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ABSTRACT

Science is a collaborative activity by definition. Re-
search is usually conducted by several scientists work-
ing together, and this behavior has been intensified in
recent years. Furthermore, experiments are increasingly

performed in silico, which demands proper support tools.

Provenance-aware Workflow Management Systems and
script-based tools have been popular ways of running
in silico experiments, but these tools often neglect the
collaboration aspect. Even solutions that aim at col-
laborative experiments do not always address the col-
laborators’ needs. Literature shows surveys discussing
subjects related to in silico experiments. However, they
either focus on provenance collection and applications,
thus treating collaboration as just another possible ap-
plication, or focus on Workflow Management Systems,
only listing collaboration as a possible challenge. This
article surveys available tools and approaches that aim at
aiding scientists to conduct collaborative in silico exper-
iments. Particularly, we focus on challenges related to
the provenance of these collaborative experiments. We
devise a taxonomy with the aspects of collaboration in
scientific research and discuss each of these aspects. We
also identify literature gaps that provide future opportu-
nities.

1. INTRODUCTION

Scientific knowledge is built incrementally and
cumulatively. To discover something new, scientists
have to extensively study their fields to understand
the current state of the art. Additionally, an impor-
tant part of the scientific process is the communi-
cation of the work done and the outcomes reached,
which allows the scientific community to analyze
and review other scientist’s research and the ob-
tained results. This process is essential because it
allows other people to double-check the ideas, find
flaws, or reproduce the achieved results, besides en-
abling the use of acquired knowledge in future dis-
coveries [8]. Hence, collaboration plays a key role
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in scientific research and knowledge acquisition.

“Scientific collaboration can be defined as inter-
action taking place within a social context among
two or more scientists that facilitates the sharing of
meaning and completion of tasks with respect to a
mutually shared, super-ordinate goal” [54]. There-
fore, scientific collaboration occurs not only after
the publication but especially in ongoing research.
Research is usually carried out by several scientists
working together. Indeed, collaboration is often
encouraged and even required by research funding
agencies [54].

Wuchty, Jones, and Uzzi [66] analyze almost 20
million publications from the mid-50s to the early
21st century, and conclude that the production of
publications by teams of collaborators has increased
over time and that these teams have grown in size.
Also, the authors conclude that publications pro-
duced in teams usually receive more citations on
average than publications made by a single author,
even when self-citations are ignored [66].

At the same time, computer technology has ad-
vanced hugely. Computers have become cheaper
and more accessible, and computer networks have
spread all around the world. This movement pro-
duced two direct effects: (i) it allowed collabora-
tion to occur not just between people nearby but
also between people located all around the world;
and (ii) it increased the number of scientific exper-
iments conducted in silico.

In silico experiments typically demand more sup-
port from data management and software engineer-
ing tools when compared to other experiment classes
(in vivo, in vitro, and in virtuo) [60]. Workflow
Management Systems [3, 26, 67] and Script-based
systems [17, 36, 47] (referred in this work as Ex-
periment Management Systems) have been popular
ways of running such experiments. However, col-
laboration is still one of the challenges in the area
[16, 27, 31].
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The data related to in silico experiments are not
limited to the results of the experiment but also in-
clude the logical sequence of performed activities;
parameters used; intermediary results of activities;
information about the execution environment; etc.
[25]. Tt is common for these data to be collected
and stored in a provenance database. Provenance
is a broad concept that can be applied in many dis-
ciplines and is usually linked to the origin of an
object or data. It can be seen as a set of meta-
data that describes not only the object or data it-
self but also the activities applied in its produc-
tion process. Bringing the concept into scientific
research, it refers to information on how the exper-
iment was performed and how the research results
were recorded [31]. This should also include records
of how the collaboration was conducted.

Provenance gathering is a common feature in many
Experiment Management Systems [3, 17, 26, 31,
36, 47, 67]. However, when focusing on collabora-
tive experiments, two challenges emerge: (C1) how
to collect provenance in a collaborative experiment
(this comprises collecting provenance of actions of
scientists that may be working in different parts of
the experiment or different geographical locations
and machines); and (C2) how provenance can be
used to make collaboration easier in this environ-
ment.

The main goal of this article is to map the state-
of-the-art approaches and provenance-aware models
that are available to conduct in silico collaborative
experiments. We aim at investigating how they ad-
dress challenges C1 and C2. To do so, we plan to an-
swer the following research questions: (R1) How do
existing tools store and collect provenance in a col-
laborative experiment?; (R2) how do existing tools
use provenance to make collaboration easier in sci-
entific experiments?. The research question R1 and
R2 are respectively linked to challenges C1 and C2.

To answer these questions, we make a snowballing
[30] based survey. We evaluate 170 publications and
select 20 approaches and 7 surveys. To be selected,
an approach has to satisfy the following criteria: (i)
has collaboration as a focus (i.e., the problem to
be solved or the subject of a survey); or (ii) has
provenance as a focus while discussing collabora-
tion features; and (iii) is in the context of in silico
scientific experiments. The surveys were used to re-
inforce this work’s motivation and as a benchmark.
From the 20 selected approaches, 15 are tools for
collaborative experiments, 2 are provenance-aware
data models for collaborative experiments, and 3
approaches present both a tool and a provenance-
aware data model for collaborative experiments.
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This article contrasts with existing surveys [6,
16, 27, 31, 37, 51, 66] as follows. This work dif-
fers from Lu and Zhang’s work [37] and Belloum
et al. [6] by bringing a more detailed and up-to-
date view of the work in the area. Besides that,
Belloum et al. discuss the challenges to support e-
science collaborative experiments with a closer look
at the experiment life cycle, but it only addresses
the tools provided by the VL-e project. Wuchty et
al. [66] aim to demonstrate that teams have been in-
creasingly dominating the scientific research in the
production of knowledge, without addressing avail-
able tools and research that helps the execution of
this type of experiment. On the other hand, David-
son and Freire [16] and Gil et al. [27] focus on the
challenges and opportunities existing in the Work-
flow Management Systems research, without detail-
ing the available tools. Other publications focus
on provenance collection and its applications, and
collaboration merely appears as one of the possi-
ble applications of provenance [31, 51]. As opposed
to that, this survey focuses on provenance-related
aspects of collaboration.

The article proceeds as follows: Section 2 presents
an analysis of the existing provenance models that
alm to precisely represent collaborative research;
Section 3 discusses some aspects of collaborative
research and proposes a taxonomy to capture the
aspects that may influence collaboration in the sci-
entific research scenario; Section 4 discusses publi-
cations and opportunities in the field; and Section
5 concludes the article.

2. PROVENANCE MODELS

Provenance is a broad concept and can be seen
from different perspectives. Ragan et al. [51] clas-
sify provenance in five types: Data provenance (the
history of changes and movement of data); Visual-
ization provenance (the history of graphic views and
visualization states); Interaction provenance (the
history of user interaction with a system); Insight
provenance (the history of cognitive outcomes and
information derived from the analysis process); and
Rationale provenance (the history of reasoning and
intentions behind decisions, hypotheses, and inter-
actions) [51].

Collaboration brings additional challenges in col-
lecting and storing provenance. The first challenge
(C1) resides in how to collect provenance in a col-
laborative experiment. It involves collecting data,
interaction, and visualization provenance from mul-
tiple devices since scientists usually work on their
workstation. Few initiatives capture provenance
from multiple devices [18, 20, 64], but they usually
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focus in high-performance settings, where a single
user executes parts of the experiment in the cloud,
cluster, or grid. This is different from having sev-
eral scientists working on their local workstations,
where there is usually no central control. Collect-
ing this provenance could be useful in several sit-
uations, such as giving credit to those involved in
the research [31], auditing the research, enabling
the reproducibility of the experiment and provid-
ing relevant information that allows each member
of a group to better understand the actions of other
members in the context of a collaborative scientific
experiment. Another challenge (C2) resides in how
to use this provenance to make collaboration easier
in a collaborative environment.

The first step to overcoming these challenges is
providing a provenance model that can properly
represent the research collaboration aspects. This
model needs to represent four main aspects [37]:
(i) Distribution (D) — Collaboration typically in-
volves resources from multiple organizations; (ii)
Heterogeneity (H) — Provenance produced by dif-
ferent workflows may have different formats. Even
those that conform to the same schema may evolve
during the experiment life cycle; (iii) Multilevel (M)
— Experiments usually have complex tasks that are
modeled hierarchically (e.g., using sub-workflows,
or by functions calling functions in a script). Al-
though this is not a specificity of collaborative ex-
periments, the provenance model should store this
hierarchy; (iv) Collaboration (C) — The model must
support new user iterations and collaboration stan-
dards, besides storing information about these col-
laborations.

The term collaborative workflow has been used
with multiple meanings in the literature. It is un-
derstood both as the collaboration between work-
flows or the collaboration between workflow users
[37]. Collaboration between workflow users is the
direct collaboration of users in the context of a sci-
entific workflow. On the other hand, a collabora-
tion between workflows refers to the indirect use of
data produced by another workflow. This suggests
an implicit collaboration, when collaboration occurs
through the data published by another researcher.

Altintas et al. [1, 2] propose the provenance
model shown in Figure 1, which is capable of cap-
turing implicit collaborations within a scientific ex-
periment. The model predicts the identification of
workflows dependency from the relations between
dataflows input and output, and also helps to iden-
tify contributions from users who collaborate on a
project based on records of past executions. The au-
thors extend OPM (Open Provenance Model) [44]
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Figure 1: An abstract model of collabora-
tive provenance nodes and dependencies us-
ing the extended Open Provenance Model [2]

to record user interactions when publishing data
and workflows, which is essential for identifying the
various types of user collaboration. This model ex-
plicitly represents collaboration amongst wusers
(agents w; in the figure) and which users were re-
sponsible for each run of the experiment (r; in the
figure). According to Ragan et al.’s classification
[51], it captures data and interaction provenance.
The approach also proposes a query language, which
is an extension of the QLP (Query Language for
Provenance) [5].

Missier et al. [43] propose a model that facili-
tates the sharing of provenance in collaborative en-
vironments. The model aims to provide end-to-end
support for implicit collaborations. The approach
treats sharing as an action from which provenance
has to be preserved, i.e., the focus is to register
the provenance of the data sharing process. To do
so, the model adds new information to provenance
traces, stitching common parts of those traces. With
this, the model can represent cases when scientists
use data that was produced by another scientist’s
workflow, even when they come from heterogeneous
workflow systems. This model can represent data
and interaction provenance [51].

Zhang et al. [68], Confucius [70], and ProvDB
[41] present provenance models and tools that track
collaboration provenance. Zhang et al. [68] propose
the Collaborative Provenance Model (CPM), which
is an extension of PROV-DM (PROV Data Model)
[45]. Figure 2 shows that the model explicitly rep-
resents Person and Group of Person (a collaborat-
ing group), besides versions of Workflow, Processor,
and Data Links. Tt also captures which user oper-
ates which workflow version, process version, and
data link version. The model captures data and
interaction provenance [51].

Confucius [70] introduces a provenance ontology
(Figure 3). The ontology aims at supporting the
capture and record of scientific workflow compo-
sition and user interactions during the process of
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Figure 3: Collaborative workflow composi-
tion provenance ontology [70]

a collaborative workflow composition. The prove-
nance is stored in a provenance repository on the
central node of Confucius. Note that the ontology
can represent workflows and their components, and
roles of people in the collaboration groups. As for
Ragan et al.’s classification [51], this model can rep-
resent data and interaction provenance, besides the
remaining types through annotations.

ProvDB [41] proposes a provenance model with
a schema-later approach, providing a base schema
that can be extended by arbitrary properties as key-
value pairs (Figure 4). Note that these values can be
complex, such as a JSON document. The informa-
tion to the base schema is collected through Git and
the built-in ingestors, and additional information
can be added through custom ingestors or by user’s
annotations. When the user runs a command using
ProvDB, the system verifies the registered ingestors
and executes them. The ingestors can analyze the
before- and after-state of the artifacts produced by
the command to generate provenance information
about the executed command. The model deals
with data and interaction provenance [51] and can
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Figure 4: ProvDB Conceptual Data Model
[41]

deal with all other types of provenance using the
ingestors.

Table 1 summarizes how each model supports the
collaboration aspects mentioned at the beginning
of this section. All the models present limitations
when representing some aspects of collaboration.
Altintas et al. [1, 2] present a model capable of
capturing user collaborations but lack support for
the other analyzed items. Confucius [70] and CPM
[68] do not adequately treat the heterogeneity of
collaboration, not being able to deal with different
workflow formats. Confucius also does not deal with
workflow evolution. Missier et al. [43] present limi-
tations in dealing with workflow evolution and rep-
resenting the multilevel hierarchy. ProvDB [41] is
the only one providing support for all the analyzed
aspects, but it does that making use of extended
properties in a key-value schema. Regarding Ra-
gan et al’s [51] classification, only Confucius and
ProvDB can capture all types of provenance, but
they do that by using annotations or extended prop-
erties. This kind of schema could make things hard
and inefficient to query. Another important aspect
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Table 1: Summary of the Collaborative Provenance Models

Provenance Model Provenance Types [51] D AspectsHof Collaboratllt\)/ln c
Altintas et al. [1, 2] Data; Interaction No No No Yes
CPM [68] Data; Interaction Yes Evolution Only Yes Yes
Missier et al. [43] Data; Interaction Yes Different schema only No Yes
Confucius [38, 61, 67, 70] All* Yes No Yes Yes
ProvDB [41] All* Yes*® Yes* Yes* Yes

*Modeled as extended properties

is that the models just provide a form of storing
the information generated in collaborative research
and do not necessarily provide a way of collecting
them. We also notice that the models supported
by a tool [41, 68, 70] can store some provenance on
collaboration, but the tool may not fully capture it.

In this section, we show several provenance mod-
els that are able to store in part (or in total) collab-
oration aspects of scientific experiments. However,
in order to properly answer our two research ques-
tions, we need more insights. In the next section,
we discuss how the existing approaches capture and
use this information to foster collaboration.

3. COLLABORATION IN SCIENTIFIC
RESEARCH

Scientific research is a complex activity per se,
and collaboration in this environment becomes a
challenging task. To better understand these chal-
lenges, we independently analyze the aspects that
may influence collaboration in the scientific research
scenario. We develop a taxonomy (Figure 5) by ex-
amining the 20 approaches we selected, capturing,
and categorizing their similarities and differences.
We then standardize and enrich the categorization
based on other publications [39, 50, 53].

The first branch of the taxonomy is Ezperiment
Phases, which is defined in different ways by differ-
ent authors [6, 39]. In this survey, we use the classi-
fication proposed by Mattoso et al. [39], where sci-
entific experiments go through three phases: compo-
sition, execution, and analysis. During composition,
scientists structure and configure the entire experi-
ment, establishing the logical sequence of activities,
the type of input data to be provided, and the type
of output data. During ezxecution, scientists ma-
terialize the experiment, define the required input
data to run the experiment, trigger its execution
(usually carried out by an Experiment Management
System), and get the results to be analyzed. Dur-
ing analysis, scientists study the gathered data from
prior phases [39] aiming at proving or refuting their
hypothesis. Each of these experiment phases may
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involve different forms of collaboration, as discussed
in Section 3.1. Provenance plays an important role
in each phase, so it is important to keep track of all
the user interaction and data transformations on a
provenance database.

The second branch of the taxonomy regards the
temporal aspect of collaboration. This aspect is re-
lated to the experience of time and the temporal
organization of activities [53]. In a collaborative
environment, some tasks need to be synchronized,
while others can be done asynchronously. Section
3.2 analyzes if and how existing approaches allow
collaborative tasks to occur in real-time or asyn-
chronously.

The third branch is concurrency control, which
has been extensively studied in the context of data-
bases [52, 15, 23], operating systems [58], and soft-
ware development [55, 9, 40]. Although the conduc-
tion of scientific experiments has its peculiarities,
the taxonomy uses ideas that govern version control
systems once the problems that may arise when ac-
cessing a resource during an experiment resembles
the ones that are dealt with by such systems. There
are two main concurrency control policies to allow
simultaneous work on version control systems: op-
timistic and pessimistic policy [50]. In pessimistic
policies, the artifact that needs to be accessed by
several users is restricted to be changed by a sin-
gle user at a time (i.e., the artifact is locked to a
specific user and is only released when the interac-
tion is finished). In optimistic policies, artifacts can
be updated in parallel, and users need to merge the
changes when conflicts occur. Each of these policies
has advantages and disadvantages, and the choice
of the most appropriate policy depends on the con-
currency frequency, as well as the effort required to
merge the artifacts [50]. Section 3.3 discusses how
existing approaches deal with concurrency control.

The fourth branch of the taxonomy regards the
sharing of conceived ideas as well as results and ex-
periments. This allows other researchers to develop
new research using these ideas [8]. Although this
process is practically mandatory in research, there
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is a considerable variation in what is shared, which
may facilitate or hinder the research reuse. Some
forms of sharing within research would be knowl-
edge sharing, as in publications; data and models
sharing, such as sharing a database obtained after
some research; and physical resources sharing, such
as what happens in the case of institutions sharing
a supercomputer. For these different types of shar-
ing (in particular, knowledge, data, or models) to
succeed, provenance data is crucial. Without it, the
shared information comes out of context and may be
useless. Section 3.4 evaluates which of these sharing
forms the existing approaches are prepared to deal
with, and how this occurs.

Note that all branches of this taxonomy are con-
nected to challenges C1 and C2. They need to
be taken into consideration both when collecting
provenance (C1) and using this provenance to make
collaboration easier (C2). Note also that all branches
of the taxonomy are related to data and interaction
provenance [51].

Table 2 presents the selected approaches and clas-
sifies them according to our taxonomy. This clas-
sification considers the aspects addressed in each
approach and not the solution maturity of a spe-
cific aspect. Thus, two solutions can be equiva-
lently classified, but this does not mean they have
the same robustness level. We also evaluated if
these tools collect provenance and, when it is pos-
sible, classify which type of provenance these tools
support. On the next subsections, we detail each
of the taxonomy branches and how the surveyed
approaches fit them, besides briefly discussing the
provenance support of those tools.

3.1 Experiment Phases

Most of the approaches tackle collaboration in the
composition phase, while the execution and analysis
phases have been receiving less attention.
Composition. This phase has two sub-phases:
conception and reuse [39]. Conception aims at pro-
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ducing a high-level representation of the scientific
experiment protocol, which is afterward refined and
instantiated as a concrete implementation [39] in
the form of a workflow or script. Reuse consists of
retrieving an existing component and adapting it to
a new purpose [39)].

Some proposals support the conception sub-phase
[26, 22, 68, 70, 32, 46, 41, 13]. VisTrails [26] is
a provenance-aware Workflow Management System
that implements support for the collaborative com-
position of the workflow. Ellkvist et al. [22] and
Zhang et al. [68] introduce VisTrails extensions
that unleash real-time collaboration on the com-
position phase of the experiment. Confucius [70]
extends Taverna [32] to allow the collaborative com-
position of workflows by using a client-server archi-
tecture that communicates using a service-oriented
architecture and XML messages. Mostaeen et al.
[46] propose a fine-grained lock scheme that aims
to increase efficiency in workflow conception by re-
ducing the waiting time for lock release. ProvDB
[41] uses Git to allow the user to collaborate on ex-
periment conception. It also enriches the informa-
tion collected using ingestors. CoCalc is a virtual
workspace for calculations, research, collaboration,
and for authoring documents [13], which provides a
web portal where scientists can share files with mul-
tiple collaborators. This includes Jupyther note-
books, where multiple scientists can simultaneously
edit scripts in real-time.

Regarding the reuse sub-phase, many of the se-
lected publications focus on the sharing aspect, thus
allowing scientists to share a component, a work-
flow, or a dataset with their peers. That is the
case of CAMERA [4], e-ScienceNet [12], myExper-
iment [28], OpenML [62], Dataverse [35], Collabo-
rative PL-Science [48] and ViroLab [7]. ViroLab [7]
provides a way for sharing script components of a
workflow. The remaining approaches focus on ex-
periments represented as workflows.

Execution. RASA [42] is the only solution that
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Table 2: Aspects of Collaboration in the surveyed Approaches

A h Aspects of collaboration
pproac Experiment Temporality Concurrency Sharing Provenance
Phase Control Support
Confucius [38, 61, Composition Asynchronous; Pessimistic Data and models Data;
67, 70 Real Time Interaction
myExperiment [19, Composition Asynchronous N/A Data and models; Yes**
28, 29] and Analysis Knowledge
CAMERA [4, 57] Composition Asynchronous N/A Data and models; Yes**
and Analysis Knowledge
e-ScienceNet [10, 11, Composition Asynchronous N/A Data and models; No
12] Knowledge
Collaborative Composition Asynchronous N/A Data and models; No
PL-Science [48] and Analysis Knowledge
Ellkvist et al. [22] Composition Real Time Optimistic Data and models Data
VisTrails [26] Composition Asynchronous Optimistic N/A Data
NoCoV [63] Analysis Asynchronous; N/A N/A No
Real Time
RASA [42] Execution Asynchronous N/A Physical resources No
Wood, Wright, and Analysis Real Time N/A N/A No
Brodlie [65]
ViroLab [7] Composition Asynchronous N/A Data and models Yes*
J. Zhang et al [68] Composition Real Time Pessimistic Data and models Data;
Interaction
Mostaeen et al. [46] Composition N/A Pessimistic N/A No
ProvDB [41] Composition Asynchronous Optimistic Data and models Data;
Interaction
Dataverse [35] Composition Asynchronous N/A Data and models Yes**
and Analysis
OpenML [62] Composition Asynchronous N/A Data and models No
and Analysis
CoCalc [13] Composition Asynchronous; Optimistic Data and models; Data;
and Analysis Real Time Knowledge Interaction
Sumatra [17] Analysis Real Time N/A Data and models Data

*No details are provided to correctly classify which provenance types are collected

**Stores data collected by other tools

addresses collaboration in the execution phase of
the experiment. RASA is a framework that coor-
dinates the use of scientific instruments, being able
to dynamically adapting workflows during the ex-
periment execution according to the needs of the
scientists and the equipment.

Analysis. The analysis phase has three sub-phases:
query, visualization, and discovery [39]. During Que
ry, scientists can relate data and extract informa-
tion of both the experiment results and provenance
data. Visualization simplifies the analysis of large
volumes of raw data. Data is often projected in
graphs or maps to simplify the identification of pat-
terns and the reasoning over the data. During dis-
covery, scientists evaluate query results and visual
data to draw conclusions about the entire experi-
ment, aiming at checking if the hypothesis is likely
to be correct or if it should be refuted. For this,
scientists must analyze the experiment as a whole,
including all the executions of the experiment (tri-
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als) [47].

OpenML [62], CAMERA [4] and myExperiment
[28] provide query support. They offer a mecha-
nism for sharing not just the workflow components
but also other data, such as results and provenance
datasets. The myExperiment platform also allows
scientists to interact with each other and discuss the
shared results. These approaches support the dis-
covery sub-phase since they provide a mechanism
to analyze and discuss the experiment as a whole.
Although not described in the paper [17], Sumatra
provides some support to collaboration [56]. It al-
lows different users to share the same provenance
database and provides some query features to sup-
port the query sub-phase.

NoCoV [63] and Wood, Wright, and Brodlie [65]
support the wvisualization sub-phase. NoCoV (Noti-
fication-service-based Collaborative Visualization)
uses a client-server architecture to provide mech-
anisms for the collaborative visualization of experi-
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ment data. The pipeline controller (server) is re-
sponsible for synchronizing the clients’ visualiza-
tion, and multiple clients can connect to it simul-
taneously. The clients could be a pipeline editor
(which can update the visualization pipeline) or a
parameter control client (which can only adjust vi-
sualization parameters). Wood, Wright, and Brodlie
[65] propose a collaborative approach on top of IRIS
Explorer [24] that allows multiple scientists to in-
teract over a visualization collaboratively.

CoCalc [13] supports the query, discovery, and vi-
sualization sub-phases. It allows scientists to query
the results of the experiment and its history, be-
sides other data. Scientists can also visualize the
results using Jupyther notebooks and libraries, such
as matplotlib. They can also use chat rooms to dis-
cuss the experiment and reason about it.

Dataverse [35] focuses on creating an infrastruc-
ture to share datasets related to scientific publica-
tions. It provides the data to be used in the query,
discovery, and visualization sub-phases, although it
does not explicitly deal with them.

3.2 Temporality

Starting with the approaches that implement
asynchronous interactions, CAMERA [4], myEx-
periment [28], e-ScienceNet [10], Collaborative PL-
Science [48], ViroLab [7], Dataverse [35] and
OpenML [62] provide solutions focused on the shar-
ing of data and components, where a scientist can
publish workflows, components or datasets. These
published artifacts become available for other sci-
entists to reuse them asynchronously. On VisTrails
[26], each version of the workflow is treated as a
node in a version tree. Nodes are never modified
or deleted (each modification generates a new node
in the tree). To collaboratively compose a work-
flow, scientists can asynchronously work in their lo-
cal copy of the workflow and synchronize it with
another scientist’s copy when needed. However, if
two scientists modify the same workflow before syn-
chronizing it, this generates multiple disjoint ver-
sions, which can be problematic since the changes
could be complementary. When this occurs, the
scientist should re-implement part of the workflow.
ProvDB [41] is a client-server application that uses
Git to support version management tasks as well
as distributed and decentralized management of in-
dividual repositories. Each user makes the neces-
sary modifications to her local repository and, asyn-
chronously, synchronizes them using Git.

We have also identified several proposals that pro-
vide real-time collaboration. Ellkvist et al. [22]
implement a solution based on a client/server ar-
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chitecture, where the server is a MySQL database,
and the client is a modified version of VisTrails,
that consists of a mechanism to unleash real-time
collaboration during workflow composition. The
server is used as a shared database to synchronize
the versions among the scientists. When one scien-
tist makes a modification, it is saved on the shared
database and the other clients are automatically no-
tified to update their local versions. Although im-
plemented in VisTrails, the authors argue that their
solution could be implemented in other provenance-
aware Workflow Management Systems. Zhang et al.
[68] also implement a plugin to VisTrails, which al-
lows any changes made by one scientist to be imme-
diately reflected on all other collaborators’ screens.
The approach communicates with VisTrails through
third-party packages and the VisTrails API. It uti-
lizes Git to provide a new version tree over the ex-
isting VisTrails History View. Wood, Wright, and
Brodlie [65] present a real-time approach based on
a client-server architecture, which allows scientists
to visualize an experiment collaboratively. Users
can share and alter visualization parameters and
visualization pipelines so they can see other users’
changes in real-time. Participants may also discon-
nect single modules from their group to allow peri-
ods of independent work on a subset of the pipeline
while remaining in contact with the rest of the ses-
sion. Sumatra [17] provides a way of sharing the
provenance database in real-time. The information
is shared as soon as it is collected. However, the
solution still has several limitations and, in some
scenarios, even data loss is possible.

Three solutions work in both real-time and asyn-
chronous scenarios. Confucius [70] provides a so-
lution inspired by a protocol of human communi-
cation called Robert’s Rules of Order, which is a
set of rules created by Henry M. Robert in 1876
to run effective and orderly meetings with maxi-
mum fairness to all members [33]. Confucius im-
plements that with a locking strategy that controls
which scientist has the right to interact at a given
time in a real-time collaboration session. Confucius
also maintains a database on the central node that
is used for storing provenance of collaboration and
workflow evolution, which allows asynchronous col-
laboration. NoCoV [63] is implemented in a service-
oriented architecture that uses notification Web ser-
vices to synchronize clients and server. When some-
one alters the visualization pipeline, the pipeline
controller notifies other clients, so everyone sees the
same visualization in real-time. To transmit in-
formation between the pipeline controller and the
client, it uses skML [21], an XML-based dataflow
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description language. NoCoV uses the stateful Web
Services provided by GlobusToolkit 4 (GT4) [59].
Using this stateful feature, the state of the pipeline
is persisted and users can retrieve the saved pipeline
to continue the work of other users, thus achieving
asynchronous collaboration. CoCalc [13] provides a
solution based on a web portal where scientists can
simultaneously compose scripts in real-time. All
changes are immediately synchronized with others.
It saves files and data in its cloud infrastructure,
so scientists can leave the session and rejoin when
needed (allowing asynchronous work).

3.3 Concurrency Control

All approaches providing a mechanism for con-
currency control focus on the composition phase of
the scientific experiment.

Starting with the approaches that implement the
pessimistic policy for concurrency control, Confu-
cius’ authors [70] treat the concurrency control prob-
lem as they would treat it in a face-to-face activity.
A central node is needed for the collaboration to
occur. A group is registered on this node, and the
person responsible for registering the group is au-
tomatically assigned as the group moderator. The
moderator is responsible for shift control, which is
the definition of which group member is allowed to
change the workflow at a given time. There is an
algorithm for automatically granting and releasing
the right to the shift, but the moderator can inter-
vene by taking the right to the shift. Confucius also
considers that workflow development can last for
long periods in an asynchronous form and, in this
scenario, workflow level locking may not be appro-
priate. Therefore, Confucius blocks smaller build-
ing blocks. Thus, several scientists can change the
same workflow at the same time. Confucius estab-
lishes that the smallest building blocks are tasks and
data channels, that in Taverna are called processors
and data links, respectively. Confucius introduces
the concept of synchronization area “that represents
a conceptual area in a shared scientific workflow,
which allows only one collaborator to work on it at
a given time” [70]. When the user starts to mod-
ify a data link, the synchronization area is the data
link itself. When the user locks a processor, the
synchronization area is the processor and all the
fan-out data links of the processor. Zhang et al.
[68] also implement a pessimistic collaboration pro-
tocol based on Robert’s Rules of Order. The pro-
tocol is fully described in [34, 69]. Mostaeen et al.
[46] analyze the existing locking schemes in terms
of concurrency control on the composition of work-
flows. The approach presents a pessimistic strategy
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of fine-grain locking in scientific workflows. The
lock is done for a single user but at the attribute
level, while other approaches use turns or module
level locking. The main benefit here is to reduce the
waiting time for a lock since smaller portions of the
workflow are locked for each modification.

Only four approaches implement the optimistic
policy for concurrency control. Ellkvist et al. [22]
and VisTrails [26] present an optimistic lock ap-
proach that creates different branches in the ver-
sion tree in the case of simultaneous changes. Al-
though VisTrails presents a mechanism for merging,
it merges two version trees of different files and not
two branches of the same version tree. If the sci-
entists want to keep both of the changes, they will
have to use the diff functionality to better under-
stand what has changed and to replay the changes
manually. VisTrails also has a functionality called
’analogy’ that could help on the process: given two
versions of a workflow, VisTrails can automatically
detect their differences and apply those differences
to another workflow version. Ellkvist et al.’s pro-
posal [22] is built on top of VisTrails, and although
it adds support to real-time collaboration, it uses
the same concurrency control approach of VisTrails.
ProvDB [41] also works on the idea of immutable
versions, in which any update will result in a new
version. In Cocalc [13], the whole experiment envi-
ronment is cloud-based. All changes are made di-
rectly in the cloud and synchronized with the online
scientists’ browser — there is no lock.

3.4 Sharing

Most of the approaches providing sharing features
allow the sharing of data and models. That is the
case of e-ScienceNet [12], ViroLab [7], myExperi-
ment [29], CAMERA [4], Dataverse [35], OpenML
[62], ProvDB [41], Zhang et al. [68], Ellkvist et
al. [22], Confucius [70], Collaborative PL-Science
[48], CoCalc [13] and Sumatra [17]. ProvDB [41],
Zhang et al. [68], Ellkvist et al. [22], and Confu-
cius [70] work with a centralized database for the
experiment, which stores the provenance collected
from the collaborative experiment and makes this
information available to the involved scientists. Vi-
roLab [7] addresses the issue of sharing code blocks
for reuse. The approach also mentions the persis-
tence and sharing of provenance but does not pro-
vide details on what kind of provenance information
is stored and shared. Sumatra [17] provides a way
of sharing a provenance database between multiple
scientists.

Roure, Globe, and Stevens [19] argue that one of
the barriers of workflow reuse is on how the knowl-
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edge about the workflow could be transmitted to
potential users. That challenge can be minimized
by the distribution of other documentation data in
addition to the workflow definition. Most of the ap-
proaches try to increase collaboration by adding the
possibility of sharing knowledge. That is the case
of e-ScienceNet [12], myExperiment [29], CAMERA
[4], Dataverse [35], CoCalc [13], and Collaborative
PL-Science [48]. Pereira et al. [48] propose the Col-
laborative PL-Science, an extension of PL-Science
[14]. Tt aims to facilitate the reuse of components in
the construction of scientific workflows, thus com-
bining models and knowledge sharing. The idea is
that adding information that helps to understand
published artifacts facilitates reuse. The approach
uses ontologies to enrich the information of shared
objects. CoCalc [13] allows the sharing of a great
variety of files, including scripts in multiple pro-
gramming languages. It also allows the sharing of
documentation that can help scientists to better un-
derstand what has been made on the experiment
and help them to better use the shared data and
scripts. e-ScienceNet [12] is another approach that
allows both the sharing of data and models and also
knowledge. It differs from other approaches because
it presents a peer-to-peer solution for sharing the
experiment results and models without the depen-
dency of a central server.

Some publications explore the creation of portals
for sharing data and reusable components in re-
search, where it is common to share scientific work-
flows. Goble and Roure [29] propose myExperi-
ment, a social network for scientists focused on work-
flow-related issues. It allows the sharing of the
workflow itself as well as other metadata, such as
provenance logs, besides enabling researchers to in-
teract using the tool, commenting, and discussing
the shared resources. CAMERA [4] also focuses on
the sharing of scientific workflows and provenance
logs. The tool works exclusively with Kepler [3]
workflows and allows the execution of the experi-
ments within the portal. OpenML [62] is focused
on the machine learning community and provides
a portal to share datasets, algorithm implementa-
tions, and workflows. It also presents a Web API,
which allows users to interact with the portal in
a programmatic form, and ways of sharing scien-
tific tasks and receiving other scientists’ collabora-
tion. Dataverse [35] provides a Web infrastructure
to share datasets related to scientific publications.
The main idea is that sharing the datasets may in-
crease the reproducibility of experiments, and, as
a counterpart to the authors, it may increase the
number of citations of the related publications [35].
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RASA [42] is the only approach that focuses on
sharing physical resources. The approach provides
a framework for coordinating the use of scientific
instruments. The idea is to provide a mechanism
to dynamically modify workflows depending on the
needs of the requester scientist and the particular-
ities of the equipment, and also the knowledge of
the equipment operator.

3.5 Provenance Support

As seen in Table 2, many of the tools do not
collect provenance. Although ViroLab [7] provides
some provenance support, it does not give details
on what is stored. Dataverse [35], CAMERA [4],
and myExperiment [19] provide support for stor-
ing and sharing provenance data collected by other
tools. CoCalc [13] collects interaction provenance
through the log of the activities executed by scien-
tists, but this unstructured information is hard to
query. VisTrails [26], Ellkvist et al. [22], and Suma-
tra [17] can capture data provenance from multiple
users in their local stations and consolidate them in
a single database, but those databases do not prop-
erly represent collaboration aspects of the research
covered by Section 2, thus collaboration provenance
is not included. Zhang et al. [68], Confucius [38, 61,
67, 70], and ProvDB [41] provide data and interac-
tion provenance support, and use the collaboration-
aware provenance models described in Section 2.
The models proposed by Confucius and ProvDB
need extended properties to represent some collab-
oration aspects, but the tools proposed by those pa-
pers are not able to capture these properties. Thus,
there is a difference between the provenance types
represented by the models and those supported by
the tools.

4. DISCUSSION AND OPPORTUNITIES

Figure 6 shows a timeline that helps understand
how research has progressed in this field. Some of
the publications are highly related and represent the
evolution of the same research. In such cases, we
treat them in a consolidated manner, thus linking
these publications in the figure and handling them
as a single approach. This topic has received much
attention in recent years, but there are still some
gaps to be further explored. In this section, we
classify the selected approaches, answer the research
questions introduced in Section 1, discuss the gaps
that still exist, and present opportunities derived
from those gaps.

R1: How do existing tools store and collect
provenance in a collaborative experiment?
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Figure 6: Timeline of selected publications

To answer this question, we analyzed the available
models for storing provenance in collaborative en-
vironments. Although significant progress has been
made with those models, all of them present lim-
itations (they do not deal with different workflow
formats, or do not deal with workflow evolution).
Models that can represent all the aspects we an-
alyzed do so by using extended properties, which
makes them difficult to query.

Regarding the available tools and how they col-
lect provenance: Some tools (Dataverse [35], CAM-
ERA [4], and myExperiment [19]) just provide stor-
age for provenance, but do not collect it. Other
tools (VisTrails [26] , Ellkvist et al. [22], and Suma-
tra [17]) provide a way of consolidating the prove-
nance collected from different users but lack support
for other collaboration aspects. Finally, a few tools
(Zhang et al. [68], Confucius [38, 61, 67, 70], and
ProvDB [41]) use collaborative aware provenance
models but still present some limitations.

R2: How do existing tools use provenance to
make collaboration easier in scientific experi-
ments? We conclude that the surveyed approaches
fail to use the collected provenance to support the
collaboration. Although Confucius [70], Zhang et
al. [68], and ProvDB [41] are capable of collect-
ing provenance of the collaboration process, they
do not propose forms of using that valuable data to
increase the efficiency and awareness of the process.

As illustrated in Table 2, most of the approaches
support the composition phase of the experiment
life cycle (especially the conception sub-phase).
However, they are mostly based on Workflow Man-
agement Systems and ignore the fact that many sci-
entists use scripts in their experiments [49]. The
only approaches that support experiments repre-
sented as scripts are ViroLab [7], Sumatra [17], Co-
Calc [13], and ProvDB [41]. However, ViroLab only
addresses the reuse sub-phase of the experiment
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composition. Sumatra fully delegates the script com-
position to Git and presents several limitations for
the shared provenance storage, such as a possible
data loss depending on the network connection. De-
spite being quite complete, CoCalc [13] demands
the scientist to be online in order to work, and that
she works on the browser, which can be a tough
change in the workspace, tools, and IDEs that the
scientist is used to. It is possible to run applica-
tions from the CoCalc portal, but this is not the
same as running them from the scientist’s machine.
It also presents several limitations on free accounts.
Another point worth mentioning is that it does not
properly capture the provenance of the experiment.
It presents features like ”time travel” and ”log” that
let users see the history of the files and activity on
the project, but it is very high level and may not
be enough to guarantee the reproducibility of the
experiment, for example. ProvDB uses Git to han-
dle version management and a provenance ingestor
framework to capture other provenance data, but it
is highly specialized in data science problems and is
not well prepared for a general-purpose experiment.

Although versioning tools handle several collab-
orative needs of script building, they are software
development tools that do not address specific prob-
lems in scientific research. These tools will not pro-
vide provenance capture and analysis support by
default. Provenance is not just related to the ob-
tained results but also the input data, intermedi-
ate results, etc. Trying to deal with this complexity
without the proper tooling support could take much
effort from the scientists and steal the energy that
should be spent on research. Although ProvDB con-
siders these challenges, it depends on the scientist
being able to access an external tool (Git), a specific
OS (UNIX), and demands the creation of ingestors
to capture some provenance aspects. ProvDB is also
focused on a specialized type of experiment (data
science analysis), and does not address awareness
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during collaboration. Thus, we must investigate
and design provenance-aware tools that can
handle composition, execution, and analyses
of generic script-based experiments collabo-
ratively, increasing the awareness of users
during the process at the same time.

The execution phase also lacks support. We could
find only one approach that supports collaboration
in this phase of the experiment life cycle. RASA
[42] supports the execution phase by controlling ac-
cess to physical resources such as equipment. Pro-
viding provenance-aware support of the execution
phase is crucial in collaborative experiments, since
without it, important aspects of the collaboration
may be lost. In fact, for reproducibility purposes, it
is crucial to know which user executed each part of
the experiment, where and under which conditions.
Thus, the support for the collaborative execu-
tion of scientific experiments needs more in-
vestigation.

Some approaches support the analysis phase of
experiments. Most of them allow scientists to com-
ment on the experiment structure or results. Some
approaches [7, 26, 41, 70] provide provenance gath-
ering of the collaborative experiment that could help
the analysis of the experiment. However, they do
not provide a clear way to collaborate throughout
the analysis, so they were classified without this
phase of the life cycle in Table 2.

Temporality is well explored, with several
approaches supporting asynchronous or real-time
interactions. However, some features could be im-
proved. When conducting an experiment in groups,
it is important to know what happened in the ex-
periment while scientists were offline, who did what,
and in which part of the experiment (interaction
provenance). It is also important to know if there
is anyone online and in which part of the exper-
iment they are working at. Although some tools
let the users query for some of that information,
it would be desirable that such information would
be automatically shown to users, depending on the
context of the experiment. Thus, an interesting
issue to examine will be ways of increasing
the awareness of the scientists about the ac-
tions of their collaborators.

As for concurrency control, most of the approaches
use a pessimistic locking scheme. Pessimistic lock-
ing may work well in real-time scenarios, but it can
be quite troublesome for asynchronous collabora-
tion. VisTrails [26] and Ellkvist et al. [22] are the
only solutions that work with an optimistic lock-
ing scheme, but they do not implement a merg-
ing mechanism capable of merging two workflow
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branches. Although VisTrails diff and analogy func-
tionalities could help to merge two branches, they
impose some additional steps for such a task and
lack some basic merge functionalities like conflict
resolution. Thus,we need tools that work with
optimistic locking and provide complete merge
support in the composition of workflows.

Also, in a collaborative environment, some col-
laboration tasks may perform better if treated with
a pessimistic locking policy while others will bene-
fit from an optimistic approach [50]. In experiments
with files that are difficult to merge, scientists could
opt to work with a pessimistic policy, while in oth-
ers they may prefer to work with an optimistic one.
Existing tools only implement one of the policies, so
if scientists want to use this tool, they are forced to
use the implemented policy. Scientists must have
the flexibility needed to interact in a way that is
more appropriate to the use case in hand. Thus,
tools that allow scientists to choose the more
appropriate lock policy are needed.

Sharing is well covered in the literature with a
wide range of available solutions. Solutions address
centralized sharing as well as peer-to-peer sharing,
besides providing mechanisms for commenting and
enriching the shared artifacts, making them easier
to use. We believe that, in this aspect, there is no
clear gap in the available tools.

We end up finding that none of the available tools
are capable of using provenance to make collabora-
tion easier in scientific experiments (related to R2).
So, there is a need to investigate how to use
the captured provenance to make collabora-
tion easier in scientific research.

S. CONCLUSION

Scientific research is frequently collaborative and
also conducted in silico. Although this is very pos-
itive for science, it brings several challenges. To
better understand the challenges and evaluate the
literature on the subject, this article presents a sur-
vey on collaboration in in silico scientific research.
In this survey, we map the available tools and the
state-of-art of research on collaborative experiments
conducted in silico. We propose a taxonomy and use
it to classify the existing tools and discuss opportu-
nities based on the gaps we identified. We believe
that a more systematic review process could find
new articles and enrich the obtained results. How-
ever, we believe we cover a large part of the publi-
cations on the topic, and our findings at this stage
can be useful and generate insights to researchers
interested in this topic.
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