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ABSTRACT
FoundationDB is an open source transactional key value
store created more than ten years ago. It is one of the first
systems to combine the flexibility and scalability of NoSQL
architectures with the power of ACID transactions. Founda-
tionDB adopts an unbundled architecture that decouples an
in-memory transaction management system, a distributed
storage system, and a built-in distributed configuration sys-
tem. Each sub-system can be independently provisioned
and configured to achieve scalability, high-availability and
fault tolerance. FoundationDB includes a deterministic sim-
ulation framework, used to test every new feature under a
myriad of possible faults. FoundationDB offers a minimal
and carefully chosen feature set, which has enabled a range
of disparate systems to be built as layers on top. Founda-
tionDB is the underpinning of cloud infrastructure at Apple,
Snowflake and other companies.

1 Introduction
Many cloud services rely on scalable, distributed storage
backends for persisting application state. Such storage sys-
tems must be fault tolerant and highly available, and at the
same time provide sufficiently strong semantics and flexible
data models to enable rapid application development. Such
services must scale to billions of users, petabytes or exabytes
of stored data, and millions of requests per second.

More than a decade ago, NoSQL storage systems emerged
offering ease of application development, making it simple
to scale and operate storage systems, offering fault-tolerance
and supporting a wide range of data models (instead of the
traditional rigid relational model). In order to scale, these
systems sacrificed transactional semantics, and instead pro-
vided eventual consistency, forcing application developers to
reason about interleavings of updates from concurrent oper-
ations.

©ACM 2022. This is a minor revision of the pa-
per entitled “FoundationDB: A Distributed Unbundled
Transactional Key Value Store”, published in SIGMOD
’21, June 20–25, 2021, Virtual Event, China. DOI:
https://doi.org/10.1145/3448016.3457559

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 2022 ACM 0001-0782/08/0X00 ...$5.00.

FoundationDB (FDB) [4] was created in 2009 and gets
its name from the focus on providing what we saw as the
foundational set of building blocks required to build higher-
level distributed systems. It is an ordered, transactional,
key-value store natively supporting multi-key strictly serial-
izable transactions across its entire key-space. Unlike most
databases, which bundle together a storage engine, data
model, and query language, forcing users to choose all three
or none, FDB takes a modular approach: it provides a highly
scalable, transactional storage engine with a minimal yet
carefully chosen set of features. The NoSQL model leaves
application developers with great flexibility. Applications
can manage data stored as simple key-value pairs, but at
the same time implement advanced features, such as consis-
tent secondary indices and referential integrity checks [16].
FDB defaults to strictly serializable transactions, but allows
relaxing these semantics for applications that don’t require
them with flexible, fine-grained controls over conflicts.

One of the reasons for its popularity and growing open
source community is FoundationDB’s focus on the “lower
half” of a database, leaving the rest to its “layers”—stateless
applications developed on top to provide various data mod-
els and other capabilities. With this, applications that would
traditionally require completely different types of storage
systems, can instead all leverage FDB. Indeed, the wide
range of layers that have been built on FDB in recent years
are evidence to the usefulness of this unusual design. For
example, the FoundationDB Record Layer [16] adds back
much of what users expect from a relational database, and
JanusGraph [8], a graph database, provides an implemen-
tation as a FoundationDB layer [7]. In its newest release,
CouchDB [1] (arguably the first NoSQL system) is being
re-built as a layer on top of FoundationDB.

Testing and debugging distributed systems is at least as
hard as building them. Unexpected process and network
failures, message reorderings, and other sources of non de-
terminism can expose subtle bugs and implicit assumptions
that break in reality, which are extremely difficult to repro-
duce or debug. The consequences of such subtle bugs are
especially severe for database systems, which purport to of-
fer perfect fidelity to an unambiguous contract. Moreover,
the stateful nature of a database system means that any
such bug can result in subtle data corruption that may not
be discovered for months. FDB took a radical approach—
before building the database itself, we built a deterministic
database simulation framework that can simulate a network
of interacting processes and a variety of disk, process, net-
work, and request-level failures and recoveries, all within a
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single physical process. This rigorous testing in simulation
makes FDB extremely stable, and allows its developers to
introduce new features and releases in a rapid cadence.

FDB adopts an unbundled architecture [29] that com-
prises a control plane and a data plane. The control plane
manages the metadata of the cluster and uses Active Disk
Paxos [15] for high availability. The data plane consists of a
transaction management system, responsible for processing
updates, and a distributed storage layer serving reads; both
can be independently scaled out. FDB achieves strict seri-
alizability through a combination of optimistic concurrency
control (OCC) [25] and multi-version concurrency control
(MVCC) [12]. One of the features distinguishing FDB from
other distributed databases is its approach to handling fail-
ures. Unlike most similar systems, FDB does not rely on
quorums to mask failures, but rather tries to eagerly detect
and recover from them by reconfiguring the system. This
allows us to achieve the same level of fault tolerance with
significantly fewer resources: FDB can tolerate f failures
with only f + 1 (rather than 2f + 1) replicas.

This paper makes three primary contributions. First, we
describe an open source distributed storage system, Founda-
tionDB, combining NoSQL and ACID, used in production
at Apple, Snowflake, and other companies. Second, an in-
tegrated deterministic simulation framework makes Founda-
tionDB one of the most stable systems of its kind. Third, we
describe a unique architecture and approach to transaction
processing, fault tolerance, and high availability.

2 Design
The main design principles of FDB are:

• Divide-and-Conquer (or separation of concerns). FDB
decouples the transaction management system (write
path) from the distributed storage (read path) and
scales them independently. Within the transaction
management system, processes are assigned various
roles representing different aspects of transaction man-
agement. Furthermore, cluster-wide orchestrating tasks,
such as overload control, and load balancing are also
divided and serviced by additional heterogeneous roles.

• Make failure a common case. For distributed systems,
failure is a norm rather than an exception. To cope
with failures in the transaction management system of
FDB, we handle all failures through the recovery path:
the transaction system proactively shuts down when it
detects a failure. Thus, all failure handling is reduced
to a single recovery operation, which becomes a com-
mon and well-tested code path. To improve availabil-
ity, FDB strives to minimize Mean-Time-To-Recovery
(MTTR). In our production clusters, the total time is
usually less than five seconds.

• Simulation testing. FDB relies on a randomized, deter-
ministic simulation framework for testing the correct-
ness of its distributed database. Simulation tests not
only expose deep bugs [27], but also boost developer
productivity and the code quality of FDB.

2.1 Architecture
An FDB cluster has a control plane for managing critical
system metadata and cluster-wide orchestration, and a data
plane for transaction processing and data storage, as illus-
trated in Figure 1.
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Figure 1: Architecture and the transaction processing.

2.1.1 Control Plane
The control plane is responsible for persisting critical sys-
tem metadata, i.e., the configuration of transaction sys-
tems, on Coordinators. These Coordinators form a Paxos
group [15] and elect a ClusterController. The Cluster-

Controller monitors all servers in the cluster and recruits
three processes, Sequencer (described in Section 2.1.2), Data-
Distributor, and Ratekeeper, which are re-recruited if they
fail or crash. The DataDistributor is responsible for mon-
itoring failures and balancing data among StorageServers.
Ratekeeper provides overload protection for the cluster.

2.1.2 Data Plane
FDB targets OLTP workloads that are read-mostly, read
and write a small set of keys per transaction, have low con-
tention, and require scalability. FDB chooses an unbundled
architecture [29]: a distributed transaction management sys-
tem (TS) consists of a Sequencer, Proxies, and Resolvers,
all of which are stateless processes. A log system (LS) stores
Write-Ahead-Log (WAL) for TS, and a separate distributed
storage system (SS) is used for storing data and servicing
reads. The LS contains a set of LogServers and the SS has
a number of StorageServers. This scales well to Apple’s
largest transactional workloads [16].

The Sequencer assigns a read and a commit version to
each transaction and, for historical reasons, recruits Prox-

ies, Resolvers, and LogServers. Proxies offer MVCC read
versions to clients and orchestrate transaction commits. Re-
solvers check for conflicts among transactions. LogServers
act as replicated, sharded, distributed persistent queues,
each queue storing WAL data for a StorageServer.

The SS consists of a number of StorageServers, each
storing a set of data shards, i.e., contiguous key ranges,
and serving client reads. StorageServers are the major-
ity of processes in the system, and together they form a
distributed B-tree. Currently, the storage engine on each
StorageServer is an enhanced version of SQLite [24].



2.1.3 Read-Write Separation and Scaling
As mentioned above, processes are assigned different roles;
FDB scales by adding new processes for each role. Clients
read from sharded StorageServers, so reads scale linearly
with the number of StorageServers. Writes are scaled by
adding more Proxies, Resolvers, and LogServers. The
control plane’s singleton processes (e.g., ClusterController
and Sequencer) and Coordinators are not performance bot-
tlenecks; they only perform limited metadata operations.

2.1.4 Bootstrapping
FDB has no dependency on external coordination services.
All user data and most system metadata (keys that start
with 0xFF prefix) are stored in StorageServers. The meta-
data about StorageServers is persisted in LogServers, and
the LogServers configuration data is stored in all Coordi-
nators. The Coordinators are a disk Paxos group; servers
attempt to become the ClusterController if one does not
exist. A newly elected ClusterController recruits a new
Sequencer, which reads the old LS configuration from the
Coordinators and spawns a new TS and LS. Proxies re-
cover system metadata from the old LS, including informa-
tion about all StorageServers. The Sequencer waits until
the new TS finishes recovery (Section 2.2.4), then writes the
new LS configuration to all Coordinators. The new trans-
action system is then ready to accept client transactions.

2.1.5 Reconfiguration
The Sequencer process monitors the health of Proxies, Re-
solvers, and LogServers. Whenever there is a failure in
the TS or LS, or the database configuration changes, the
Sequencer terminates. The ClusterController treats this
as a Sequencer failure and recruits a new Sequencer, which
follows the above bootstrapping process to spawn a new
TS and LS. In this way, transaction processing is divided
into epochs, where each epoch represents a generation of the
transaction management system with its own Sequencer.

2.2 Transaction Management
This section describes end-to-end transaction processing and
strict serializability, then discusses logging and recovery.

2.2.1 End-to-end Transaction Processing
As illustrated in Figure 1, a client transaction starts by con-
tacting one of the Proxies to obtain a read version (i.e.,
a timestamp). The Proxy then asks the Sequencer for a
read version that at least as large as all previously issued
transaction commit versions, and sends this read version
back to the client. The client may then issue reads to
StorageServers and obtain values at that specific read ver-
sion. Client writes are buffered locally without contacting
the cluster and read-your-write semantics are preserved by
combining results from database look-ups with uncommitted
writes of the transaction. At commit time, the client sends
the transaction data, including the read and write sets (i.e.,
key ranges), to one of the Proxies and waits for a commit
or abort response. If the transaction cannot commit, the
client may choose to restart it.
A Proxy commits a client transaction in three steps. First,

it contacts the Sequencer to obtain a commit version that
is larger than any existing read versions or commit versions.
The Sequencer chooses the commit version by advancing it
at a rate of one million versions per second. Then, the Proxy

sends the transaction information to range-partitioned Re-

solvers, which implement FDB’s optimistic concurrency
control by checking for read-write conflicts. If all Resolvers
return with no conflict, the transaction can proceed to the
final commit stage. Otherwise, the Proxy marks the trans-
action as aborted. Finally, committed transactions are sent
to a set of LogServers for persistence. A transaction is
considered committed after all designated LogServers have
replied to the Proxy, which reports the committed version to
the Sequencer (to ensure that later transactions’ read ver-
sions are after this commit) and then replies to the client.
StorageServers continuously pull mutation logs from Log-

Servers and apply committed updates to disks.

In addition to the above read-write transactions, FDB also
supports read-only transactions and snapshot reads. A read-
only transaction in FDB is both serializable (happens at the
read version) and performant (thanks to the MVCC), and
the client can commit these transactions locally without con-
tacting the database. This is particularly important because
the majority of transactions are read-only. Snapshot reads
in FDB selectively relax the isolation property of a trans-
action by reducing conflicts, i.e., concurrent writes will not
conflict with snapshot reads.

2.2.2 Strict Serializability
FDB implements Serializable Snapshot Isolation (SSI) by
combining OCC with MVCC. Recall that a transaction Tx

gets both its read version and commit version from the Se-

quencer, where the read version is guaranteed to be no
less than any committed version when Tx starts and the
commit version is larger than any existing read or commit
versions. This commit version defines a serial history for
transactions and serves as a Log Sequence Number (LSN).
Because Tx observes the results of all previous committed
transactions, FDB achieves strict serializability. To ensure
there are no gaps between LSNs, the Sequencer returns the
previous commit version (i.e., previous LSN) with each com-
mit version. A Proxy sends both LSN and the previous LSN
to Resolvers and LogServers so that they can serially pro-
cess transactions in the order of LSNs. Similarly, Storage-
Servers pull log data from LogServers in increasing LSN
order.

Resolvers use a lock-free conflict detection algorithm sim-
ilar to write-snapshot isolation [34], with the difference that
in FDB the commit version is chosen before conflict detec-
tion. This allows FDB to efficiently batch-process both ver-
sion assignments and conflict detection.

The entire key space is divided among Resolvers allowing
conflict detection to be performed in parallel. A transaction
can commit only when all Resolvers admit the transaction.
Otherwise, the transaction is aborted. It is possible that an
aborted transaction is admitted by a subset of Resolvers,
and they have already updated their history of potentially
committed transactions, which may cause other transactions
to conflict (i.e., a false positive). In practice, this has not
been an issue for our production workloads, because trans-
actions’ key ranges usually fall into one Resolver. Addition-
ally, because the modified keys expire after the MVCC win-
dow, such false positives are limited to only happen within
the short MVCC window time (i.e., 5 seconds).

The OCC design of FDB avoids the complicated logic of
acquiring and releasing (logical) locks, which greatly simpli-
fies interactions between the TS and the SS. The price is



wasted work done by aborted transactions. In our multi-
tenant production workload transaction conflict rate is very
low (less than 1%) and OCC works well. If a conflict hap-
pens, the client can simply restart the transaction.

2.2.3 Logging Protocol
After a Proxy decides to commit a transaction, it sends
a message to all LogServers: mutations are sent to Log-

Servers responsible for the modified key ranges, while other
LogServers receive an empty message body. The log mes-
sage header includes both the current and previous LSN
obtained from the Sequencer, as well as the largest known
committed version (KCV) of this Proxy. LogServers reply
to the Proxy once the log data is made durable, and the
Proxy updates its KCV to the LSN if all replica LogServers

have replied and this LSN is larger than the current KCV.
Shipping the redo log from the LS to the SS is not a part

of the commit path and is performed in the background.
In FDB, StorageServers apply non-durable redo logs from
LogServers to an in-memory index. In the common case,
this happens before any read versions that reflect the commit
are handed out to a client. Therefore, when client read re-
quests reach StorageServers, the requested version (i.e., the
latest committed data) is usually already available. If fresh
data is not available to read at a StorageServer replica, the
client either waits for the data to become available or reis-
sues the request at another replica [18]. If both reads time
out, the client can simply restart the transaction.

Since log data is already durable on LogServers, Storage-
Servers can buffer updates in memory and persist batches
of data to disks periodically, thus improving I/O efficiency.

2.2.4 Transaction System Recovery
Traditional database systems often employ the ARIES re-
covery protocol [30]. During recovery, the system processes
redo log records from the last checkpoint by re-applying
them to relevant data pages. This brings the database to a
consistent state; transactions that were in-flight during the
crash can be rolled back by executing the undo log records.
In FDB, recovery is purposely made very cheap—there is

no need to apply undo log entries. This is possible because
of a greatly simplifying design choice: redo log processing
is the same as normal log forward path. In FDB, Storage-
Servers pull logs from LogServers and apply them in the
background. The recovery process starts by detecting a fail-
ure and recruits a new transaction system. The new TS can
accept transactions before all the data in old LogServers is
processed. Recovery only needs to find out the end of the
redo log: At that point (as in normal forward operation)
StorageServers asynchronously replay the log.

For each epoch, the Sequencer executes recovery in sev-
eral steps. First, it reads the previous TS configuration from
Coordinators and locks this information to prevent another
Sequencer from recovering concurrently. Next, it recov-
ers previous TS system states, including information about
older LogServers, stops them from accepting transactions,
and recruits a new set of Proxies, Resolvers, and Log-

Servers. After previous LogServers are stopped and a new
TS is recruited, the Sequencer writes the new TS informa-
tion to the Coordinators. Because Proxies and Resolvers

are stateless, their recoveries have no extra work. In con-
trast, LogServers save the logs of committed transactions,
and we need to ensure all such transactions are durable and
retrievable by StorageServers.
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Figure 2: An illustration of RV and PEV.

The essence of the recovery of old LogServers is to de-
termine the end of redo log, i.e., a Recovery Version (RV).
Rolling back undo log is essentially discarding any data after
RV in the old LogServers and StorageServers. Figure 2
illustrates how RV is determined by the Sequencer. Recall
that a Proxy request to LogServers piggybacks its KCV,
the maximum LSN that this Proxy has committed, along
with the LSN of the current transaction. Each LogServer

keeps the maximum KCV received and a Durable Version
(DV), which is the maximum LSN persisted by the Log-

Server (DV is ahead of KCV since it corresponds to in-flight
transactions). During a recovery, the Sequencer attempts
to stop all m old LogServers, where each response contains
the DV and KCV on that LogServer. Assume the replica-
tion degree for LogServers is k. Once the Sequencer has
received more than m− k replies, the Sequencer knows the
previous epoch has committed transactions up to the maxi-
mum of all KCVs, which becomes the previous epoch’s end
version (PEV). All data before this version has been fully
replicated. For current epoch, its start version is PEV + 1
and the Sequencer chooses the minimum of all DVs to be
the RV. Logs in the range of [PEV +1, RV ] are copied from
previous epoch’s LogServers to the current ones, for heal-
ing the replication degree in case of LogServer failures. The
overhead of copying this range is very small because it only
contains a few seconds’ log data.

When Sequencer accepts new transactions, the first is a
special recovery transaction that informs StorageServers

the RV so that they can roll back any data larger than RV.
The current FDB storage engine consists of an unversioned
SQLite [24] B-tree and in-memory multi-versioned redo log
data. Only mutations leaving the MVCC window (i.e., com-
mitted data) are written to SQLite. The rollback is sim-
ply discarding in-memory multi-versioned data in Storage-

Servers. Then StorageServers pull any data larger than
version PEV from new LogServers.

2.3 Replication
FDB uses a combination of various replication strategies for
different data to tolerate f failures:

• Metadata replication. System metadata of the con-
trol plane is stored on Coordinators using Active Disk
Paxos [15]. As long as a quorum (i.e., majority) of Co-
ordinators are live, this metadata can be recovered.

• Log replication. When a Proxy writes logs to Log-

Servers, each sharded log record is synchronously repli-
cated on k = f +1 LogServers. Only when all k have
replied with successful persistence can the Proxy send
back the commit response to the client. Failure of a
LogServer results in a transaction system recovery.



• Storage replication. Every shard, i.e., a key range,
is asynchronously replicated to k = f + 1 Storage-

Servers, which is called a team. A StorageServer

usually hosts a number of shards so that its data is
evenly distributed across many teams. A failure of
a StorageServer triggers DataDistributor to move
data from teams containing the failed process to other
healthy teams.

Note the storage team abstraction is more sophisticated
than Copysets [17]. To reduce the chance of data loss due to
simultaneous failures, FDB ensures that at most one process
in a replica group is placed in a fault domain, e.g., a host,
rack or availability zone. Each team is guaranteed to have
at least one process live and there is no data loss if any one
of the respective fault domains remains available.

3 Simulation Testing

Figure 3: The FDB deterministic simulator.

Testing and debugging distributed systems is a challeng-
ing and inefficient process. This problem is particularly
acute for FDB—any failure of its strong concurrency con-
trol contract can produce almost arbitrary corruption in sys-
tems layered on top. Accordingly, an ambitious approach
to end-to-end testing was adopted from the beginning: the
real database software is run, together with randomized syn-
thetic workloads and fault injection, in a deterministic discrete-
event simulation. The harsh simulated environment quickly
provokes bugs in the database, and determinism guarantees
that every such bug can be reproduced and investigated.

Deterministic simulator. FDB was built from the ground
up to enable this testing approach. All database code is
deterministic and multithreaded concurrency is avoided (in-
stead, one database node is deployed per core). Figure 3
illustrates the simulator process of FDB, where all sources
of nondeterminism and communication are abstracted, in-
cluding network, disk, time, and pseudo random number
generator. FDB is written in Flow [3], a novel syntactic ex-
tension to C++ adding async/await-like concurrency primi-
tives. Flow provides the Actor programming model [10] that
abstracts various actions of the FDB server process into a
number of actors that are scheduled by the Flow runtime
library. The simulator process is able to spawn multiple
FDB servers that communicate with each other through a
simulated network in a single discrete-event simulation.

The simulator runs multiple workloads (written in Flow)
that communicate with simulated FDB servers through the
simulated network. These workloads include fault injec-
tion instructions, mock applications, database configuration
changes, and internal database functionality invocations.

Test oracles. FDB uses a variety of test oracles to detect
failures in simulation. Most of the synthetic workloads have
assertions built in to verify the contracts and properties of
the database, e.g., by checking invariants in their data that
can only be maintained through transaction atomicity and
isolation. Assertions are used throughout the code-base to
check properties that can be verified “locally”. Properties
like recoverability (eventual availability) can be checked by
returning the modeled hardware environment (after a set of
failures sufficient to break the database’s availability) to a
state in which recovery should be possible and verifying that
the cluster eventually recovers.

Fault injection. Simulation injects machine, rack, and
data-center failures and reboots, a variety of network faults,
partitions, and latency problems, disk behavior (e.g. the
corruption of unsynchronized writes when machines reboot),
and randomizes event times. This variety of fault injection
both tests the database’s resilience to specific faults and in-
creases the diversity of states in simulation. Fault injection
distributions are carefully tuned to avoid driving the system
into a small state-space caused by an excessive fault rate.

FDB itself cooperates with the simulation in making rare
states and events more common, through a high-level fault
injection technique informally referred to as “buggification”.
At many places in its code-base, the simulation is given
the opportunity to inject some unusual (but not contract-
breaking) behavior such as unnecessarily returning an error
from an operation that usually succeeds, or choosing an un-
usual value for a tuning parameter, etc. This complements
fault injection at the network and hardware level.

Swarm testing [23] is extensively used to maximize the di-
versity of simulation runs. Each run uses a random cluster
size and configuration, random workloads, random fault in-
jection parameters, random tuning parameters, and enables
and disables a random subset of buggification points. We
have open-sourced the swarm testing framework for FDB [6].

Latency to bug discovery. Finding bugs quickly is impor-
tant both so that they are encountered in testing before pro-
duction, and for engineering productivity (since bugs found
immediately in an individual commit can be trivially traced
to that commit). Discrete-event simulation can run arbi-
trarily faster than real-time if CPU utilization within the
simulation is low, as the simulator can fast-forward clock to
the next event. Many distributed systems bugs take time to
play out, and running simulations with long stretches of low
utilization allows many more of these to be found per core
second than in “real-world” end-to-end tests.

Additionally, randomized testing is embarrassingly paral-
lel and FDB developers can and do “burst” the amount of
testing they do before major releases. Since the search space
is effectively infinite, running more tests results in more code
being covered and more potential bugs being found.

Limitations. Simulation cannot reliably detect performance
issues, such as an imperfect load balancing algorithm. It is
also unable to test third-party libraries or dependencies, or
even first-party code not implemented in Flow. As a conse-
quence, we have largely avoided taking dependencies on ex-
ternal systems. Finally, bugs in critical dependent systems,
such as a filesystem or the operating system, or misunder-
standings of their contract, can lead to bugs in FDB. For
example, several bugs have resulted from the true operating
system contract being weaker than it was believed to be.
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Figure 4: Scalability test.

4 Evaluation
This section studies the scalability of FDB and provides
some data on the time of reconfiguration.

4.1 Scalability Test
The experiments were conducted on a test cluster of 27 ma-
chines in a single data center. Each machine has a 16-core
2.5 GHz Intel Xeon CPU with hyper-threading enabled, 256
GB memory, 8 SSD disks, connected via 10 Gigabit Eth-
ernet. Each machine runs 14 StorageServers on 7 SSD
disks and reserves the remaining SSD for LogServer. In the
experiments, we use the same number of Proxies and Log-

Servers. The replication degrees for both LogServers and
StorageServers are set to three.

We use a synthetic workload to evaluate the performance
of FDB. Specifically, there are four types of transactions:
1) blind writes that update a configured number of ran-
dom keys; 2) range reads that fetch a configured number
of continuous keys starting at a random key; 3) point reads
that fetch 10 random keys; and 4) point writes that fetch
5 random keys and update another 5 random keys. We
use blind writes and range reads to evaluate the write and
read performance, respectively. Point reads and point writes
are used together to evaluate mixed read-write performance.
For instance, 90% reads and 10% writes (90/10 read-write)
is constructed with 80% point reads and 20% point writes
transactions. Each key is 16 bytes and the value size is uni-
formly distributed between 8 and 100 bytes (averaging 54
bytes). The database is pre-populated with data using the
same size distribution. In the experiments, we make sure
the dataset cannot be completely cached in the memory of
StorageServers.

Figure 4 illustrates the scalability test of FDB from 4 to
24 machines using 2 to 22 Proxies or LogServers. Fig-
ure 4a shows that the write throughput scales from 67 to 391
MBps (5.84X) for 100 operations per transaction (T100),
and from 73 to 467 MBps (6.40X) for 500 operations per
transaction (T500). Note the raw write throughput is three
times higher, because each write is replicated three times
to LogServers and StorageServers. LogServers are CPU
saturated at the maximum write throughput. Read through-
put increases from 2,946 to 10,096 MBps (3.43X) for T100,
and from 5055 to 21,830 MBps (4.32X) for T500, where
StorageServers are saturated. For both reads and writes,
increasing the number operations in a transaction boosts
throughput. However, increasing operations further (e.g. to
1000) doesn’t bring significant changes. Figure 4b shows the
operations per second for 90/10 read-write traffic, which in-
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Figure 5: Throughput and average latency for different op-
eration rate on a 24-machine cluster configuration.

creases from 593k to 2,779k (4.69X). In this case, Resolvers
and Proxies are CPU saturated.

The above experiments study saturated performance. Fig-
ure 5 illustrates the client performance on a 24-machine clus-
ter with varying operation rate of 90/10 read-write load.
This configuration has 2 Resolvers, 22 LogServers, 22 Prox-
ies, and 336 StorageServers. Figure 5a shows that the
throughput scales linearly with more operations per second
(Ops) for both reads and writes. For latency, Figure 5b
shows that when Ops is below 100k, the mean latencies re-
main stable: about 0.35ms to read a key, 2ms to commit, and
1ms to get a read version (GRV). Read is a single hop op-
eration, thus is faster than the two-hop GRV request. The
commit request involves multiple hops and persistence to
three LogServers, thus higher latency than reads and GRVs.
When Ops exceeds 100k, all these latencies increase because
of more queuing time. At 2m Ops, Resolvers and Proxies

are saturated. Batching helps to sustain the throughput,
but commit latency spike to 368ms due to saturation.
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Figure 6: CDF plot for reconfiguration duration in seconds.

4.2 Reconfiguration Duration
We collected 289 reconfiguration (i.e., transaction system
recovery) traces from our production clusters that typically
host hundreds of TBs data. Because of the client-facing na-
ture, short reconfiguration time is critical for the high avail-
ability of these clusters. Figure 6 illustrates the cumulative
distribution function (CDF) of the reconfiguration times.
The median and 90-percentile are 3.08 and 5.28 seconds, re-
spectively. The reason for these short recovery times is that
they are not bounded by the data or transaction log size, and
are only related to the system metadata sizes. During the
recovery, read-write transactions were temporarily blocked
and were retried after timeout. However, client reads were
not impacted. The causes of these reconfigurations include
automatic failure recovery from software or hardware faults,
software upgrades, database configuration changes, and the
manual mitigation of production issues.



5 Lessons Learned
This section discusses our experience and lessons of FDB.

Architecture Design. The divide-and-conquer design prin-
ciple has proven to be an enabling force for flexible cloud
deployment, making the database extensible as well as per-
formant. First, separating the transaction system from the
storage layer enables greater flexibility in placing and scal-
ing compute and storage resources independently. An added
benefit of LogServers is that they are akin to witness repli-
cas; in some of our multi-region production deployments,
LogServers significantly reduce the number of Storage-

Servers (full replicas) required to achieve the same high-
availability properties. Further, operators are free to place
heterogeneous roles of FDB on different server instance types,
optimizing for performance and costs. Second, the decou-
pling design makes it possible to extend the database func-
tionality, such as our ongoing work of supporting RocksDB [21]
as a drop-in replacement for the current SQLite engine. Fi-
nally, many of the recent performance improvements are
specializing functionality as dedicated roles, e.g., separating
DataDistributor and Ratekeeper from Sequencer, adding
storage cache, dividing Proxies into get-read-version proxy
and commit proxy. This design pattern successfully allows
new features and capabilities to be added frequently.

Simulation Testing. Simulation testing has enabled FDB
to maintain a very high development velocity with a small
team by shortening the latency between a bug being intro-
duced and a bug being found, and by allowing deterministic
reproduction of issues. Adding additional logging, for in-
stance, generally does not affect the deterministic ordering
of events, so an exact reproduction is guaranteed. The pro-
ductivity of this debugging approach is so much higher than
normal production debugging, that in the rare circumstances
when a bug was first found “in the wild”, the debugging pro-
cess was almost always first to improve the capabilities or
the fidelity of the simulation until the issue could be repro-
duced there, and only then to begin the normal debugging
process. Rigorous correctness testing via simulation makes
FDB extremely reliable. In the past several years, Cloud-
Kit [32] has deployed FDB for more than 0.5M disk years
without a single data corruption event.

It is hard to measure the productivity improvements stem-
ming from increased confidence in the testability of the sys-
tem. On numerous occasions, the FDB team executed am-
bitious, ground-up rewrites of major subsystems. Without
simulation testing, many of these projects would have been
deemed too risky or too difficult, and not even attempted.

The success of simulation has led us to continuously push
the boundary of what is amenable to simulation testing
by eliminating dependencies and reimplementing them our-
selves in Flow. For example, early versions of FDB depended
on Apache Zookeeper for coordination, which was deleted af-
ter real-world fault injection found two independent bugs in
Zookeeper (circa 2010) and was replaced by a de novo Paxos
implementation written in Flow. No production bugs have
ever been reported since.

Fast Recovery. Fast recovery is not only useful for im-
proving availability, but also greatly simplifies the software
upgrades and configuration changes and makes them faster.
Traditional wisdom of upgrading a distributed system is to
perform rolling upgrades so that rollback is possible when
something goes wrong. The duration of rolling upgrades
can last from hours to days. In contrast, FoundationDB

upgrades can be performed by restarting all processes at
the same time, which usually finishes within a few seconds.
Because this upgrade path has been extensively tested in
simulation, all upgrades in Apple’s production clusters are
performed in this way. Additionally, this upgrade path sim-
plifies protocol compatibility between different versions—we
only need to make sure on-disk data is compatible. There
is no need to ensure the compatibility of RPC protocols be-
tween different software versions.

5s MVCC Window. FDB chooses a 5-second MVCC win-
dow to limit the memory usage of the transaction system
and storage servers, because the multi-version data is stored
in the memory of Resolvers and StorageServers, which in
turn restricts transaction sizes. From our experience, this 5s
window is long enough for the majority of OLTP use cases.
If a transaction exceeds the time limit, it is often the case
that the client application is doing something inefficient, e.g.,
issuing reads one by one instead of parallel reads. As a re-
sult, exceeding the time limit often exposes inefficiency in
the application.

For some transactions that may span more than 5s, many
can be divided into smaller transactions. For instance, the
continuous backup process of FDB will scan through the
key space and create snapshots of key ranges. Because of
the 5s limit, the scanning process is divided into a number
of smaller ranges so that each range can be performed within
5s. In fact, this is a common pattern: one transaction creates
a number of jobs and each job can be further divided or
executed in a transaction. FDB has implemented such a
pattern in an abstraction called TaskBucket and the backup
system heavily depends on it.

6 Related Work
NoSQL systems such as BigTable [14], Dynamo [19], Mon-
goDB [9], Cassandra [26] do not provide ACID transactions.
Google’s Percolator [31]and Omid [13] layered transactional
APIs atop key value stores with snapshot isolation. FDB
supports strict serializable ACID transactions on a scalable
key-value store that has been used to support flexible schema
and richer queries [5, 16, 28].

Traditional bundled database systems have tight coupling
of the transaction component and data component [20, 33].
Unbundled database systems separate transaction compo-
nent (TC) from data component (DC) [29], and typically
adopt lock-based concurrency control. In FDB, TC is fur-
ther decomposed into a number of dedicated roles and the
transaction logging is decoupled from TC. As a result, FDB
chooses OCC with a deterministic transaction order.

Non-deterministic fault-injection has been widely used in
the testing of distributed systems, such as network parti-
tion [11], power failures [36], storage faults [22], and Jepsen
testing [2]. All of these approaches lack deterministic repro-
ducibility. While model checking [27, 35] can be more ex-
haustive than simulation, it can only verify the correctness
of a model rather than of the actual implementation. The
FDB deterministic simulation approach allows verification
of database invariants and other properties against the real
database code, together with deterministic reproducibility.

7 Conclusions
FoundationDB is a key value store designed for OLTP cloud
services. The main idea is to decouple transaction process-
ing from logging and storage. Such an unbundled architec-



ture enables the separation and horizontal scaling of both
read and write handling. The transaction system combines
OCC and MVCC to ensure strict serializability. The decou-
pling of logging and the determinism in transaction orders
greatly simplify recovery, thus allowing unusually quick re-
covery time and improving availability. Finally, determinis-
tic and randomized simulation has ensured the correctness
of the database implementation.
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