
Technical Perspective
DIAMetrics: Benchmarking Query Engines at Scale

Peter Boncz
CWI, The Netherlands

boncz@cwi.nl

Benchmarking database systems has a long and successful
history in making industrial database systems comparable,
and is also a cornerstone of quantifiable experimental data
systems research. Creating good benchmarks has been de-
scribed as something of an art [3]. One can inspire dataset
and workload design from“representative”use cases queries,
typically informed by domain experts; but also exploit tech-
nical insights from database architects in what features, op-
erations, and data distributions should come together in or-
der to invoke a particularly challenging task1.

While this methodology has served the database commu-
nity well by creating reference points such as TPC-C and
TPC-DS, even in a way creating the narrative on what
database workloads are (i.e. transactional vs. analytical),
such synthetic benchmarks typically fail to represent actual
workloads, which are more complex and thus hard to under-
stand, mixed in nature, and constantly changing. Automatic
benchmark extraction from real-life workloads therefore pro-
vides a powerful pathway towards quantifying database sys-
tem performance that matters most for an organization,
though this requires techniques for summarizing query logs
into more compact workloads, and for extracting real data
and anonymizing it to create benchmark datasets.

Also, benchmarking in the cloud age needs to deal with
complex set-ups in dynamically provisioned environments
where distributed compute, storage and network resources
need to be orchestrated throughout the benchmarking work-
flow of dataset creation, loading, workload execution, per-
formance measurement and correctness checking. PEEL[1]
has been an earlier e↵ort to facilitate such distributed bench-
marking. However, it lacked automatic workload extraction
as it focused on executing synthetic benchmarks on Hadoop-
based distributed systems running either Spark or Flink.

This paper on DIAMetrics from Deep et al., describes a
versatile framework, developed in Google, for automatic ex-
traction of benchmarks and their distributed execution and
performance monitoring. The structure of the system is
clever, particularly having the components run separately
and allowing multiple entry-points into the system to cater
to di↵erent use cases.

1This was coined“choke point”-guided benchmark design by
the Linked Data Benchmark Council (ldbcouncil.org)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

The observation that input data is not necessarily under
the query engines’ control, and storage formats may vary, is
important. Classic benchmarks assume the engine can pre-
process data at will and allows access to detailed statistics
about the dataset, which is often not possible in practice.

The state-of-the-art workload extraction approach in DI-
AMetrics takes into account both structural query features
as well as actual execution metrics. This algorithm is de-
scribed in a separate publication [2].

The data scrambler is a very desirable component, but
the paper is light on details here, raising some questions.
Certain information leakage is bound to occur, limiting safe
use cases. The technique of removing correlations between
columns, will also remove important query optimization chal-
lenges. This crucial aspect of automatic benchmark extrac-
tion seems a fruitful area of future research, e.g. into formal
privacy-preservation bounds or privacy-respecting preserva-
tion of certain correlations.

At Google, the DIAMetrics framework has proven itself
useful for database developers, for performance monitoring
and regression testing, as engines evolve. Database users
also benefit, using the system to find out which of the mul-
tiple Google engines (e.g. F1, Procella, Dremel) best suits
their use case, but also to provide performance accountabil-
ity: to identify and communicate performance problems.

This paper is, in short, a highly recommended read. It
inspired me to think about novel directions, possibly taking
automatic benchmark extraction from performance moni-
toring accountability also towards correctness testing: one
could envision enriching workload summarization with new
dimensions such as code coverage [5] and automatic genera-
tion of query correctness oracles [4].

1. REFERENCES
[1] C. Boden, A. Alexandrov, A. Kunft, T. Rabl, and

V. Markl. PEEL: A framework for benchmarking
distributed systems and algorithms. In TPCTC 2017.

[2] S. Deep, A. Gruenheid, P. Koutris, J. F. Naughton, and
S. Viglas. Comprehensive and e�cient workload
compression. PVLDB, 14(3):418–430, 2020.

[3] K. Huppler. The art of building a good benchmark. In
TPCTC 2009.

[4] M. Rigger and Z. Su. Finding bugs in database systems
via query partitioning. In OOPSLA. ACM, 2020.

[5] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and
D. Wu. SQUIRREL: testing database management
systems with language validity and coverage feedback.
In CCS, pages 955–970. ACM, 2020.

SIGMOD Record, March 2021 (Vol. 50, No. 1) 23

