}$$

Replacing $TC(a,_) \, G(H)$ now yields precisely program Π_2 in (15). We show in the full version of our paper [47] that, given a sideways information passing strategy (SIPS) [6] every magic-set optimization [5] over a Datalog program can be proven correct by a sequence of FGH-rule applications.

Example 4.3 (General Semi-Naïve). The algorithm for the naïve evaluation of (positive) Datalog re-discovers each fact from step t again at steps $t + 1, t + 2, \ldots$. The semi-naïve algorithm aims at avoiding this, by computing only the new facts. We generalize the semi-naïve evaluation from the Boolean semiring to any POS S, and prove it correct using the FGH-rule. We require S to be a complete distributive lattice and $+$ to be idempotent, and define the “minus” operation as: $b \ominus a \equiv \land \{ c \mid b \sqsubseteq a + c \}$, then prove using the FGH-rule the following programs equivalent:

$$\Pi_1 :$$

$$\Delta_0 := \emptyset; \quad \Delta_0 := x \ominus F(X) \ominus X$$

$$\text{loop } X_t := F(X_{t-1}) ;$$

$$\text{loop } Y_t := Y_t \ominus \Delta_t ;$$

$$\Delta_t := F(Y_t) \ominus Y_t ;$$

To prove their equivalence, we define:

$$G(X) := (X, F(X) \ominus X)$$

$$H(X, \Delta) := (X \ominus \Delta, F(X \ominus \Delta) \ominus (X \ominus \Delta))$$

Then we prove that $G(F(X)) = H(G(X))$ by exploiting the fact that S is a complete distributive lattice. In
practice, we compute the difference \(\Delta_t = F(Y_t) \ominus Y_t = F(Y_{t-1} \oplus \Delta_{t-1}) \ominus F(Y_{t-1}) \), using an efficient differential rule that computes \(\delta F(Y_t) = F(Y_{t-1} \oplus \Delta_{t-1}) \ominus F(Y_{t-1}) \), where \(\delta F \) is an incremental update query for \(F \), i.e., it satisfies the identity \(F(Y) \oplus \delta F(Y, \Delta) = F(Y \oplus \Delta) \).

Thus, semi-naïve query evaluation generalizes from standard Datalog over the Booleans to Datalog\(^*\) over any complete distributive lattice with idempotent \(\oplus \), and, moreover, is a special case of the FGH-rule.

We remark that the FGH-rule is a generalization of an optimization rule introduced by Zaniolo et al. [51] and called Pre-mappability, or PreM. The PreM property asserts that the identity \(G(F(X)) = G(F(G(X))) \) holds: in this case one can define \(H(X) = G(F(X)) \), and the FGH-rule holds automatically. The PreM property is more restricted than the FGH-rule, in two ways: the types of the IDBs of the F-program and the H-program must be the same, and the new query \(H \) is uniquely defined by \(F \) and \(G \), which limits the type of optimizations that are possible under PreM.

Loop Invariants We now describe a more powerful application of the FGH-rule, which uses loop invariants. The general principle is the following. Let \(\phi(X) \) be any predicate satisfying the following three conditions:

\[
\begin{align*}
\phi(X_0) \\
\phi(X) & \Rightarrow \phi(F(X)) \\
\phi(X) & \Rightarrow (G(F(X)) = H(G(X)))
\end{align*}
\]

then the FG-program (11) and the GH-program (12) are equivalent. This conditional FGH-rule is very powerful; we briefly illustrate it with an example.

Example 4.4 (Beyond Magic). Consider the following program:

\[
\begin{align*}
\Pi_1 : & \quad TC(x,y) \quad \mathrel{\iff} [x = y] \lor \exists z(E(x,z) \land TC(z,y)) \\
\quad Q(y) & \quad \mathrel{\iff} TC(a,y)
\end{align*}
\]

which we want to optimize to:

\[
\begin{align*}
\Pi_2 : & \quad Q(y) \quad \mathrel{\iff} [y = a] \lor \exists z(Q(z) \land E(z,y))
\end{align*}
\]

Unlike the simple magic program in Ex. 4.2, here rule (17) is right-recursive. As shown in [6], the magic-set optimization using the standard sideways information passing optimization [1] yields a program that is more complicated than our program (18). Indeed, consider a graph that is simply a directed path \(a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n \) with \(a = a_0 \). Then, even with magic-set optimization, the right-recursive rule (17) needs to derive quadratically many facts of the form \(T(a_i, a_j) \) for \(i \leq j \), whereas the optimized program (18) can be evaluated in linear time. Note also that the FGH-rule cannot be applied directly to prove that the program (17) is equivalent to (18). To see this, denote by \(P_1 = G(F(TC)) \) and \(P_2 = H(G(TC)) \), and observe that \(P_1, P_2 \) are defined as:

\[
\begin{align*}
P_1(y) & \quad \mathrel{\iff} [y = a] \lor \exists z(E(a,z) \land TC(z,y)) \\
P_2(y) & \quad \mathrel{\iff} [y = a] \lor \exists z(TC(a,z) \land E(z,y))
\end{align*}
\]

In general, \(P_1 \neq P_2 \). The problem is that the FGH-rule requires that \(G(F(TC)) = H(G(TC)) \) for every input \(TC \), not just the transitive closure of \(E \). However, the FGH-rule does hold if we restrict \(TC \) to relations that satisfy the following loop-invariant \(\Phi(TC) \):

\[
\exists z_1(E(x,z_1) \land TC(z_1,y)) \Rightarrow \exists z_2(TC(x,z_2) \land E(z_2,y)) \tag{19}
\]

If \(TC \) satisfies this predicate, then it follows immediately that \(P_1 = P_2 \), allowing us to optimize program (17) to (18). It remains to prove that \(\Phi \) is indeed an invariant for the function \(F \). The base case (16) holds because both sides of (19) are empty when \(TC = \emptyset \). It remains to check \(\Phi(TC) \Rightarrow \Phi(F(TC)) \). Denote \(TC' \overset{def}{=} F(TC) \), then we need to check that, if (19) holds, then the predicate \(\Psi_1(x,y) \overset{def}{=} \exists z_1(E(x,z_1) \land TC'(z_1,y)) \) is equivalent to the predicate \(\Psi_2(x,y) \overset{def}{=} \exists z_2(TC'(x,z_2) \land E(z_2,y)) \).

Using (19) we can prove the equivalence of the predicates \(\Psi_1 \) and \(\Psi_2 \).

We describe in [47] how to infer the loop invariant given a program and constraints on the input.

Semantic optimization Finally, we illustrate how the FGH-rule takes advantage of database constraints [38]. In general, a priori knowledge of database constraints can lead to more powerful optimizations. For instance, in [5], the counting and reverse counting methods are presented to further optimize the same-generation program if it is known that the underlying graph is acyclic. We present a principled way of exploiting such a priori knowledge. As we show here, recursive queries have the potential to use global constraints on the data during semantic optimization; for example, the query optimizer may exploit the fact that the graph is a tree, or the graph is connected. We will denote by \(\Gamma \) the set of constraints on the EDBs. Then, the FGH-rule (13) needs to be be checked only for EDBs that satisfy \(\Gamma \), as we illustrate in this example:

Example 4.5. Consider again the bill-of-material problem in Ex. 3.2. SubPart\((x,y)\) indicates that \(y \) is a subpart of \(x \), and \(\text{Cost}[x] \in \mathbb{N} \) represents the cost of the part \(x \). We want to compute, for each \(x \), the total cost \(\text{Cost}[x] \) of all its subparts, sub-subparts, etc. Recall from Ex. 3.2 that, if we insist on interpreting the program (10) over the natural numbers or reals (and not the lifted naturals \(\mathbb{N}_1 \) or lifted reals \(\mathbb{R}_1 \)), then a cyclic graph will cause the program to diverge. Even if the subpart hierarchy is a DAG, we have to be careful not to double count costs. Therefore, we first compute the transitive closure, and then sum up all costs:
\[\Pi_1: \quad S(x, y) := \left[x = y \right] \vee \exists z (S(x, z) \land \text{SubPart}(z, y))\]

\[Q[y] := \sum_{z} \{\text{Cost}[y] \mid S(x, y)\}\]

\[\Pi_2: \quad Q[y] := \text{Cost}[x] + \sum_{z} \{Q[y] \mid \text{SubPart}(x, z)\}\]

Consider now the case when our subpart hierarchy is a tree. Then, we can compute the total cost much more efficiently by using the program in Eq. (10), repeated here for convenience:

\[P_1 = \sum_{y} \{\text{Cost}[y] \mid [x = y] \vee \exists z (S(x, z) \land \text{SubPart}(z, y))\}\]

\[= \text{Cost}[x] + \sum_{y} \{\text{Cost}[y] \mid \exists z (S(x, z) \land \text{SubPart}(z, y))\}\]

\[= \text{Cost}[x] + \sum_{y} \{\text{Cost}[y] \mid (S(x, y) \land \text{SubPart}(y))\}\]

Figure 4: Transformation of \(P_1 \overset{\text{def}}{=} G(F(S))\) in Ex. 4.5.

4.3 Program Synthesis

In order to use the FGH-rule, the optimizer has to do the following: given the expressions \(F, G\) find the new expression \(H\) such that \(G(F(X)) = H(G(X))\). We will denote \(G(F(X))\) and \(H(G(X))\) by \(P_1, P_2\) respectively. There are two ways to find \(H\): using rewriting, or using program synthesis with an SMT solver.

Rule-based Synthesis In query rewriting using views we are given a query \(Q\) and a view \(V\), and want to find another query \(Q'\) that answers \(Q\) by using only the view \(V\) instead of the base tables \(X\); in other words, \(Q(X) = Q'(V(X))\) [22, 19]. The problem is usually solved by applying rewrite rules to \(Q\), until it only uses the available views. The problem of finding \(H\) is an instance of query rewriting using views, and one possibility is to approach it using rewrite rules; for this purpose we used the rule engine egg [48], a state-of-the-art equality saturation system [47].

Counterexample-based Synthesis Rule-based synthesis explores only correct rewritings \(P_2\), but its space is limited by the hand-written axioms. The alternative approach, pioneered in the programming language community [43], is to generate candidate programs \(P_2\) from a much larger space, then using an SMT solver to verify correctness. This technique, called Counterexample-Guided Inductive Synthesis, or CEGIS, can find rewritings \(P_2\) even in the presence of interpreted functions, because it exploits the semantics of the underlying domain.

Rosette We briefly review Rosette [44], the CEGIS system used in our optimizer. The input to Rosette consists of a specification and a grammar, and the goal is to synthesize a program defined by the grammar that satisfies the specification. The main loop is implemented with a pair of *dueling* SMT-solvers, the *generator* and the *checker*. In our setting, the inputs are the query \(P_1\), the database constraint \(\Gamma\) (including the loop invariant), and a small grammar \(\Sigma\), described below. The specification is \(\Gamma \models (P_1 = P_2)\), where \(P_2\) is defined by the grammar \(\Sigma\). The generator generates syntactically correct programs \(P_2\), and the verifier checks \(\Gamma \models (P_1 = P_2)\).
In the most naïve attempt, the generator could blindly generate candidates \(P_2, P_3, P_4, \ldots \), until one is accepted by the verifier; this is hopelessly inefficient. A first optimization in CEGIS is that the verifier returns a small counterexample database instance \(X \) for each unsuccessful candidate \(P_2 \), i.e., \(P_1(X) \neq P_2(X) \). When considering a new candidate \(P_2 \), the generator checks that \(P_1(X_i) = P_2(X_i) \) holds for all previous counterexamples \(X_1, X_2, \ldots \), by simply evaluating the queries \(P_1, P_2 \) on the small instance \(X_i \). This significantly reduces the search space of the generator. A second optimization is to use the SMT solver itself to generate the next candidate \(P_2 \), as follows. We assume that the grammar \(\Sigma \) is non-recursive, and associate a symbolic Boolean variable \(b_1, b_2, \ldots \) to each choice of the grammar. The grammar \(\Sigma \) can be viewed now as a Binary Decision Diagram, where each node is labeled by a choice variable \(b_j \), and each leaf by a completely specified program \(P_2 \). The search space of the generator is completely defined by the choice variables \(b_j \), and Rosette uses the SMT solver to generate values for these Boolean variables such that the corresponding program \(P_2 \) satisfies \(P_1(X) = P_2(X) \), for all previous counterexample instances \(X_j \). This significantly speeds up the choice of the next candidate \(P_2 \).

Using Rosette To use Rosette, we need to define the specification and the grammar. A first attempt is to simply provide the specification \(\Gamma \models (G(F(X)) = H(G(X))) \) and supply the grammar of Datalog\(^{\circ} \). This does not work, since Rosette uses the SMT solver to check the identity, and modern SMT solvers have limitations that require us to first normalize \(G(F(X)) \) and \(H(G(X)) \) before checking their equivalence. Even if we could modify Rosette to normalize \(H(G(X)) \) during verification, there is still no obvious way to incorporate normalization into the program generator driven by the SMT solver. Instead, we define a grammar for \(\text{normalize}(H(G(X))) \) rather than for \(H \), and then specify:

\[
\Gamma \models \text{normalize}(G(F(X))) = \text{normalize}(H(G(X)))
\]

Then, we denormalize the result returned by Rosette, in order to extract \(H \). In summary, our CEGIS-approach for FGH-optimization can be visualized as follows:

\[
P_1 \xrightarrow{\text{normalize}} P_1^{\text{CEGIS}} \xrightarrow{\text{denormalize}} P_2^{\text{CEGIS}} \xrightarrow{\text{denormalize}} P_2
\] (25)

The choice of the grammar \(\Sigma \) is critical for the FGH-optimizer. If it is too restricted, then the optimizer will be limited too; if it is too general, then the optimizer will take a prohibitive amount of time to explore the entire space. We refer the reader to [47] for details on how we constructed the grammar \(\Sigma \).

4.4 Experimental results

We implemented an optimizer for Datalog\(^{\circ} \) programs. The input is a program \(\Pi_i \), given by \(F, G \), and a database constraint \(\Gamma \), and the output is an optimized program \(H \). We evaluated it on three Datalog systems, and several programs from benchmarks proposed by prior research [41, 13]; in [47] we also propose new benchmarks that perform standard data analysis tasks. We did not modify any of the three Datalog engines. Our experiments aim to answer the question: How effective is our source-to-source optimization, given that each system already supports a range of optimizations?

Setup There is a great number of commercial and open-source Datalog engines in the wild, but only a few support aggregates in recursion. We chose 2 open source research systems, BigDatalog [41] and RecStep [13], and an unreleased commercial system \(X \) for our experiments. Both BigDatalog and RecStep are multi-core systems. The commercial system \(X \) is single core. As we shall discuss, \(X \) is the only one that supports all features for our benchmarks. In this paper we cover 3 out of the 7 benchmark programs used in [47]: Ex. 4.4 (BM), Ex. 4.1 (CC), and Single-source Shortest Path (SSSP) from [41]. The real-world datasets twitter, epinions, and wiki are from the popular SNAP collection [30].

Run Time Measurement For each program-dataset pair we measure the runtime of three programs: the original, with the FGH-optimization, and with the FGH-optimization and the generalized semi-naïve transformation (GSN). We report the speedups relative to the original program in Fig. 5. Where the original program timed out after 3 hours, we report the speedup against 3 hours. In some other cases the original program ran out of memory and we mark them with “o.o.m.” in the figure. All three systems already perform semi-naïve evaluation on the original program expressed over the Boolean semiring. But the FGH-optimized program is over a different semiring (except for BM), and GSN has non-stratifiable rules with negation, which are supported only by system \(X \); we report GSN only for system \(X \).

Findings. Figure 5 shows the results of the first group of benchmarks optimized by the rule-based synthesizer. The optimizer provides significant (up to 4 orders of magnitude) speedup across systems and datasets. In a few cases, for BM and CC on wiki under BigDatalog, and SSSP on wiki under \(X \), the optimization has little effect. This is due to the small size of the wiki dataset: both the optimized and unoptimized programs finish instantly, so the run time is dominated by optimization overhead. We also note that (under \(X \)) GSN speeds up SSSP but slows down CC (note the log scale). The latter occurs because the \(\Delta \)-relations for CC are very large, and as a result the semi-naïve evaluation has the same complexity as the naïve evaluation; but the semi-naïve program is more complex and incurs a constant slowdown. GSN has no effect on BM because the program is in the
Boolean semiring, and X already implements the standard semi-naive evaluation. Optimizing BM with FGH on BigDatalog leads to significant speedup, although the system already supports magic-set rewrite, because the optimization depends on a loop invariant. Both the semi-naive and naïve versions of the optimized program are significantly faster than the unoptimized program.

5. CONCLUSIONS

We presented Datalog\(^{\dagger}\), a recursive language which combines the elegant syntax and semantics of Datalog, with the power of semiring abstraction. This combination allows Datalog\(^{\dagger}\) to express iterative computations prevalent in modern data analytics, yet retain the declarative least fixpoint semantics of Datalog. We also presented a novel optimization rule called the FGH-rule, and techniques for optimizing Datalog\(^{\dagger}\) by program synthesis using the FGH-rule. Experimental results were presented to validate the theory. There are interesting open problems relating to Datalog\(^{\dagger}\) convergence properties and its optimization; we refer to [26, 47] for details.

6. REFERENCES

