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Consider a directed graph G = (V, E). Given two (possibly
overlapping) subsets S, T C V, denote by E(.S, T') the set of edges
(s,t) € Ewiths € Sandt € T and by G(S,T) the subgraph
with S U T as the vertex set and F(.S,T) as the edge set. The den-
sity of G(S,T) equals |E(S,T)|/+/|S||T|. The directed densest
subgraph (DDS) problem is to return a pair (S, T") maximizing the
density of G(S,T).

The problem is useful in graph mining because dense subgraphs
often represent patterns deserving special attention. They could indi-
cate, for example, an authoritative community in a social network, a
building brick of more complex biology structures, or even a type of
malicious behavior such as spamming. See [1, 3] and the references
therein for an extensive discussion on the applications of DDS.

Previous research has led to non-trivial findings on DDS. The
problem is solvable in polynomial time: the fastest algorithm known
today has a time complexity O(|V|*|E|log|V]) [2]. One could
attain better efficiency by settling for an approximate output. Specif-
ically, if the optimal density achievable is p*, a pair (.S, T') makes
a c-approximate solution if G(S,T) has density at least p*/c. Tt
was claimed in [2] that a 2-approximate solution could be found in
O(|V| + |E)) time.

The 2-approximate result of [2], unfortunately, turned out to be
incorrect. Ma et al. — the authors of the paper I am introducing —
pointed out a loophole in the argument of [2], which (in my opinion)
was rather difficult to discern even in retrospect. They went further
to disprove the claim by constructing a class of counterexamples. It
remains unclear whether the issue can be fixed with the O(|V'|+| E|)
complexity restored. Currently, the best fix available necessitates
O(VI- (IV] + | El)) time [3].

As a partial remedy, Ma et al. developed a 2-approximate algo-
rithm with running time O(y/|E| - (|V| + | E|)), which improves
O(|V|- (V| + |E|)) as long as | E| = o(|V|?). They achieved the
purpose by establishing a connection between DDS and the [z, y]-
core, a new concept that can be regarded as the directed counterpart
of k-core. The connection then led to an elegantly simple algorithm.

Formally, call a subgraph G(S, T) an [z, y]-core if every vertex
in S has at least = outgoing edges and every vertex in 7" has at least
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y incoming edges. Define zy as the product of G(S, T'). Denote by
G(S™,T™) the subgraph of the maximum product. Ma et al. proved
that the density of G(S™,T™) is at least p*/2. In other words,
G(S™*,T™*) serves as 2-approximate solution to the DDS problem.

Now, it remains to compute G(S*,T™). Suppose that G(S™*,T™)
is an [z*, y*]-core where the chosen values of z* and y* maxi-
mize z*y*. Assume, for the time being, x* < y*. Two observa-
tions are immediate. First, as G(S™,T") has at least z*y* edgesl,
z*y* < |E| and, hence, z* < \/E Second, by the definition of
G(S*,T*), no [z*, y]-cores can exist for any y > y™.

These observations suggest the following strategy for discovering
G(S*,T*). Fix an integer « € [1,/]E|] and find the maximum
Yo such that an [z, y,]-core exists. We can accomplish this in
O(|V|+ |E|) time in a way reminiscent of computing an undirected
graph’s core number:

1. y==0

2. repeat

3 remove the vertices with out-degree less than x

4. Ymin = the smallest in-degree of the remaining vertices
5 if Ymin > Yo then Yy = Ymin

6 remove an arbitrary vertex with in-degree Ymin

7. until no vertices are left

Besides y, one can also return the corresponding [z, yx|-core by
modifying the pseudocode slightly. Executing the code for all z €
[1,/|E|] produces (at most) /| F| subgraphs, among which the
one with the maximum product is G(S*,T*). The assumption
™ < y* can be removed by considering y* < ™ in a symmetric
manner.

The paper of Ma et al. makes further contributions by (i) showing
how to use the [z, y]-core technique to accelerate the state-of-the-art
exact DDS algorithm [2], and (ii) demonstrating the performance of
proposed algorithms through an extensive experimental evaluation.
This is a beautiful paper that fuses theory and practice very nicely.
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