
SIGMOD Officers, Committees, and Awardees
	

Chair	 Vice-Chair	 Secretary/Treasurer	
Juliana	Freire	 Ihab	Francis	Ilyas	 Fatma	Ozcan	

Computer	Science	&	Engineering	 Cheriton	School	of	Computer	Science	 IBM	Research	
New	York	University	 University	of	Waterloo	 Almaden	Research	Center	
Brooklyn,	New	York	 Waterloo,	Ontario	 San	Jose,	California	

USA	 CANADA	 USA	
+1	646	997	4128	 +1	519	888	4567	ext.	33145	 +1	408	927	2737	

juliana.freire	<at>	nyu.edu	 ilyas	<at>	uwaterloo.ca	 fozcan	<at>	us.ibm.com	
	
	
SIGMOD	Executive	Committee:			

Juliana	Freire	(Chair),	Ihab	Francis	Ilyas	(Vice-Chair),	Fatma	Ozcan	(Treasurer),	K.	Selçuk	Candan,		
Rada	Chirkova,	Curtis	Dyreson,	Christian	S.	Jensen,	Donald	Kossmann,	and Dan	Suciu.
	

Advisory	Board:		
Yannis	Ioannidis	(Chair),	Phil	Bernstein,	Surajit	Chaudhuri,	Rakesh	Agrawal,	Joe	Hellerstein,	Mike	
Franklin,	Laura	Haas,	Renee	Miller,	John	Wilkes,	Chris	Olsten,	AnHai	Doan,	Tamer	Özsu,	Gerhard	
Weikum,	Stefano	Ceri,		Beng	Chin	Ooi,	Timos	Sellis,	Sunita	Sarawagi,	Stratos	Idreos,	and	Tim	Kraska.	

	
SIGMOD	Information	Director:			
	 Curtis	Dyreson,	Utah	State	University		
	
Associate	Information	Directors:			
	 Huiping	Cao,	Georgia	Koutrika,	Wim	Martens,	Asterios	Katsifodimos	
	
SIGMOD	Record	Editor-in-Chief:			
	 Rada	Chirkova,	NC	State	University	
	
SIGMOD	Record	Associate	Editors:			

Azza	Abouzied,	Lyublena	Antova,	Vanessa	Braganholo,	Aaron	J.	Elmore,	Wim	Martens,		Kyriakos	
Mouratidis,	Dan	Olteanu,	Divesh	Srivastava,	Pınar	Tözün,	Immanuel	Trummer,	Yannis	Velegrakis,	
Marianne	Winslett,	and	Jun	Yang.	

	
SIGMOD	Conference	Coordinator:			

K.	Selçuk	Candan,	Arizona	State	University		
	

PODS	Executive	Committee:		
	 Dan	Suciu	(Chair),	Tova	Milo,	Diego	Calvanese,	Wang-Chiew	Tan,	Rick	Hull,	and	Floris	Geerts.		
	
Sister	Society	Liaisons:			
	 Raghu	Ramakhrishnan	(SIGKDD),	Yannis	Ioannidis	(EDBT	Endowment),	Christian	Jensen	(IEEE	TKDE)	
	
SIGMOD	Awards	Committee:		

Martin	Kersten	(Chair),	Surajit	Chadhuri,	David	DeWitt,	Sunita	Sarawagi,	and	Michael	Carey.		
	
Jim	Gray	Doctoral	Dissertation	Award	Committee:			

Ioana	Manolescu	(co-Chair),	Lucian	Popa	(co-Chair),	Peter	Bailis,	Michael	Cafarella,	Feifei	Li,	Qiong	Luo,	
Felix	Naumann,	and	Pinar	Tozun.		

	
SIGMOD	Systems	Award	Committee:			

Michael	Cafarella	(Chair),	Michael	Carey,	David	DeWitt,	Yanlei	Diao,	Paul	Larson,	and	Gustavo	Alonso.	
	

SIGMOD Record, September 2019 (Vol. 48, No. 3) 1

SIGMOD	Edgar	F.	Codd	Innovations	Award		
For	innovative	and	highly	significant	contributions	of	enduring	value	to	the	development,	understanding,	or	use	
of	database	systems	and	databases.	Recipients	of	the	award	are	the	following:		

Michael	Stonebraker	(1992)	 	 Jim	Gray	(1993)	 	 	 	 Philip	Bernstein	(1994)		
David	DeWitt	(1995)	 	 	 C.	Mohan	(1996)	 	 																		 David	Maier	(1997)		
Serge	Abiteboul	(1998)	 	 	 Hector	Garcia-Molina	(1999)	 						 Rakesh	Agrawal	(2000)		
Rudolf	Bayer	(2001)	 	 	 Patricia	Selinger	(2002)	 										 	 Don	Chamberlin	(2003)		
Ronald	Fagin	(2004)	 	 	 Michael	Carey	(2005)	 	 						 Jeffrey	D.	Ullman	(2006)		
Jennifer	Widom	(2007)	 	 	 Moshe	Y.	Vardi	(2008)	 	 						 Masaru	Kitsuregawa	(2009)		
Umeshwar	Dayal	(2010)	 	 	 Surajit	Chaudhuri	(2011)	 						 	 Bruce	Lindsay	(2012)	
Stefano	Ceri	(2013)		 	 	 Martin	Kersten	(2014)	 	 						 Laura	Haas	(2015)	
Gerhard	Weikum	(2016)	 	 	 Goetz	Graefe	(2017)	 	 	 Raghu	Ramakrishnan	(2018)	
Anastasia	Ailamaki	(2019)	
	
SIGMOD	Systems	Award		
For technical contributions that have had significant impact on the theory or practice of large-scale data
management systems.

Michael	Stonebraker	and	Lawrence	Rowe	(2015);	Martin	Kersten	(2016);	Richard	Hipp	(2017);		
Jeff	Hammerbacher,	Ashish	Thusoo,	Joydeep	Sen	Sarma;	Christopher	Olston,	Benjamin	Reed,	Utkarsh	
Srivastava	(2018);	Xiaofeng	Bao,	Charlie	Bell,	Murali	Brahmadesam,	James	Corey,	Neal	Fachan,	Raju	Gulabani,	
Anurag	Gupta,	Kamal	Gupta,	James	Hamilton,	Andy	Jassy,	Tengiz	Kharatishvili,	Sailesh	Krishnamurthy,	Yan	
Leshinsky,	Lon	Lundgren,	Pradeep	Madhavarapu,	Sandor	Maurice,	Grant	McAlister,	Sam	McKelvie,	Raman	
Mittal,	Debanjan	Saha,	Swami	Sivasubramanian,	Stefano	Stefani,	Alex	Verbitski	(2019)	
	
SIGMOD	Contributions	Award		
For	 significant	 contributions	 to	 the	 field	 of	 database	 systems	 through	 research	 funding,	 education,	 and	
professional	services.	Recipients	of	the	award	are	the	following:		

Maria	Zemankova	(1992)	 	 	 Gio	Wiederhold	(1995)	 	 	 Yahiko	Kambayashi	(1995)		
Jeffrey	Ullman	(1996)	 	 	 Avi	Silberschatz	(1997)	 	 	 Won	Kim	(1998)		
Raghu	Ramakrishnan	(1999)	 	 Michael	Carey	(2000)	 	 	 Laura	Haas	(2000)		
Daniel	Rosenkrantz	(2001)	 	 Richard	Snodgrass	(2002)		 	 Michael	Ley	(2003)		
Surajit	Chaudhuri	(2004)			 	 Hongjun	Lu	(2005)		 	 	 Tamer	Özsu	(2006)		
Hans-Jörg	Schek	(2007)	 	 	 Klaus	R.	Dittrich	(2008)	 												 	 Beng	Chin	Ooi	(2009)		
David	Lomet	(2010)																											 Gerhard	Weikum	(2011)	 	 	 Marianne	Winslett	(2012)	
H.V.	Jagadish	(2013)	 	 	 Kyu-Young	Whang	(2014)		 	 Curtis	Dyreson	(2015)	
Samuel	Madden	(2016)	 	 	 Yannis	E.	Ioannidis	(2017)	 	 Z.	Meral	Özsoyoğlu	(2018)	
Ahmed	Elmagarmid	(2019)	
		
SIGMOD	Jim	Gray	Doctoral	Dissertation	Award		
SIGMOD	has	established	the	annual	SIGMOD	Jim	Gray	Doctoral	Dissertation	Award	to	recognize	excellent	
research	by	doctoral	candidates	in	the	database	field.		Recipients	of	the	award	are	the	following:		

§ 2006	Winner:	Gerome	Miklau.	Honorable	Mentions:	Marcelo	Arenas	and	Yanlei	Diao.		
§ 2007	Winner:	Boon	Thau	Loo.	Honorable	Mentions:	Xifeng	Yan	and	Martin	Theobald.		
§ 2008	Winner:	Ariel	Fuxman.	Honorable	Mentions:	Cong	Yu	and		Nilesh	Dalvi.		
§ 2009	Winner:	Daniel	Abadi.		Honorable	Mentions:	Bee-Chung	Chen	and	Ashwin	Machanavajjhala.	
§ 2010	Winner:	Christopher	Ré.	Honorable	Mentions:	Soumyadeb	Mitra	and	Fabian	Suchanek.	
§ 2011	Winner:	Stratos	Idreos.	Honorable	Mentions:	Todd	Green	and	Karl	Schnaitterz.	
§ 2012	Winner:	Ryan	Johnson.	Honorable	Mention:	Bogdan	Alexe.	
§ 2013	Winner:	Sudipto	Das,	Honorable	Mention:	Herodotos	Herodotou	and	Wenchao	Zhou.	
§ 2014	Winners:	Aditya	Parameswaran	and	Andy	Pavlo.		
§ 2015	Winner:	Alexander	Thomson.	Honorable	Mentions:	Marina	Drosou	and	Karthik	Ramachandra	
§ 2016	Winner:	Paris Koutris.	Honorable	Mentions:	Pinar Tozun	and	Alvin Cheung	

2 SIGMOD Record, September 2019 (Vol. 48, No. 3)

§ 2017	Winner:	Peter	Bailis.	Honorable	Mention:	Immanuel	Trummer	
§ 2018	Winner:	Viktor	Leis.	Honorable	Mention:	Luis	Galárraga	and	Yongjoo	Park	
§ 2019	Winner:	Joy	Arulraj.	Honorable	Mention:	Bas	Ketsman		

A	complete	list	of	all	SIGMOD	Awards	is	available	at:	https://sigmod.org/sigmod-awards/		

[Last	updated:	September	30,	2019]	

SIGMOD Record, September 2019 (Vol. 48, No. 3) 3

Editor’s Notes
	

Welcome	to	the	September	2019	issue	of	the	ACM	SIGMOD	Record!		
	
This	issue	starts	with	the	Database	Principles	column	featuring	an	article	by	Wijsen	that	discusses	
the	problem	of	 query	 answering	 on	 inconsistent	 databases.	A	 database	 is	 called	 inconsistent	 if	 it	
violates	 some	 integrity	 constraints;	 the	key	 issue	 is	what	 information	can	and	cannot	be	 inferred	
from	inconsistent	data	in	the	process	of	query	answering.	Intuitively,	an	inconsistent	database	can	
be	viewed	as	a	collection	of	consistent	databases,	each	of	which	results	from	some	minimal	correc-
tions,	or	repairs,	to	the	original	data.	Then,	an	answer	to	a	query	on	such	a	database	is	called	con-
sistent	if	it	can	be	obtained	by	processing	the	query	on	each	of	the	repaired	databases.	The	article	
summarizes	 core	 concepts	 and	 theoretical	 developments	 that	 have	 arisen	 in	 foundations	 of	 con-
sistent	query	answering	in	the	past	twenty	years.	The	report	on	the	rich	body	of	theoretical	results	
covers	studies	for	common	classes	of	integrity	constraints	and	emphasizes	results	in	computational	
and	descriptive	complexity.	 In	general,	consistent	query	answering	is	 intractable.	However,	as	the	
intractability	usually	arises	in	worst-case	results,	the	article	calls	for	research	in	refinement	of	the	
complexity	 results	 for	 practically	 important	 cases.	 The	 article	 also	 discusses	 open	 problems,	 and	
provides	references	on	related	areas.		
	
The	 Research	 Articles	 column	 features	 two	 articles.	 The	 first	 article,	 by	 McCullough,	 Mokfi,	 and	
Almaeenjad,	 studies	 the	 problem	 of	 accuracy	 of	 SQL	 software	 for	 statistical	 purposes.	 The	 study	
focuses	on	testing	elementary	statistical	calculations	with	a	collection	of	benchmark	tests	known	as	
Wilkinson’s	tests.	These	tests	have	a	long	track	record	of	being	applied	to	uncover	flaws	in	statisti-
cal	 packages;	 this	 article	 describes	 their	 application	 to	 six	well-known	 SQL	 packages.	 The	 article	
discusses	the	flaws	that	were	identified	in	the	analysis	of	statistical	functions	in	the	SQL	packages,	
provides	pointers	to	relevant	algorithms,	and	gives	the	best	choice	of	data	types	for	statistical	pur-
poses	in	each	package.	The	authors	call	for	developers	to	fix	the	discovered	errors,	and	propose	that	
accuracy	of	algorithms	be	incorporated	into	the	SQL	standards.		
	
The	second	article	in	the	Research	Articles	column,	by	Cavero,	Vela,	and	Cáceres,	discusses	the	
problem	of	simulating	SQL	assertions	via	materialized	views.	While	assertions	have	been	in	the	SQL	
standard	since	1992	as	a	powerful	means	of	specifying	cross-row	and	cross-table	constraints,	they	
are	usually	not	supported	in	commercial	database-management	systems,	and	are	typically	imple-
mented	by	triggers	or	application	programs.	The	article	shows	how	assertions	can	be	simulated	
using	materialized	views	that	count	the	number	of	violations	of	the	assertion’s	conditions.	With	the	
help	of	a	series	of	tests,	the	authors	demonstrate	that	materialized	views	are	easier	to	program	and	
less	error	prone	than	triggers	or	application	programs,	as	well	as	more	efficient	than	triggers	in	
some	situations.	The	article	provides	recommendations	on	application	scenarios	that	can	benefit	
from	the	proposed	assertion-codification	approach,	and	specifies	relevant	DMBS	requirements.		
	
The	Distinguished	Profiles	column	features	Michael	Franklin,	inaugural	holder	of	the	Liew	Family	
Chair	of	Computer	Science	and	senior	advisor	to	the	provost	on	computation	and	data	science	at	the	
University	of	Chicago.	Before	that,	for	many	years,	Mike	was	a	professor	at	Berkeley,	where	he	also	
served	as	a	chair	of	the	Computer	Science	division.	Mike	was	a	co-founder	and	director	of	the	Algo-
rithms,	Machines,	and	People	Lab	at	Berkeley,	better	known	as	the	AMPLab,	a	leading	academic	big	
data	analytics	research	center	that	received	a	National	Science	Foundation	CISE	“Expeditions	in	
Computing”	award.	At	the	AMPLab,	Mike	was	one	of	the	creators	of	the	Spark	(now	Apache	Spark)	
data	analytics	and	machine	learning	platform.		Mike	is	a	Fellow	of	the	Association	for	Computing	
Machinery	and	a	two-time	recipient	of	the	ACM	SIGMOD	“Test	of	Time”	award.	Mike's	Ph.D.	

4 SIGMOD Record, September 2019 (Vol. 48, No. 3)

is	from	the	University	of	Wisconsin	Madison.	In	this	interview,	Mike	talks	about	his	experience	with	
building	computer	science	and	data	science	at	the	University	of	Chicago	in	a	way	that	integrates	
these	disciplines	into	the	fabric	of	the	university,	with	opportunities	for	people	with	widely	varying	
interests	to	work	together.	He	shares	his	views	on	the	prospects	for	real-time	streaming	analytics,	
and	discusses	how	people	fit	into	overall	systems	architectures.	Mike	also	outlines	aspects	of	com-
putational	and	data	literacy	that	an	educated	person	in	the	21st	century	needs	to	know,	gives	advice	
on	research,	and	shares	information	about	his	own	advising	style	and	research.		

The	Reports	column	features	two	articles.	The	first	article,	by	Palpanas	and	Beckmann,	reports	on	
the	First	and	Second	Interdisciplinary	Time	Series	Analysis	Workshops	(ITISA),	which	took	place	in	
Paris	in	June	and	December	2016.	Time-series	data	arise	naturally	in	many	applications,	and	their	
analysis	can	push	the	computational	power	and	other	resources	to	their	limits.	Over	80	participants	
in	the	two	ITISA	workshops	participated	in	discussions	of	the	challenges	and	requirements	on	the	
new	technologies	and	algorithms.	The	workshops	included	14	keynote	talks,	hands-on	sessions,	and	
panel	discussions.	The	article	summarizes	the	ideas	presented	and	discussed	in	the	workshops,	
highlighting	the	relevant	state-of-the-art	techniques	and	advancements	in	time-series	management	
and	analysis.	The	ITISA	programs	and	slides	are	available	from	the	authors	of	the	article.		
	
The	second	article	in	the	Reports	column,	by	Kondylakis,	Stefanidis,	and	Rao,	reports	on	the	out-
comes	of	the	First	International	Workshop	on	Semantic	Web	Technologies	for	Health	Data	Man-
agement	(SWH).	The	workshop	took	place	in	2018	in	Monterey,	CA	USA,	in	conjunction	with	the	
International	Semantic	Web	Conference.	The	SWH	workshop	aimed	to	bring	together	an	interdisci-
plinary	audience,	to	discuss	challenges	in	healthcare	data	management	and	to	propose	novel	and	
practical	solutions	for	next-generation	data-driven	healthcare	systems.	The	article	summarizes	the	
outcomes	of	the	workshop,	and	outlines	key	observations	and	emerging	research	directions.		
	
	
On	behalf	of	the	SIGMOD	Record	Editorial	board,	I	hope	that	you	enjoy	reading	the	September	2019	
issue	of	the	SIGMOD	Record!		
	
Your	submissions	to	the	SIGMOD	Record	are	welcome	via	the	submission	site:	

https://mc.manuscriptcentral.com/sigmodrecord 	
	
Prior	to	submission,	please	read	the	Editorial	Policy	on	the	SIGMOD	Record’s	website:		

https://sigmodrecord.org/sigmod-record-editorial-policy/	
		

Rada	Chirkova	

September	2019	

	
	
Past	SIGMOD	Record	Editors:	

	
Yanlei	Diao	(2014-2019)																					Ioana	Manolescu	(2009-2013)													Alexandros	Labrinidis	(2007–2009)	
Mario	Nascimento	(2005–2007)							Ling	Liu	(2000–2004)		 												Michael	Franklin	(1996–2000)	
Jennifer	Widom	(1995–1996)											Arie	Segev	(1989–1995)	 												Margaret	H.	Dunham	(1986–1988)	
Jon	D.	Clark	(1984–1985)																			Thomas	J.	Cook	(1981–1983)		 												Douglas	S.	Kerr	(1976-1978)		
Randall	Rustin	(1974-1975)														Daniel	O’Connell	(1971–1973)													Harrison	R.	Morse	(1969)																			

SIGMOD Record, September 2019 (Vol. 48, No. 3) 5

Foundations of Query Answering on Inconsistent
Databases

Jef Wijsen
University of Mons

Mons, Belgium
jef.wijsen@umons.ac.be

ABSTRACT
Notwithstanding the traditional view that database in-
stances must respect all integrity constraints imposed on
them, it is relevant to develop theories about how to han-
dle database instances that violate some integrity con-
straints, and more particularly, how to cope with query
answering in the presence of inconsistency. Such a the-
ory developed over the past twenty years is currently
known as consistent query answering (CQA). The aim
of this article is to summarize and discuss some core
concepts and theoretical developments in CQA.

1. INTRODUCTION
Consistent query answering (CQA) started with

an article at PODS 1999 by Arenas, Bertossi and
Chomicki [2]. Twenty years later, the significance
of their contribution was acknowledged through a
Gems of PODS session, at which occasion Leopoldo
Bertossi flashed back to the origins of CQA [6].
Among these origins is the question about “what
is consistent in an inconsistent database” [6, p. 49].
The next example illustrates this question, as well
as the answer provided by the CQA approach.

Following the well-known running example of C.J.
Date’s textbook [15], we represent suppliers by a
table with name S. Every supplier has a supplier
number, unique to that supplier, a supplier name, a
rating or status value, and a location. The require-
ment that supplier numbers be unique is violated by
the following table; the available information about
the status of S2 happens to be inconsistent.

S S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris
S2 Jones 15 Paris

We ask the question of what information can and
cannot be inferred from this inconsistent table. A
useful answer to that question should rely on some
paraconsistent inference relation, i.e., one that aban-
dons the principle that “everything follows from

an inconsistency” (ex contradictione quodlibet). In
general terms, the answer provided in [2] goes as
follows. Every inconsistent database instance repre-
sents a set of possible consistent database instances,
which are called repairs. Repairs should be obtained
by fixing inconsistencies in some minimal way. Con-
sistently true information, then, is defined as infor-
mation that holds true in every repair.

We will formalize shortly the idea of minimal fix-
ing. For the example table, minimal fixing could
mean deleting either of the two tuples that agree on
S#. This yields two repairs which differ in the sta-
tus of supplier S2. Other repairs could be obtained
by replacing either occurrence of S2 with some fresh
supplier number. This would yield many repairs,
differing only in the choice of the new supplier num-
ber. For the purpose of this example, assume that
there are no other repairs than the ones just de-
scribed. Then, the assertion that “S2 is a supplier
having a lower status than S1” is consistently true,
because it is true in every repair. It is also consis-
tently true that “the number of suppliers is two or
three.” On the other hand, the claim that “supplier
S2 has status 10” is not consistently true.

The aim of this article is to present and discuss
theoretical foundations of CQA, with an emphasis
on results in computational and descriptive com-
plexity. We will not report on the deployment of
CQA in operational systems. We have tried to
be complimenatry to the previously cited Gems of
PODS article of Bertossi [6], which gives a broad
overview, intentionally based on representative ex-
amples rather than formal definitions. The treat-
ment in the current paper is more formal and fo-
cuses on some core concepts and results.

Organization.
Section 2 recalls some standard notions in data-

base theory. Section 3 formalizes the framework of
consistent query answering. The idea of minimal
fixing is introduced there in an original manner es-

6 SIGMOD Record, September 2019 (Vol. 48, No. 3)

pecially developed for the purpose of this article.
Section 4 discusses different ways for indicating the
complexity of consistent query answering, referring
to both computational and descriptive complexity.
In Section 5, we focus on a fine-grained complexity
classification that has been achieved for consistent
query answering with respect to primary keys, but
which is largely open for other classes of integrity
constraints. The case of primary keys is also inter-
esting because of its connections to two other fields:
constraint satisfaction problems (CSPs) and prob-
abilistic database systems. Section 6 discusses the
complexity of repair checking. Finally, Section 7
concludes the paper.

2. PRELIMINARIES
For every positive integer n, we assume denumer-

ably many relation names of arity n. A database
schema is a finite set of relation names. In the
sequel, we will often assume that some database
schema has been fixed. A database instance is a
finite set of facts R(c1, . . . , cn) where R is an n-
ary relation name of the database schema, and each
ci is a constant. An m-ary query q, with m ≥ 0,
maps every database instance db to an m-ary re-
lation, denoted q(db). A 0-ary query is also called
a Boolean query: a 0-ary relation represents false
if it is empty, otherwise it represents true. In the
complexity study of CQA, much attention has been
paid to Boolean conjunctive queries, i.e., queries de-
fined by first-order logic sentences, possibly with
constants, of the form

∃~x (R1(~x1) ∧R2(~x2) ∧ · · · ∧Rn(~xn)) .

Such a query is said to be self-join-free if i 6= j
implies Ri 6= Rj . Each Ri(~xi) is called a relational
atom.

We assume that our database schema is equipped
with a set Σ of integrity constraints. All integrity
constraints in this paper can be expressed as sen-
tences in first-order logic. In what follows, by a set
of integrity constraints, we will always mean a fi-
nite set of integrity constraints that can be satisfied
by some database instance. A database instance
is consistent if it satisfies all integrity constraints
in Σ; otherwise it is inconsistent. Common integrity
constraints, called dependencies, are recalled next.
Readers familiar with common classes of integrity
constraints can skip the remainder of this section.

Inclusion dependencies (IND).
If R and S are relation names, of arities m and n

respectively, then R[i1, . . . , ik] ⊆ S[j1, . . . , jk] is an
inclusion dependency, where i1, . . . , ik is a sequence

of distinct integers in {1, . . . ,m}, and j1, . . . , jk is
a sequence of distinct integers in {1, . . . , n}. A
database instance db is said to satisfy this inclu-
sion dependency if for every R(a1, . . . , am) ∈ db,
there exists S(b1, . . . , bn) ∈ db such that for every
` ∈ {1, . . . , k}, ai` = bj` .

Functional dependencies (FD).
IfR is a relation name of arity n, then a functional

dependency is an expression R : X → Y where
X,Y ⊆ {1, . . . , n}. A database instance db satisfies
R : X → Y if for all R(a1, . . . , an), R(b1, . . . , bn) ∈
db, if ai = bi for all i ∈ X, then aj = bj for all
j ∈ Y . If X ∪ Y = {1, . . . , n}, then R : X → Y is
called a key dependency.

Tuple-generating dependencies (tgd).
A ∨-tgd is a constant-free first-order logic sen-

tence of the form

∀~x
(
ϕ(~x)→

n∨

i=1

∃~yiψi(~x, ~yi)

)
, (1)

where ϕ is a nonempty conjunction of relational
atoms, each ψi is a conjunction of relational atoms,
and every variable in ~x appears in ϕ (but not nec-
essarily in

∨n
i=1 ∃~yiψi(~x, ~yi)). ∨-tgds can be further

restricted as follows:

• a tgd is a ∨-tgd where n = 1;

• a ∨-tgd or tgd without existentially-quantified
variables is called full ; and

• a LAV tgd is a tgd of the form

∀~x (R(~x)→ ∃~yψ(~x, ~y)) ,

where R(~x) is a relational atom.

For a set of tgds, the notion of being weakly acyclic
is a structural property that guarantees termination
of the chase. The definition of weakly acyclic can
be found in [17].

Universal constraints (UC).
A universal constraint is a constant-free first-order

logic sentence of the form

∀~x
(
ϕ(~x) ∧ β(~x)→

n∨

i=1

ψi(~x)

)
, (2)

where ϕ and each ψi are conjunctions of relational
atoms, β is a Boolean combination of equalities, and
every variable in ~x appears in ϕ.

Special cases of UCs are obtained by letting n =
0, and by considering that the empty disjunction is
false:

SIGMOD Record, September 2019 (Vol. 48, No. 3) 7

• a denial constraint is commonly written in the
form ∀~x¬ (ϕ(~x) ∧ β(~x)), a sentence logically
equivalent to ∀~x (ϕ(~x) ∧ β(~x)→ false).

• an equality-generating dependency (egd) takes
the form ∀~x (ϕ(~x)→ xi = xj), which is equiv-
alent to ∀~x (ϕ(~x) ∧ ¬ (xi = xj)→ false).

The form (2) was chosen because of its resem-
blance to (1). The disjunction

∨n
i=1 ψi(~x) in (2)

is equivalent to a formula in CNF, say
∧m

i=1 χi(~x),
where each χi is a disjunction of relational atoms.
The set {∀~x (ϕ(~x) ∧ β(~x)→ χi(~x))}mi=1 is then equiv-
alent to (2). Since we always consider sets of in-
tegrity constraints, universal constraints can be (and
often are) defined in different forms [2, 31]:

∀~x¬
(
¬R1(~x1) ∧ · · · ∧ ¬Rm(~xm)∧
Rm+1(~xm+1) ∧ · · · ∧Rn(~xn) ∧ β(~x)

)
,

∀~x
(
R1(~x1) ∨ · · · ∨Rm(~xm)∨
¬Rm+1(~xm+1) ∨ · · · ∨ ¬Rn(~xn) ∨ ¬β(~x)

)
,

∀~x
(
Rm+1(~xm+1) ∧ · · · ∧Rn(~xn) ∧ β(~x)→
R1(~x1) ∨ · · · ∨Rm(~xm)

)
,

where each Ri is a relation name, and each variable
in ~x appears in some ~xi with m+1 ≤ i ≤ n. The lat-
ter requirement is called safety. Denial constraints,
then, are universal constraints where m = 0.

Figure 1 relates different classes of integrity con-
straints. An upward line from IC1 to IC2 means that
every set Σ1 of integrity constraints in the class IC1

is equivalent to some set Σ2 in IC2. Note, for ex-
ample, that the functional dependency R : {1} →
{2, 3} expresses a pair of egds.

3. CONSISTENT ANSWERS
In Section 1, we have already given a general but

informal introduction to CQA. We will now enter
into more technical details.

3.1 Querying Inconsistent Data
Let q be a query and Σ a set of integrity con-

straints. If db is a consistent database instance,
the query answer q(db) can reasonably be called
“consistent” as well. The CQA paradigm was de-
veloped in the first place to define “consistent query
answers” for the case where db is inconsistent.

When db is an inconsistent database instance, it
looks like a good idea to change it, in some minimal
way, such that the new database instance is consis-
tent. Such a consistent database instance obtained
by some minimal change is called a repair. Let us
skip for a moment the details of minimal change,
and denote by repairs(db,Σ) the set of all repairs

of db with respect to Σ. Then a tuple t belongs to
the consistent answer to q on db if for each repair
r, we have that t belongs to q(r):

cqa(q,db,Σ) ,
⋂
{q(r) | r ∈ repairs(db,Σ)}.

Of course, this definition makes sense only when the
notion of being a repair is well-defined, which is the
topic of the next subsection.

3.2 Fixing Inconsistency
The literature on CQA contains many proposals

for formalizing the idea of minimal change. For the
purpose of this article, we next develop a general-
ization that captures the essence of most proposals.
Our generalization assumes that, for a given data-
base instance db, there is a binary relation ≤db

(which depends on db) on the set of all consistent
database instances. The intended informal mean-
ing is that for all consistent database instances r1
and r2, we have r1 ≤db r2 if transforming db into
r1 requires not more effort than transforming db
into r2. We define the strict version of ≤db, de-
noted <db, as follows: r1 <db r2 , r1 ≤db r2
and not r2 ≤db r1. The principle that repairs must
be obtained by some minimal change can now be
made formal: a repair of db is a consistent data-
base instance r such that there exists no consistent
database instance r′ satisfying r′ <db r. Some re-
pairs are of a special sort: a repair of db is called a
subset-repair if it is included in db, and is called a
superset-repair if it includes db.

To guarantee the existence of repairs, some addi-
tional properties should be imposed on ≤db (or on
<db). A very common and sufficient requirement
for the existence of repairs is the acyclicity of <db.

In the CQA literature, the binary relation ≤db

(or <db) is never explicitly given, but instead im-
plicitly specified. Different specifications of ≤db

now lead to different repair notions; the two most
common are the following:

• Let⊕ denote the symmetric difference between
sets. When we define r1 ≤db r2 , (r1 ⊕ db) ⊆
(r2 ⊕ db), we obtain symmetric-difference re-
pairs, also called ⊕-repairs. With this defini-
tion, ≤db is a partial order. In terms of mini-
mal change, symmetric-difference repairs min-
imize (with respect to ⊆) the set of inserted
and deleted facts.

• When we define r1 ≤db r2 , |r1 ⊕ db| ≤
|r2 ⊕ db|, we obtain cardinality repairs, also
called C-repairs. With this definition, ≤db is
reflexive and transitive.

8 SIGMOD Record, September 2019 (Vol. 48, No. 3)

FO

LAV tgd
weakly acyclic

tgds

full tgd

UC

key

denialfull ∨-tgd

∨-tgd

tgd

egd

FDIND

Figure 1: Common classes of integrity constraints. Adapted from [4].

In the literature on CQA, the notion of subset-
repair is frequently introduced as an independent
repair notion—one in which deletions are the only
allowed repairing actions. We, instead, have defined
it as a property: a ⊕-repair, cardinality repair, or
any other repair of a database instance db is called
a subset-repair if it is included in db. Clearly, every
maximal (with respect to ⊆) consistent subset of a
database instance db is a ⊕-repair of db. A sig-
nificant observation (see [1, Proposition 3]) is that
for sets of denial constraints, every ⊕-repair is a
subset-repair. This observation is no longer true
for universal constraints, as illustrated next.

Example 1. The database instance {R(a)} has
two ⊕-repairs with respect to Σ = {R(a) → S(b)}:
{} and {R(a), S(a)}, which are a subset-repair and
a superset-repair, respectively.

In the definition of ⊕-repairs, the symmetric dif-
ference r1⊕db treats deletions (i.e., facts in db\r1)
and insertions (i.e., facts in r1 \ db) on equal foot-
ing. Alternatively, it is conceivable, although less
common, to treat deletions and insertions asymmet-
rically. In some situations, for example, inconsis-
tency may be primarily attributed to missing facts
rather than to erroneously stored facts. In such sit-
uations, one may want to keep deletions to a mini-
mum, which can be achieved by defining r1 ≤db r2
, either (r1 ∩ db)) (r2 ∩ db) or both (r1 ∩ db) =
(r2 ∩ db) and (r1 ⊕ db) ⊆ (r2 ⊕ db). With this
definition, the repair {R(a), S(a)} would become

the only repair in Example 1, because it preserves
the database fact R(a). Many other repair notions
have been proposed and studied over the past twenty
years.

Prioritized repairs.
The framework introduced in [32] and further in-

vestigated in [16, 20, 24] deduces <db from a pref-
erence relation on the set of database facts. For
the sake of simplicity, let Σ be a set of functional
dependencies. An inconsistent prioritizing database
instance is a pair (db,�) where db is an inconsis-
tent database instance, and � is an acyclic binary
relation on db such that if f � g, then {f, g} falsi-
fies Σ. The intended informal meaning of f � g is
that we prefer to keep f rather than g. Note that
in the case of functional dependencies, conflicting
facts always come in pairs. A relation <db can be
defined in terms of �, as follows: for all distinct
consistent subsets r1 and r2 of db, define r1 <db r2
if for every g ∈ r2 \ r1, there exists f ∈ r1 \ r2 such
that f � g. Informally, r1 <db r2 states that r1
can be obtained from r2 by exchanging facts with
more preferred facts. It can be verified that <db

is acyclic (by using that � is acyclic). With this
definition of <db, we obtain g-repairs: a consistent
subset r of db is called a globally optimal repair (or
g-repair) if there exists no consistent subset r′ of
db such that r′ <db r.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 9

Example 2. Take the following database instance:

R 1 2
a b (f1)
c b (f2)
c d (f3)

.

Let Σ = {R : {1} → {2}, R : {2} → {1}}, which ex-
presses that neither column should contain duplicate
values. The ⊕-repairs are:

1 2
a b
c d

and
1 2
c b

.

The left-hand relation is the only C-repair. If we
assume f2 � f1 and f2 � f3, then the right-hand
relation is the only g-repair.

4. COMPLEXITY OF CQA
We will restrict our attention to Boolean queries.

Under this restriction, consistent query answering
becomes a decision problem: given q, Σ, and db,
does q evaluate to true on every repair of db? The
input to this problem consists of three parts, and in
the study of its complexity zero, one, or two parts
can be fixed. In this paper, we take a data com-
plexity perspective: we will fix both the query and
the set of integrity constraints, and measure com-
plexity with respect to the database instance. Al-
ternative complexity analyses, which consider also
queries and/or integrity constraints as part of the
input, can be found in [4]. Thus, for every Boolean
query q and set Σ of integrity constraints, we have
the following problem:

CERTAINTY(q,Σ)

INSTANCE: A database instance db.

QUESTION: Does q evaluate to true on every
repair of db with respect to Σ?

Of course, this definition is only meaningful when a
repair notion has been established beforehand. We
will write ⊕-CERTAINTY(q,Σ) if ⊕-repairs are in-
tended. Furthermore, it is always understood that
the database schema contains all relation names
used in q or Σ.

We so far have defined consistent query answer-
ing for every individual pair q,Σ. It is also of inter-
est to measure the complexity of consistent query
answering for classes of queries and classes of in-
tegrity constraints. To this extent, let Q be a class
of queries, and IC a class of integrity constraints.
Let C be a complexity class.

• Consistent query answering for Q and IC is said
to be in C if CERTAINTY(q,Σ) is in C for all
q ∈ Q and Σ ⊆ IC.

• Consistent query answering for Q and IC is said
to be C-complete if it is in C and, moreover,
CERTAINTY(q,Σ) is C-complete for some q ∈
Q and Σ ⊆ IC.

For example, for symmetric-difference repairing, a
correct claim is: “Consistent query answering is
coNP-complete for conjunctive queries and key de-
pendencies.” Indeed, if q is a conjunctive query
and Σ a set of key dependencies, then member-
ship of ⊕-CERTAINTY(q,Σ) in coNP is straightfor-
ward: a succinct disqualification for a “no”-instance
is any repair that falsifies q. coNP-completeness
holds since it is known that ⊕-CERTAINTY(q0,Σ0)
is coNP-hard for q0 = ∃x∃y∃z (R(x, y, z) ∧ S(z, x))
and Σ0 = {R : {1, 2} → {3}, S : {1} → {2}}. For
a reason that will become apparent in Section 5.2,
note that q0 is self-join-free and that Σ0 has only
one key dependency per relation.

Arming et al. in [4] have carried out a thorough
study on the complexity of consistent query answer-
ing for conjunctive queries and ⊕-repairs; data com-
plexity results for different classes of integrity con-
straints are shown in Table 1. Triangles indicate
whether the lower (M) or the upper (O) complex-
ity bound is of interest. For example, for coNP-
completeness, O and M denote, respectively, mem-
bership in coNP and coNP-hardness. If a line con-
tains no reference to the literature, then its com-
plexity result follows from other lines in the table.

Table 1 conveys an unpleasant message: consis-
tent query answering is intractable already for very
common queries and integrity constraints. How-
ever, some nuance is needed: coNP-completeness
of consistent query answering for Q and IC tells us
that the set {CERTAINTY(q,Σ) | q ∈ Q,Σ ⊆ IC}
contains at least one intractable problem, but does
not give us any hint about the boundary between
tractable and intractable problems. It may still be
the case that this set contains many tractable prob-
lems of practical interest. We will bring a more
nuanced story in Section 5.

Descriptive Complexity of CQA.
Table 1 uses common computational complexity

classes (P, coNP, ΠP
2). In the realm of (consistent)

query answering, it may be more relevant to uti-
lize descriptive complexity, which describes the com-
plexity of the problem CERTAINTY(q,Σ) in some
logic formalism, as explained next.

Notice first that every problem CERTAINTY(q,Σ)
is actually a Boolean query (as introduced in the
first paragraph of Section 2), mapping each data-
base instance to either true or false. Let L be some
logic language. We say that CERTAINTY(q,Σ) is

10 SIGMOD Record, September 2019 (Vol. 48, No. 3)

IC ⊕-CERTAINTY(Σ, q) Reference

FO undecidable
∨-tgd undecidable
tgd undecidable [33, Theorem 7.2]
egds + weakly acyclic tgds ΠP

2 -complete O [33, Theorem 6.3]
weakly acyclic tgds ΠP

2 -complete M [33, Theorem 6.3]
LAV tgd in P [33, Theorem 4.7]
IND in P
UC ΠP

2 -complete O M [31, Lemma 4,Theorem 6]
full ∨-tgd ΠP

2 -complete M Modification of the M proof for UC [4]
full tgd coNP-complete O M [31][33, Theorem 5.5]
denial coNP-complete O [31]
egd coNP-complete
FD coNP-complete
key coNP-complete M [12, Theorem 3.3]

Table 1: Data complexity results for consistent query answering, for conjunctive queries and
⊕-repairs.

expressible in L if there exists a formula Q in L such
that the following are equivalent for every database
instance db:

1. q is true on every repair of db with respect
to Σ;

2. Q is true on db.

Such a formula Q, if it exists, is called a consistent
L-rewriting of q (with respect to Σ). The prac-
tice of constructing Q is often referred to as “query
rewriting.”

From a database perspective, the most attractive
candidate for L is probably first-order predicate cal-
culus, denoted FO. Indeed, if we can construct a
consistent FO-rewriting of q with respect to Σ, then
the problem CERTAINTY(q,Σ) can be solved by a
single SQL query on existing RDBMS engines. An-
other good candidate for query rewriting is Datalog
with stratified negation, whose data complexity is in
P (and is complete for P). For the higher complex-
ities in Table 1, more expressive logics are needed,
such as variants of disjunctive Datalog [3, 19]. In
general, by studying the descriptive complexity of
problems CERTAINTY(q,Σ), we get a handle on the
database languages that can be used to solve them.

Integrity Constraints from Different Classes.
In database applications, it is normal to have in-

tegrity constraints belonging to different classes, for
example, a combination of inclusion and functional
dependencies. Table 2 is somewhat unsatisfactory
insofar as it does not consider unions of common
classes of integrity constraints, except for unions of
a set of egds and a weakly acyclic set of tgds. Note

incidentally that in Fig. 1, the smallest class that
includes both inclusion and functional dependencies
is the class of all first-order logic constraints.

5. PRIMARY KEYS
The notion of primary key is fundamental and

ubiquitous in relational database systems. Its study
in the context of CQA has therefore attracted con-
siderable attention and has revealed some interest-
ing connections with other fields. This section shows
that a nuanced complexity landscape hides behind
the last line of Table 1, and discusses connections
to CSP and probabilistic database systems.

5.1 Some Terminology
Recall that a key dependency is a functional de-

pendency R : X → Y such that X ∪ Y contains
every positive integer up to the arity of R. A data-
base instance satisfies this key dependency if and
only if it does not contain two distinct facts that
agree on all positions in X. By a set of primary
keys, we mean a set of key dependencies contain-
ing exactly one key dependency for each relation
name in the database schema under consideration.
If such a set of primary keys contains R : X → Y ,
then X is said to be the primary key of R. For the
sake of simplicity, it is commonly assumed that the
primary key X of R is not empty and formed by
the |X| leftmost positions (i.e., X = {1, 2, . . . , |X|}
with |X| ≥ 1).

A natural way for specifying repairs with respect
to primary keys goes as follows. We say that two
database facts are key-equal if they share the same
relation name and agree on the primary key of their
shared relation name. Given a database instance

SIGMOD Record, September 2019 (Vol. 48, No. 3) 11

db, the binary relation “is key-equal to” is obvi-
ously an equivalence relation on db; its equivalence
classes are called the blocks of db. Obviously, db is
consistent if and only if none of its blocks contains
two or more database facts. Every repair of db is
obtained by picking exactly one database fact from
each of its blocks. The repairs defined in this way
are both ⊕-repairs and C-repairs, and moreover are
subset-repairs. In this section, we do not consider
other conceivable ways of fixing primary key vio-
lations, such as replacing a duplicate primary key
value with a fresh value.

The notion of block also occurs in probabilistic
databases for modeling uncertainty: only one data-
base fact of a block can be true, but we do not know
which one holds true.

5.2 A Complexity Trichotomy
In Section 4, we explained what it means that

consistent query answering is coNP-complete for con-
junctive queries and primary keys. This is a rough
result because it does not say anything about the
boundary between tractable and intractable prob-
lems. The following trichotomy theorem from [21,
23] offers a more fine-grained complexity classifica-
tion, albeit only for queries that are self-join-free.

Theorem 1. For every set Σ of primary keys
and self-join-free Boolean conjunctive query q, the
problem CERTAINTY(q,Σ) is in FO, L-complete, or
coNP-complete. Moreover, it is decidable which of
the three cases applies.

The proof of Theorem 1 also yields a significant
result in descriptive complexity, because it shows
membership in L by expressing CERTAINTY(q,Σ)
in symmetric stratified Datalog with some aggrega-
tion operator. Another promising observation in [23]
is that tractability in L or FO obtains, roughly speak-
ing, when all joins are foreign-to-primary key joins,
which is undoubtedly the most common kind of join.
In conclusion, for primary keys and self-join-free
conjunctive queries, the most common cases of con-
sistent query answering happen to be tractable, and
all tractable cases can be solved by query rewriting
in stratified Datalog with some aggregation opera-
tor.

For illustration, compare the following queries:

q0 = ∃x∃y∃z
(
S(z, x) ∧R(x, y, z)

)
,

q1 = ∃x∃y∃z (S(z, x) ∧ T (x, z)) ,

where primary keys are underlined. It is known
that consistent query answering is coNP-complete
for q0 (see Section 4), and in L (but not in FO)
for q1. This difference in complexity between q0

and q1 occurs because S(z, x) uses all primary key
variables of the other atom in q1, but does not so
in q0 (in particular, y does not occur in S(z, x)).
The join in q0 is therefore not a foreign-to-primary
key join.

An obvious open question is how to extend Theo-
rem 1 to conjunctive queries with self-joins; we will
have more to say about this in Section 5.3. A differ-
ent partial extension of Theorem 1 appears in [22]:
membership of CERTAINTY(q,Σ) in FO remains de-
cidable if q is a self-join-free Boolean conjunctive
query with clique-guarded negated atoms. Negation
is called clique-guarded if whenever some variables
x and y occur together in a negated atom, they also
occur together in some non-negated atom.

For a reason that will become apparent in the
next subsection, we state a P-coNP-complete di-
chotomy that immediately follows from Theorem 1:

Corollary 1. For every set Σ of primary keys
and self-join-free Boolean conjunctive query q, the
problem CERTAINTY(q,Σ) is either in P or coNP-
complete.

5.3 Connections with CSP
A famous open conjecture is the following.

Conjecture 1. For every set Σ of primary keys,
for every query q that is a disjunction of Boolean
conjunctive queries, CERTAINTY(q,Σ) is either in
P or coNP-complete.

Conjecture 1 generalizes Corollary 1 to unions of
conjunctive queries, possibly with self-joins. The
proof of Theorem 1 uses a predominantly logic ap-
proach, and it may be tempting to attack Conjec-
ture 1 by the same logic apparatus. However, for
reasons explained in the next paragraph, such a line
of attack is unlikely to lead to success.

In her article with the questioning title “Why Is It
Hard to Obtain a Dichotomy for Consistent Query
Answering?” [18], Fontaine establishes connections
between computational complexities in CQA and
constraint satisfaction problems (CSPs). These con-
nections were further investigated in [26]. One of
Fontaine’s findings is that a proof of Conjecture 1
would imply Bulatov’s dichotomy theorem for con-
servative CSPs. The three published proofs [5, 7,
8] of the latter theorem use an algebraic approach
developed over many years. Therefore, it is hardly
conceivable that Conjecture 1 can be settled by the
logic approach developed for Theorem 1. A different
way to attack Conjecture 1 would be to show that
it is implied by the recently proved CSP dichotomy
theorem [9, 35].

12 SIGMOD Record, September 2019 (Vol. 48, No. 3)

5.4 Counts and Probabilities
For a set Σ of primary keys, the number of repairs

of a given database instance is finite and can easily
be calculated. Rather than asking whether all re-
pairs satisfy a Boolean query q, a computationally
more difficult problem is to determine how many
repairs satisfy q. It has been shown [28] that for ev-
ery set Σ of primary keys and self-join-free Boolean
conjunctive query q, the following problem is either
in FP or]P-complete: given a database instance db,
determine the number of repairs of db that satisfy
q. It is an open conjecture that this dichotomy re-
sult remains true over the class of all Boolean con-
junctive queries. When all primary keys are single-
tons, this conjecture has been shown to be true [29,
34]. In these results,]P-hardness is with respect
to polynomial-time Turing reductions; Calautti et
al. [10] have recently studied the consequences of
using many-one logspace reductions instead, which
are a weaker form of reduction.

We close this section by pointing out an inti-
mate relationship between the counting variant of
CERTAINTY(q,Σ) and query answering in proba-
bilistic databases. Assume a probability distribu-
tion over the set of all repairs of some database in-
stance db. The probability of a Boolean query q,
denoted Pr (q), is then defined to be the sum of the
probabilities of the repairs that satisfy the query. A
common assumption is that facts of distinct blocks
are independent, i.e., if A1, A2, . . . , Ak are facts be-

longing to k distinct blocks, then Pr
(∧k

i=1Ai

)
=

∏k
i=1 Pr (Ai). Notice here that (conjunctions of)

atomic facts are Boolean queries, for which we have
defined Pr . If this independence assumption holds
true, then the probability distribution over the set
of all repairs is fully determined if we know the
marginal probability Pr (A) for each fact A in db.
These probabilities can then be listed as illustrated
in the following table; it is also common to under-
line primary keys, and to separate blocks by dashed
lines.

S S# SNAME STATUS CITY Pr

S1 Smith 20 London 1

S2 Jones 10 Paris 0.7
S2 Jones 15 Paris 0.3

Then, for a fixed Boolean query q, there is a natu-
ral shift from counting to calculating probabilities:
given a database instance and the marginal proba-
bilities of its facts, determine Pr (q).

The probabilistic data model just described is
almost the same as the block-independent disjoint
(BID) probabilistic data model [13]. The only dif-
ference is that in BID probabilistic database in-

stances, the marginal probabilities of the facts of
a same block need not sum up to one. This dif-
ference emerges because possible worlds in the BID
probabilistic data model are merely restricted not
to contain two distinct facts from a same block,
which leaves the possibility of selecting no fact from
a block. Repairs, on the other hand, must contain
exactly one fact from each block. A complexity di-
chotomy similar to the one previously cited holds:
for every self-join-free Boolean conjunctive query q,
the data complexity of evaluating q on BID prob-
abilistic database instances is either in FP or]P-
hard [14].

6. REPAIR CHECKING
Assume a repair notion has been fixed, for exam-

ple, symmetric-difference repairing. Repair check-
ing, then, is the following decision problem: given a
set Σ of integrity constraints and two database in-
stances db and r, determine whether r is a repair of
db. Since this paper’s focus is on data complexity,
we define this problem for any fixed set Σ:

REPAIR-CHECKING(Σ)

INSTANCE: Database instances db and r.

QUESTION: Is r a repair of db with respect
to Σ?

We will write ⊕-REPAIR-CHECKING(Σ) when we
assume ⊕-repairs.

Repair checking is relevant to (the complexity of)
consistent query answering: a method for solving
the complement of CERTAINTY(q,Σ), with db as
input, consists in non-deterministically guessing a
database instance r, and checking whether r falsifies
q and whether the pair db, r is a “yes”-instance of
REPAIR-CHECKING(Σ). This method is effective
when the size of r can be polynomially bounded
in the size of db, as is the case for ⊕-repairs with
respect to denial constraints and full tgds.

The complexity of repair checking for a class IC
of integrity constraints can be expressed in the fol-
lowing terms, where C denotes a complexity class:

• Repair checking for IC is said to be in C if
REPAIR-CHECKING(Σ) is in C for all Σ ⊆ IC.

• Repair checking for IC is said to be C-complete
if it is in C and, moreover, for some Σ ⊆ IC,
REPAIR-CHECKING(Σ) is C-complete.

Arming et al. in [4] have carried out a thorough
study on the complexity of ⊕-repair checking; data
complexity results are shown in Table 2. Results on
C-repair checking appear in [1, 25]. A similar caveat

SIGMOD Record, September 2019 (Vol. 48, No. 3) 13

IC ⊕-REPAIR-CHECKING(Σ) Reference

FO coNP-complete O [1, Proposition 4]
∨-tgd coNP-complete
tgd coNP-complete
weakly acyclic tgds coNP-complete M [1, Theorem 7]
LAV tgd in P [33, Theorem 4.9]
weakly acyclic LAV tgds in L [1, Theorem 3]
IND in P
UC coNP-complete O M [31, Lemma 4, Corollary 3]
full ∨-tgd coNP-complete M Modification of the M proof for UC [4]
full tgd P-complete O M [30, Theorem 3.7][1, Theorem 5]
denial in L [1, Proposition 5]
egd in L
FD in L
key in L

Table 2: Data complexity results for ⊕-repair checking.

as in Section 4 is in order here: coNP-completeness
of repair checking for IC tells us nothing about the
boundary between tractable and intractable prob-
lems in the set {REPAIR-CHECKING(Σ) | Σ ⊆ IC}.

For g-repairs (see Section 3 for the definition of
g-repairs), it follows from Proposition 5 and Theo-
rem 2 in [32] that g-repair checking is coNP-complete
for functional dependencies. Note that in the case of
g-repairs, the input to REPAIR-CHECKING(Σ) also
contains the binary preference relation � on db.
A more fine-grained complexity classification for g-
repair checking appears in [16], where it is shown
that for every set Σ of functional dependencies, the
problem REPAIR-CHECKING(Σ) is either in P or
coNP-complete, and it is decidable which of the two
cases applies. More complexity results on variants
of g-repair checking appear in [20].

Repair Counting.
Livshits and Kimelfeld in [24] study the problem

of counting database repairs. They show, among
others, that for every set of functional dependen-
cies, the data complexity of the following problem
is either in FP or]P-complete: given a database
instance db, determine the number of ⊕-repairs of
db. Remind here that for functional dependencies,
all ⊕-repairs are subset-repairs.

Integrity Constraints from Different Classes.
Few complexity studies in CQA consider com-

bining integrity constraints from different classes,
which is nevertheless most common in practice. The
following two results show that such combinations
can entail an increase in the data complexity of re-
pair checking. First, from Theorem 4.6 in [12], it
follows that ⊕-repair checking for INDs and FDs

taken together is coNP-complete. This is to be con-
trasted with the tractable complexities for IND and
FD in Table 2. Second, by [1, Theorem 8], there are
a weakly acyclic set Σ1 of LAV tgds and a set Σ2

of egds such that ⊕-REPAIR-CHECKING(Σ1 ∪ Σ2)
is coNP-complete, whereas Table 2 shows that for
i ∈ {1, 2}, ⊕-REPAIR-CHECKING(Σi) is tractable.

7. CONCLUDING THOUGHTS
Consistent query answering has been studied for

all common classes of integrity constraints. Tables 1
and 2 show some of the rich body of theoretical re-
sults obtained over the past twenty years. These
results, however, are still open to refinement. For
example, it has been known since the early years
that consistent query answering is coNP-complete
for conjunctive queries and key dependencies, as re-
ported by the last line of Table 1. But still today it
remains an open conjecture that for every Boolean
conjunctive query q and set Σ of key dependencies,
the problem CERTAINTY(q,Σ) can be classified as
either coNP-complete or in P. It took until recently
to show this conjecture under the serious restric-
tions of self-join-free queries and primary keys. For
more expressive queries and integrity constraints,
such detailed complexity classifications are missing.

We conclude with a reflection on the notion of re-
pairing. In Section 3.2, we have modeled database
repairing by an acyclic binary relation ≤db on the
set of consistent database instances, where the intu-
ition behind r1 ≤db r2 is that r1 is at least as close
to db as r2. The repairs, then, are the consistent
database instances that are most close to db. The
relation ≤db is never explicitly given, but rather
implicitly specified by using some embodiment of
the principle of minimal change, nearly always in

14 SIGMOD Record, September 2019 (Vol. 48, No. 3)

a manner that is agnostic of the meaning of the
data. We believe that it would be worthwhile to ex-
plore capabilities for further restricting “the legal”
repairs—in the same way as integrity constraints
restrict “the legal” databases. Such a capability is
already provided, for example, by the preference re-
lation on database facts in prioritized repairs (see
Section 3). But this preference relation, rather than
being given explicitly, could be specified implicitly
in some declarative fashion, capturing more of the
meaning of the data. Proposals for such formalism
can be found in [11, 27].

8. REFERENCES
[1] F. N. Afrati and P. G. Kolaitis. Repair

checking in inconsistent databases:
Algorithms and complexity. In ICDT, pages
31–41, 2009.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent
databases. In PODS, pages 68–79, 1999.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki.
Answer sets for consistent query answering in
inconsistent databases. TPLP, 3(4-5):393–424,
2003.

[4] S. Arming, R. Pichler, and E. Sallinger.
Complexity of repair checking and consistent
query answering. In ICDT, pages 21:1–21:18,
2016.

[5] L. Barto. The dichotomy for conservative
constraint satisfaction problems revisited. In
LICS, pages 301–310, 2011.

[6] L. E. Bertossi. Database repairs and
consistent query answering: Origins and
further developments. In PODS, pages 48–58,
2019.

[7] A. A. Bulatov. Complexity of conservative
constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24:1–24:66, 2011.

[8] A. A. Bulatov. Conservative constraint
satisfaction re-revisited. J. Comput. Syst.
Sci., 82(2):347–356, 2016.

[9] A. A. Bulatov. A dichotomy theorem for
nonuniform CSPs. In FOCS, pages 319–330,
2017.

[10] M. Calautti, M. Console, and A. Pieris.
Counting database repairs under primary keys
revisited. In PODS, pages 104–118, 2019.

[11] L. Caroprese, S. Greco, and E. Zumpano.
Active integrity constraints for database
consistency maintenance. IEEE Trans.
Knowl. Data Eng., 21(7):1042–1058, 2009.

[12] J. Chomicki and J. Marcinkowski.
Minimal-change integrity maintenance using

tuple deletions. Inf. Comput.,
197(1-2):90–121, 2005.

[13] N. N. Dalvi, C. Ré, and D. Suciu.
Probabilistic databases: Diamonds in the dirt.
Commun. ACM, 52(7):86–94, 2009.

[14] N. N. Dalvi, C. Ré, and D. Suciu. Queries and
materialized views on probabilistic databases.
J. Comput. Syst. Sci., 77(3):473–490, 2011.

[15] C. J. Date. An introduction to database
systems (7. ed.). Addison-Wesley-Longman,
2000.

[16] R. Fagin, B. Kimelfeld, and P. G. Kolaitis.
Dichotomies in the complexity of preferred
repairs. In PODS, pages 3–15, 2015.

[17] R. Fagin, P. G. Kolaitis, R. J. Miller, and
L. Popa. Data exchange: Semantics and query
answering. Theor. Comput. Sci.,
336(1):89–124, 2005.

[18] G. Fontaine. Why is it hard to obtain a
dichotomy for consistent query answering?
ACM Trans. Comput. Log., 16(1):7:1–7:24,
2015.

[19] G. Greco, S. Greco, and E. Zumpano. A
logical framework for querying and repairing
inconsistent databases. IEEE Trans. Knowl.
Data Eng., 15(6):1389–1408, 2003.

[20] B. Kimelfeld, E. Livshits, and L. Peterfreund.
Detecting ambiguity in prioritized database
repairing. In ICDT, pages 17:1–17:20, 2017.

[21] P. Koutris and J. Wijsen. Consistent query
answering for self-join-free conjunctive queries
under primary key constraints. ACM Trans.
Database Syst., 42(2):9:1–9:45, 2017.

[22] P. Koutris and J. Wijsen. Consistent query
answering for primary keys and conjunctive
queries with negated atoms. In PODS, pages
209–224, 2018.

[23] P. Koutris and J. Wijsen. Consistent query
answering for primary keys in logspace. In
ICDT, pages 23:1–23:19, 2019.

[24] E. Livshits and B. Kimelfeld. Counting and
enumerating (preferred) database repairs. In
PODS, pages 289–301, 2017.

[25] A. Lopatenko and L. E. Bertossi. Complexity
of consistent query answering in databases
under cardinality-based and incremental
repair semantics. In ICDT, pages 179–193,
2007.

[26] C. Lutz and F. Wolter. On the relationship
between consistent query answering and
constraint satisfaction problems. In ICDT,
pages 363–379, 2015.

[27] M. V. Martinez, F. Parisi, A. Pugliese, G. I.
Simari, and V. S. Subrahmanian. Policy-based

SIGMOD Record, September 2019 (Vol. 48, No. 3) 15

inconsistency management in relational
databases. Int. J. Approx. Reasoning,
55(2):501–528, 2014.

[28] D. Maslowski and J. Wijsen. A dichotomy in
the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983, 2013.

[29] D. Maslowski and J. Wijsen. Counting
database repairs that satisfy conjunctive
queries with self-joins. In ICDT, pages
155–164, 2014.

[30] S. Staworko. Declarative Inconsistency
Handling in Relational and Semi-Structured
Databases. PhD thesis, State University of
New York at Buffalo, 2007.

[31] S. Staworko and J. Chomicki. Consistent
query answers in the presence of universal

constraints. Inf. Syst., 35(1):1–22, 2010.
[32] S. Staworko, J. Chomicki, and

J. Marcinkowski. Prioritized repairing and
consistent query answering in relational
databases. Ann. Math. Artif. Intell.,
64(2-3):209–246, 2012.

[33] B. ten Cate, G. Fontaine, and P. G. Kolaitis.
On the data complexity of consistent query
answering. Theory Comput. Syst.,
57(4):843–891, 2015.

[34] J. Wijsen. Corrigendum to “Counting
database repairs that satisfy conjunctive
queries with self-joins”. CoRR,
abs/1903.12469, 2019.

[35] D. Zhuk. A proof of CSP dichotomy
conjecture. In FOCS, pages 331–342, 2017.

16 SIGMOD Record, September 2019 (Vol. 48, No. 3)

Wilkinson’s Tests and SQL Packages

B. D. McCullough
Decision Sciences & MIS

Drexel University
Philadelphia, PA USA

bdmccullough@drexel.edu

Taha Mokfi
Independent Researcher

Connecticut, USA
mokfi.taha@gmail.com

Mahsa Almaeenjad
Independent Researcher

Connecticut, USA
almaee.mahsa@gmail.com

ABSTRACT
Wilkinson’s Tests are used to benchmark the accuracy of
some statistical functions in six SQL packages: Apache
Hive, Microsoft Access, Microsoft SQL Server, MySQL,
Oracle 11g SQL, and SAP Hana. Using the best choice
of data type, we find that different packages use differ-
ent rounding schemes, two packages use unreliable al-
gorithms to compute the sample variance, one package
returns the population standard deviation when the sam-
ple standard deviation is called, and one package has an
unstable algorithm for computing the correlation coef-
ficient. Using the wrong data type all but guarantees
inaccurate results.

1. INTRODUCTION
A database is an organized collection of data. A

database is managed by a database management
system (DBMS). The popularity of DBMSs increased
with the advent of relational database management
systems (RDBMS). Query operations on tables were
introduced through the Structured Query Language
(SQL). Even though the SQL syntax was standard-
ized, many vendors developed SQLs on their own.
Hence, some of the standard functionality might
not be the same and the underlying code might
also make a difference. This is especially impor-
tant since many authors advocate the use of SQL
for data mining activities: Wei et al [12], Trueblood
and Lovett [20], Linoff [10], Alexander [1], Celko [4],
Fotache and Strimbel [7], Ordonez and Pitchaimalai
[16], and Pearson and Mackey [17]. None of these
authors warns the reader that SQL software might
be inaccurate for statistical purposes.

In particular, different SQL packages might give
different answers to the same problem. Indeed, the
situation is even more problematic: the same pack-
age can give different answers to the same prob-
lem! Recently Niranjan and Nandi [15] found errors
in various SQL packages in the implementation of
the calculation of sample variance; not all packages
could accurately compute the sample variance. We

extend their work with an eye toward elementary
statistical calculations using a collection of bench-
mark tests known as “Wilkinson’s Tests” based on
Wilkinson’s [21] Statistics Quiz that presents six
suites of tests: reading an ASCII file; real numbers;
missing data; regression; analysis of variance; and
operating on a database. Wilkinson’s Tests have
a long track record of being applied to statistical
packages by, among others, Wilkinson [22], Saw-
itzki [18], Bankhofer and Hilbert [3], McCullough
[13], Choi and Kiefer[6], Lomax [11], Keeling and
Pavur [8], and McCullough and Yalta [14].

While Statistics Quiz offers six suites of tests, for
present purposes only the “Real Numbers,” “Miss-
ing Data,” and “Regression” suites are relevant. All
the applicable tests are applied to the most recent
versions of RDBMS packages. We have tested:

• Hive version 1.2.1

• MS Access 2016 v16.0 (64 bit)

• Microsoft SQL Server Management Studio v12.0
(henceforth, MS SQL)

• MySQL workbench v6.3.6 buit 511 CE (64 bit)

• Oracle Database Express edition 11g

• SAP Hana version 2.0 [Express Edition]

All programs were run on a laptop wtih Intel(R)
Core(TM) i5-5200U CPU 2.2 RAM: 8 GB System
with a 64 bit Windows 10 Operating System.

To date, we were unable to find any research as-
sessing the accuracy of statistical functionality in
SQL packages. This is important, because SQL is
frequently advocated for both statistical analysis of
data and data mining:

2. THE DATA
Table 1 below displays the data set “Nasty”. The

values for BIG are about the size of the population
of Egypt, while the values of HUGE are the same
order of magnitude as the American federal budget
deficit.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 17

LABEL$ X ZERO MISS BIG
ONE 1 0 . 99999991
TWO 2 0 . 99999992

THREE 3 0 . 99999993
FOUR 4 0 . 99999994
FIVE 5 0 . 99999995
SIX 6 0 . 99999996

SEVEN 7 0 . 99999997
EIGHT 8 0 . 99999998
NINE 9 0 . 99999999

LITTLE HUGE TINY ROUND
0.99999991 1.0E12 1.0E-12 0.5
0.99999992 2.0E12 2.0E-12 1.5
0.99999993 3.0E12 3.0E-12 2.5
0.99999994 4.0E12 4.0E-12 3.5
0.99999995 5.0E12 5.0E-12 4.5
0.99999996 6.0E12 6.0E-12 5.5
0.99999997 7.0E12 7.0E-12 6.5
0.99999998 8.0E12 8.0E-12 7.5
0.99999999 9.0E12 9.0E-12 8.5

Table 1: Data Set NASTY.DAT

Immediately we encountered difficulties reading
the data. For SQL and MySQL we tried to im-
port the data from a .csv file but both packages
read all the columns as character when they should
be numeric, so we manually changed the type of
all columns to be double precision. In contrast,
Oracle could import data from csv with numeric
types. In general, after reading in the data for each
package, we had to set the type for each column.
This turned out to be a critical step. One might
think that NUMERIC, BINARY FLOAT and BI-
NARY DOUBLE would give similar answers, but
such is not the case. For example, when computing
the standard deviation of the variables, to four dec-
imals all answers should be 2.7386 raised to some
power of ten, with the exceptions of ZERO which
should be 0 and MISS which should be missing. Yet,
Table 2 shows some results from Oracle for various
data types.

Observe that the first column, NUMERIC, gives
correct answers. In contrast, BINARY FLOAT and
BINARY DOUBLE correctly compute the sample
standard deviation for X, HUGE, TINY and ROUND,
but fail for other variables. Oracle was not alone in
exhibiting this type of behavior. Specifically why
Oracle and other packages erratically compute the
standard deviation for the BINARY FLOAT and
BINARY DOUBLE types is beyond the scope of
this paper, but the point is that specifying the best
data type is critical. Therefore we ran all the tests
for all the data types for all the packages and only

variable NUMERIC BINARY BINARY

FLOAT DOUBLE

X 2.7386 2.7386 2.7386
ZERO 0 0 0
MISS – – –
BIG 2.7386 0 2.4494
LITTLE 2.7386E-08 0 1.4901 E-08
HUGE 2.7386E12 2.7386E+12 2.7386E12
TINY 2.7386E-12 2.7386E-12 2.7386E-12
ROUND 2.7386 2.7386 2.7386

Table 2: Oracle Std. Dev. Results for Vari-
ous Data Types

used the best choice.
The failures of MS SQL are presented in Table 3.

None of the types provides correct answers for all
the variables. See that the standard deviation of
LITTLE can take on three different values, none of
which is correct. REAL gives the same answers as
SINGLE, and so is omitted from the table.

variable NUMERIC DECIMAL SINGLE DOUBLE

X 2.7386 2.7386 2.7386 2.7386

ZERO 0 0 0 0

MISS NULL NULL NULL NULL

BIG 2.4495 2.4495 4.2426 2.4495

LITTLE 0 2.9802E-8 3.6500E-8 2.9802E-8

HUGE 2.7386E12 2.7386E12 2.7386E12 2.7386E12

TINY 0 2.7386E-12 2.7386E-12 2.7386E-12

ROUND 2.7386 2.7386 2.7386 2.7386

Table 3: MS SQL Std. Dev. Results for
Various Data Types

MS SQL server supports different numeric data
types. The type DECIMAL has fixed precision and
scale and takes two arguments: precision (Maxi-
mum total number of decimal digits which is be-
tween 1 to 38) and scale (The number of decimal
digits that will be stored to the right of the decimal
point which is between 0 and precision). FLOAT
and DOUBLE types are approximate and have only
one argument n (precision and storage size which
can be between 1 and 53). A precision from 0 to
23 results in a 4-byte single-precision FLOAT col-
umn. A precision from 24 to 53 results in an 8-
byte double-precision DOUBLE column. All the
other types such as: INT, BIGINT, SMALLINT,
and TINYINT are exact-number data types that
use integer data depending on the data points. For
MS SQL, DECIMAL is specified as DECIMAL(38,12),
SINGLE as FLOAT(24), and DOUBLE as FLOAT(53).
In MySQL, NUMERIC is implemented as DECI-
MAL, so the following remarks about DECIMAL

18 SIGMOD Record, September 2019 (Vol. 48, No. 3)

apply equally to NUMERIC.
For the six packages, the options and our best

choices for data type are given in Table 4 (we ex-
clude integer types), where an asterisk denotes that
the data type could not correctly compute the stan-
dard deviation. The prevalence of asterisks shows
that whether a package can correctly compute the
standard deviation depends on the data type spec-
ified.

most
package variable types accurate

Hive FLOAT*, DOUBLE, DECIMAL DOUBLE

Access SINGLE*, DOUBLE* DOUBLE

MS SQL NUMERIC*, DECIMAL*, FLOAT(53)

SINGLE*, DOUBLE*, REAL*

MySQL NUMERIC*, DECIMAL, DOUBLE

FLOAT*, DOUBLE

Oracle NUMERIC, BINARY FLOAT*, NUMERIC

BINARY DOUBLE*

Hana FLOAT, REAL*, DOUBLE, DOUBLE or

DECIMAL FLOAT

Table 4: Options and best data type for each
package

3. THE TESTS

3.1 Real Numbers

3.1.1 Test II-A: Print ROUND to one digit.
The program should follow IEEE-754, which spec-

ifies “round to even”, so the correct answer is 0, 2, 2,
4, 4, 6, 6, 8, 8. For all packages, we used the com-
mand: Round(X,1) and results are presented in Ta-
ble 5.

package result package result
Apache Hive fail MySQL pass
MS Access fail Oracle 11g fail
MS SQL fail SAP Hana fail

Table 5: Results of Test II-A: print ROUND

Only MySQL passes this test. All other pack-
ages return 1, 2, 3, 4, 5, 6, 7, 8, 9 instead of the cor-
rect answer, which indicates that they are not us-
ing IEEE-754 rounding. We see again that different
SQL packages will return different answers to the
same problem.

For an example of why correct rounding is impor-
tant, consider this example from an SQL discussion
board [2]:

I am currently working on POC for mi-
grating Oracle to SQL Server 2008 R2.
Stuck with an issue related to rounding
off calculations.

There is this ”rate” value we are calcu-
lating using POWER functions (it has
nested POWER functions actually). I
am getting mismatches because the val-
ues are not correctly round off during cal-
culation. There are around 258 rows where
the values are 0.01 less than the required
value (ex. I get the rate value as 6.31
where actually it should be 6.32).

In order to correct this issue, I changed
the data types of the fields in the cal-
culation from FLOAT to NUMERIC to
correct out the precision. This is able to
resolve the issue with the above 258 rows,
but now I have another 61 rows where
the value is 0.01 more than the required
value (I get the rate value as 7.42 where
actually it should be 7.41).

All the fields in the Oracle calculation is
using NUMBER datatype (without any
precision), so cant really figure out what
equivalent data type should be used in
SQL Server. Currently I am using FLOAT
datatype.

Please advise if you have any pointers.

With different SQL packages using different round-
ing schemes, migrations are needlessly complicated
and can produce unintended errors.

3.1.2 Test II-B: Plot HUGE against TINY and
plot BIG against LITTLE in a scatter plot.

Figure 1: Test II-B Results for MS Access.

For each case the answer is a 45-degree straight
line. MS ACCESS is the only package offering plot-
ting capability. As Figure 1 shows, MS ACCESS
passes this test; the other two graphs are correct
and are omitted to conserve space.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 19

MS ACCESS
HUGE v. TINY pass
BIG v. LITTLE pass

X v. ZERO pass

Table 6: Results of Test II-B

3.1.3 Test II-C: Calculate the mean and stan-
dard deviation of each variable.

The mean should be equal to the fifth value of
each variable. Each package passes this test.

Standard deviations should be “undefined” or miss-
ing for MISS, zero for ZERO, and 2.738612788 (times
10 to some power) for all other variables (in the ta-
ble the powers of ten are omitted). The relevant
command for each package is: STDDEV SAMP.
The standard deviation results by different pack-
ages are listed in Table 7.

Hive ACCESS MS SQL MySQL Oracle Hana

X 2.582 p p p p p
ZERO p p p p p p
MISS p p p p p p
BIG p 2.309 2.450 p p p

LITTLE p 2.810 2.980 p p p
HUGE p p p p p p
TINY p p p p p p

ROUND p p p p p p

Table 7: Results of Test II-C – calculate
the standard deviation (correct answers in-
dicated by ‘p’ for ’pass’)

Accurately computing the sample standard devi-
ation is a solved problem, and there is no excuse
for any software developer to use a bad algorithm.
For a discussion of the various algorithms, see Ling
[9] or Chan, Golub and Leveque [5]. Of course, if
one uses the command STDDEV, one gets differ-
ent answers depending on the package. STDDEV
is supposed to be an alias for STDDEV SAMP, but
Hive returns 2.5820: in Hive, STDDEV is an alias
for STDDEV POP, so the documentation for STD-
DEV is wrong. Observe that MS SQL and MS Ac-
cess both are using bad algorithms for computing
the sample standard deviation, but apparently dif-
ferent bad algorithms! The same software company
appears to be using two different algorithms, and
neither of them is correct.

Consider performing a one-sample test of means
on 29 observations. Let H0 : µ = 11 against H1 :
µ 6= 11. Suppose the correct standard deviation is
2.7386; then the calculated t-statistic is 1.966 and
the null hypothesis is just barely rejected. If the
standard deviation were incorrectly calculated as

X ZERO BIG LITTLE HUGE TINY ROUND

X 1 NA 1 1 1 1 1
ZERO NA NA NA NA NA NA NA

BIG 1 NA 1 1 1 1 1
LITTLE 1 NA 1 1 1 1 1
HUGE 1 NA 1 1 1 1 1
TINY 1 NA 1 1 1 1 1

ROUND 1 NA 1 1 1 1 1

Table 8: Correct answer for II-D, Correlation
Matrix

2.980 then the calculated t-statistic would be 1.81
and the null hypothesis would not be rejected. If
the standard deviation were incorrectly calculated
as 2.309 and many would incorrectly conclude that
the null hypothesis had been even more strongly
rejected.

3.1.4 Test II-D: Compute the correlation between
all the variables.

The correlation coefficient is calculated as

ρwz =
cov(w, z)

σwσz
(1)

where cov(w, z) is the covariance between w and z
and and σw is the standard deviation of w. Since
the standard deviation of ZERO is zero, Equation 1
has zero in the denominator and so its correlation
with any other variable is undefined. Only Oracle
and Hive offer a correlation function. The correct
answer is given in the top of Table 8.

For the data type FLOAT, in addition to some-
times giving the correct answer of 1.0, running HIVE
with FLOAT also produces answers 0.614, 0.836
and 0.866 instead of 1.0 for some pairs of variables.
For the preferred data type DOUBLE, correlating
ROUND with X or ROUND produces NaN instead
of the correct answer of 1.0.

Oracle, using the preferred data type NUMERIC,
correctly calculates the correlation matrix. How-
ever, when using either BINARY FLOAT or BI-
NARY DOUBLE it gives wildly incorrect answers.

The user-guides for these packages should warn
that accuracy depends on choosing the correct data
type, as the packages will not warn the user if a bad
data type has been chosen.

3.1.5 Test II-E: Plot X against X.
In this test we try to plot the same variable with

itself. The answer should be a graph with a 45
degree line.

Only MS Access lets us make a plot but it lets us
select a variable only once and we cannot select it
again. Therefore, we are unable to make this graph.

20 SIGMOD Record, September 2019 (Vol. 48, No. 3)

3.1.6 Test II-F: Regress BIG on X.
If the constant intercept is 99999990, then we can

expect the slope to be 1. Only Oracle 11g offers
regression, and it gives the correct answer. Oracle
passes.

3.2 Missing Data
Missing values have been encountered commonly

in all the areas. It could be due to bad data en-
try or simply no reading at all at that respective
time. SQL queries do handle NULL or missing val-
ues quite efficiently and it might simply exclude the
readings or include them in the results of queries.
We however define handling missing values and sim-
ply excluding them in a different way.

3.2.1 Test III-A: MISSING in a conditional state-
ment.

Implement the below pseudo-code in the package:

IF MISS = 3

THEN TEST = 1

ELSE TEST = 2

Ideally, the correct result should be equal to 2, since
the MISS values do not have any value and defi-
nitely do not equal to 3. We use a select statement
with the below syntax:

package command
Hive if(Miss = 3,1,2)

SQL/MySQL Iif(Miss = 3,1,2)

Oracle CASE WHEN Miss = 3 THEN 1

ELSE 2 END
MS Access IIf(Miss=3,1,2)

SAP Hana CASE WHEN Miss = 3 THEN 1

ELSE 2 END

All packages pass this test. In cases, where an
IF..ELSE.. statement could not be used, we could
use a similar functional statement. For example, we
have used NVL2 function to test the IF.ELSE loop
since it offers a similar functionality. All packages
pass.

3.2.2 Test III-B: Is MISSING summable?
We apply the following test in this section

IF MISS = <missing> THEN MISS = MISS + 1

Ideally, the correct answer is missing, since we
cannot add to any NULL value. The specific com-
mand used for each package is given in Table 9.

MS Access does not return a missing value indi-
cator, but simply an empty table. This is an error.

package command
SQL/MySQL isnull(x, x+1)
Oracle NVL(x, x+1)
MS Access IIf(IsNull([miss]),[MISS]+1)
Hive if(isnull(Miss), Miss +1, Miss)
Hana ifnull(MISS,MISS+1)

Table 9: Commands for IF MISS... test

Hive MS Access MS SQL MySQL Oracle Hana
pass fail pass pass pass pass

Table 10: Results of Test III-B

3.3 Regression
Another very common computation is the compu-

tation of regression models. These models are useful
in many ways and form the basis of data analysis.
We can calculate the regression models in differ-
ent ways by using the formula. Only Oracle offers
functions to calculate the regression values and co-
efficients. It does not give us all the information
about the regression model, but it gives us specifi-
cally what we might query. For example, the slope
and intercept are displayed separately.

3.3.1 Test IV-A
In this test, we regress X on a constant term and

powers of X. However, none of the packages offers
multiple regression, so we cannot apply this test.

3.3.2 Test IV-B: Regress X with a constant and
X.

The intercept should be zero and the slope should
be one. Oracle passes this test.

3.3.3 Test IV-C: Regress X on a constant, BIG
and LITTLE.

This is a multiple regression, and no package can
perform this test.

3.3.4 Test IV-D: Regress ZERO vs a constant
and X.

Because ZERO has no variance, the program should
either fail to compute coefficients and report that
ZERO has no variance, or it should return zero for
both the intercept and the slope. Oracle returns
zero for the intercept and the slope. Oracle passes
this test.

4. CONCLUSIONS
Wilkinson’s test are designed to uncover flaws

in statistical function of software packages. In our
analysis of six SQL packages, we have identified sev-
eral flaws:

SIGMOD Record, September 2019 (Vol. 48, No. 3) 21

1. An incorrect choice of data type all but guar-
antees inaccurate statistical results; a correct
choice does not guarantee correct results.

2. Different packages use different rounding schemes.
Only MySQL adheres to IEEE-754 rounding;
the others do not.

3. MS Access and MS SQL use unreliable algo-
rithms to compute the sample variance.

4. Hive returns the population standard devia-
tion instead of the sample standard deviation
using STDDEV.

5. The Oracle correlation function is unstable. It
gives a correct answer for the preferred data
type and incorrect answers for other data types.

6. MS Access fails to correctly handle a missing
value case.

Developers should fix these errors qiuckly and,
until then, users should avoid them. Further, “ac-
curacy of algorithms” should be incorporated into
the SQL standards [19].

5. REFERENCES
[1] Michael Alexander. Microsoft Access 2007

Data Analysis. Wiley, 2007.
[2] anonymous. https://social.msdn.micro

soft.com/forums/sqlserver/en-US/9daa1b

60-d11c-421b-8b87-e38a299e372c/roundi

ng-off-issue-during-oracle-to-sql-ser

ver-migration, 2013. Accessed: 2019-07-15.
[3] U. Bankhofer and A. Hilbert. Statistical

software packages for windows: A market
survey. Statistical Papers, 38:393–407, 1997.

[4] Joe Celko. SQL for Smarties: Advanced SQL
Programming, 5e. Morgan Kaufman, 2015.

[5] T. F. Chan, Golub G. H. and R. J. Leveque.
Algorithms for computing the sample
variance: Analysis and recommendations.
American Statistician, 37:242–247, 1983.

[6] Hwan-sik Choi and Nicholas Kiefer. Software
evaluation: Easyreg international.
International Journal of Forecasting,
21(3):609–616, 2005.

[7] Marin Fotache and Catalin Strimbel. Sql and
data analysis. some implications for data
analysis and higher education. Procedia
Economics and Finance, 20:243–251, 2015.

[8] Kellie Keeling and Robert Pavur. Statistical
accuracy of spreadsheet software. The
American Statistician, 65(4):265–273, 2011.

[9] R. F. Ling. Comparison of several algorithms
for computing sample means and variances.
Journal of the American Statistical
Association, 69:859866, 1974.

[10] Gordon S. Linoff. Data analysis using SQL
and Excel. Wiley, 2015.

[11] Richard G. Lomax. Statistical accuracy of
ipad applications: An initial examination. The
American Statistician, 67(2):105–108, 2009.

[12] Wei Lu, Jiajia HouYing, YanMeihui, Zhang
Xiaoyong, and Thomas Moscibroda. Msql:
efficient similarity search in metric spaces
using sql. The VLDB Journal, 26(3):829–854,
2017.

[13] B. D. McCullough. Wilkinson’s tests and
econometric software. Journal of Economic
and Social Measurement, 29(1-3):261–270,
2004.

[14] B. D. McCullough and A. Talha Yalta.
Spreadsheets in the cloud – not ready yet.
Journal of Statistical Software, 52(7):1–14,
2013.

[15] Kamat Niranjan and Arnab Nandi. A closer
look at variance implementations in modern
database systems. SIGMOD Record,
45(4):28–33, 2016.

[16] C. Ordonez and S. K. Pitchaimalai. Bayesian
classifiers programmed in sql. IEEE
Transactions on Knowledge and Data
Engineering, 22(1):139–144, 2010.

[17] William R. Pearson and Aaron J. Mackey.
Using sql databases for sequence similarity
searching and analysis. Current Protocols in
Bioinformatics, 59(1):1–22, 2017.

[18] G. Sawitzki. Report on the numerical
reliability of data analysis systems.
Computational Statistics and Data Analysis,
18(2):289–301, 1994.

[19] Charles Severance. Elizabeth Fong: Creating
the SQL Database Standards. Computer,
47(8):7–8, 2014.

[20] Robert P. Trueblood and Jr. John N. Lovett.
Data mining and statistical analysis using
SQL. Apress, 2001.

[21] Leland Wilkinson. Statistics Quiz. Systat Inc.,
1985. http://web.stanford.edu/~clint/
bench/wilk.txt.

[22] Leland Wilkinson. Practical guidelines for
testing statistical software. In P. Dirschedl
and R. Ostermann, editors, Computational
Statistics. Physica-Verlag, Heidelberg, 1994.

22 SIGMOD Record, September 2019 (Vol. 48, No. 3)

Evaluation of an Implementation of Cross-Row
Constraints Using Materialized Views

José María Cavero Barca
Rey Juan Carlos University

C/ Tulipán s/n
28933 Móstoles (Spain)

josemaria.cavero@urjc.es

Belén Vela Sánchez
Rey Juan Carlos University

C/ Tulipán s/n
28933 Móstoles (Spain)
belen.vela@urjc.es

Paloma Cáceres García de
Marina

Rey Juan Carlos University
C/ Tulipán s/n

28933 Móstoles (Spain)
paloma.caceres@urjc.es

ABSTRACT
SQL assertions are a powerful means used to specify
cross-row constraints, and have been available in the
SQL standard since 1992. Unfortunately, assertions are
not supported in commercial database management
systems. Although triggers and application programs
can be efficiently used to constrain database content,
they are more complex to write and more error-prone.
The objective of this paper is to analyze whether the
use of materialized views could be a viable solution as
regards the automatic implementation of SQL
assertions. Materialized views are views that
physically store the result of a query and are
periodically updated. The method consists of defining
a materialized view which contains the number of
tuples that violate the condition expressed in the
assertion. The materialized view will contain a
CHECK constraint that guarantees that the number of
tuples that violate the assertion is equal to zero. The
proposed method is an easy and automatic means of
implementing the integrity constraints described using
assertions. We have carried out a series of tests, and
although triggers perform better than materialized
views in most situations, there are some in which
materialized views would be an efficient option. They
are easily automatable and less error prone than
triggers.

1. INTRODUCTION
In relational databases, an integrity constraint is
basically a Boolean expression that must be evaluated
as TRUE [1]. A database integrity constraint,
therefore, constrains the values that can appear in a
given database.

The standard language for relational databases
(Structured Query Language, SQL) provides several
means to deal with integrity constraints [2]: table
constraints, column constraints, domain constraints and
assertions. The first three include UNIQUE,
PRIMARY KEYS, FOREIGN KEYS and CHECKS,
and are supported in most commercial Relational
Database Management Systems (RDBMSs). The last
(assertions) are the most general form of integrity
constraint, and they are a simple and easy method by

which to enforce cross-row constraints (that is,
constraints across related rows, possibly in different
tables). In short, their structure includes a condition
that must be fulfilled. The RDBMS is responsible for
ensuring that the condition is satisfied in every state of
the database.

Unfortunately, although assertions have been part of
the SQL standard since 1992 [3,4], commercial
RDBMSs do not support assertions, and many cross-
row integrity constraints are, therefore, usually
implemented by means of triggers (which are used “to
detect some conditions that happen in a database and
then react to the database” [5]), or are included in the
applications used to access the database. Recently, a
few works related with constraints that affect
collectively several tables have appeared. For example,
in [6] the authors propose adding more functionality to
core SQL by means of package queries to support
constraints that the set of result rows to a query must
satisfy. However, if a RDBMS supported assertions, it
would be easy to control integrity constraints, thus
eliminating the need to use triggers or application
programs to control the integrity of the database or any
other mechanism. While assertions only specify the
condition that must be fulfilled to satisfy the constraint,
triggers and application programs must be
programmed by taking into account every possible
situation that could violate the constraint.

In this paper we show an automatic implementation of
assertions using materialized views. Materialized
views are database objects that contain the result of a
query at a specific time, are updated from time to time,
and are used to increase the speed of queries in very
large databases. As will be shown in the following
sections, the implementation of the method requires a
RDBMS that supports materialized views and that can
include CHECK constraints, along with an automatic
procedure that can be used to refresh the view. We
have chosen the Oracle database [7] since we have
prior expertise in using it, and because it supports all
the conditions that must be satisfied in order to carry
out the implementation and even some additional
features. This approach has some basic advantages that

SIGMOD Record, September 2019 (Vol. 48, No. 3) 23

could make it useful in certain environments, although
in many situations it performs worse than when using
triggers.

The organization of the remainder of this paper is as
follows. In Section 2, we summarize SQL assertions
and the example that will be used in the rest of the
paper. Section 3 focuses on materialized views and
how they can be used to implement assertions. Section
4 shows the results of some tests in which triggers are
compared with materialized views. Finally, Section 5
discusses the results and presents some conclusions.

2. SQL ASSERTIONS
In standard SQL, users can specify general constraints
via the CREATE ASSERTION statement. An SQL
assertion is “a CHECK constraint at the database level
that is allowed to contain queries” [8]. One basic
technique employed to write assertions is that of
specifying a query that selects the tuples that violate
the condition. By including this query in a NOT
EXISTS clause, the assertion will specify that the
query result must be empty. Any constraint that can be
expressed in terms of a query that selects the tuples
that violate the desired constraint could, therefore, be
expressed using an assertion in the following way:

CREATE ASSERTION Assertion_Name
CHECK (NOT EXISTS (Query that selects
the tuples that violate the
constraint));

Fig. 1. Relational database schema.

In the remainder of the paper, we use a simplified
version of an example regarding the storage of
information concerning employees and departments
from [9]. Every Employee belongs to one Department,
and every Department has an Employee who works as
a Manager. The schema is shown in Figure 1.

The following assertion constrains “that the salary of
an employee must not be greater than the salary of the
manager of the department that the employee works
for”:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS

(SELECT *
FROM EMPLOYEE E,

EMPLOYEE M,

DEPARTMENT D
WHERE E.Salary > M.Salary

AND E.Dno = D.Dnumber
AND D.Mgr_ssn = M.Ssn));

This simple assertion guarantees that none of the
employees violate the condition in any state of the
database. The RDBMS should reject insertions,
deletions and updates that make an employee’s salary
greater than that of the manager of his/her department.

None of the most frequently used commercial RDBMS
support assertions, although some attempts have been
made to build support for assertions, particularly in
Oracle. For example, back in 2016, this possibility was
considered in Oracle's Database Ideas [8].
Implementation alternatives were proposed, and
complexity and performance problems that could
appear were also discussed. It would, however, appear
that the idea was eventually discarded owing to its
complexity.

As mentioned previously, no commercial product
supports assertions. A previous assertion is, therefore
commonly implemented in the application programs,
or by using a set of triggers that should be executed in
the case of events that could provoke a violation of the
constraint. A very simple assertion like that previously
described could be implemented by, for example, using
four triggers that will be fired when an employee is
inserted or updated, when the manager of a department
is updated, etc. Sometimes, a lot of situations have to
be taken into account when programming triggers to
support constraints, that is, sometimes, as stated in [10]
“transforming integrity constraints into triggers for
verifying database consistency produces a serious and
complex problem”. Moreover, “manually checking
integrity constraint enforcement at the application level
is usually difficult, as the code base to be examined
could be large” [11].

Therefore, although triggers and application programs
can be efficiently used to constrain database content,
they are more complex to write and more error-prone.
In the following section, we show how to implement
constraints in a RDBMS by simulating assertions and
using materialized views.

3. IMPLEMENTING ASSERTIONS
USING MATERIALIZED VIEWS
An assertion checks that the condition that follows the
keyword CHECK holds true for every database state.
The NOT EXISTS (query) clause returns TRUE if the
query returns no tuples. This is equivalent to saying
that the result of applying the COUNT function to the
query must be zero. That is, the previous condition is

24 SIGMOD Record, September 2019 (Vol. 48, No. 3)

equivalent to saying that the following query returns
zero:

SELECT COUNT (*) AS Invalid_Tuples
FROM

(SELECT *
FROM EMPLOYEE E,

EMPLOYEE M,
DEPARTMENT D

WHERE E.Salary > M.Salary
AND E.Dno = D.Dnumber
AND D.Mgr_ssn = M.Ssn));

In a RDBMS, a view is a virtual table that represents
the result of a query. If a view contains the result of the
previous SELECT, a simply CHECK column
constraint (for example, CONSTRAINT CK_ASC
CHECK (Invalid_Tuples = 0)) should therefore be
sufficient to guarantee this constraint. Unfortunately,
traditional views are not allowed to include CHECK
constraints. Simple integrity constraints stated in a
view could imply very complex constraints in the base
tables (base tables are the tables from which the view
obtains the data). Nevertheless, CHECK constraints
can be included in a kind of views called materialized
views, as will be shown in the following paragraphs.

Some RDBMSs also implement “materialized views”.
Materialized views were first implemented in the
Oracle Database. A materialized view (also called a
snapshot) is a database object that contains the result of
a query at a specific time, and is periodically updated
on the basis of certain criteria. A materialized view
eventually enables efficient access to the cost of some
data that may potentially be out-of-date. In Oracle, the
content of a materialized view may be updated
manually or automatically: for example, every day by
using the clause START WITH SYSDATE NEXT
SYSDATE + 1, or when a commit occurs in the base
tables by using the ON COMMIT clause. Materialized
views are very useful in data warehousing
environments, in which frequent queries regarding
historical data can be expensive.

In Oracle, materialized views can include CHECK
constraints, as common tables (or can even be stored in
a previously created table). It would, therefore, be
possible to define CHECK constraints in order to
constrain the values stored in the materialized view.
This would, in turn, constrain the values of the base
tables used in the query defined in the materialized
view.

Oracle therefore satisfies all the conditions that must
be fulfilled in order to automatically implement
assertions using materialized views. The basic
procedure is as follows: a materialized view has to be
created for each assertion. The materialized view will

contain only one column, Invalid_Tuples, which will
contain the number of tuples that violate the constraint
specified in the assertion. Moreover, a CHECK column
constraint constrains that the value of the column must
be equal to zero.

The refresh method used will be ON COMMIT. This
guarantees that for every commit the materialized view
will be updated and, therefore, if the CHECK column
constraint is violated, the operation that provoked the
commit will be rejected. We therefore guarantee that
when a/some invalid tuple/s appear/s, the materialized
view is immediately updated. This obviously implies
that if a particular operation in a transaction violates
the constraint, the whole transaction will be rolled back
instead of committed

We, therefore, first create the materialized view with a
REFRESH ON COMMIT option:

CREATE MATERIALIZED VIEW
ASSERTION_SALARY_CONSTRAINT
REFRESH ON COMMIT
AS SELECT COUNT(*) AS Invalid_Tuples

FROM
(SELECT *
FROM EMPLOYEE E,

EMPLOYEE M,
DEPARTMENT D

WHERE E.Salary > M.Salary
AND E.Dno = D.Dnumber
AND D.Mgr_ssn = M.Ssn);

We then modify the materialized view using an
ALTER TABLE sentence, adding a CHECK constraint
that guarantees that the number of invalid tuples is
always zero:

ALTER TABLE
ASSERTION_SALARY_CONSTRAINT
 ADD CONSTRAINT CK_ASC

 CHECK (Invalid_Tuples = 0);

If we make some updates in the database that cause an
employee to have a salary that is greater than that of
the manager of the department that the employee
works for, we will obtain the following error message
when a commit occurs:

Error SQL: ORA-12008: error in
materialized view refresh path

ORA-02290: check constraint
(SYSTEM.CK_ASC) violated

The main disadvantage of the REFRESH ON
COMMIT option is that the time required to complete
the commit will be longer because of the extra

SIGMOD Record, September 2019 (Vol. 48, No. 3) 25

processing involved. Although this should not be an
issue in a data warehouse environment, because it is
unlikely that concurrent processes will be attempting to
update the same table [12], this could be a problem in a
transactional environment. Oracle has an option (the
FAST REFRESH option) that can be used to improve
the performance of the refreshing. The FAST
REFRESH option performs an incremental refresh and
requires the creation of a series of materialized view
logs that store the changes made to the base tables
since the last commit. The FAST REFRESH option
also has some restrictions, such as the type of
SELECT, aggregations, remote tables, etc [13].

4. RESULTS
We have carried out various experiments with the
example shown in Sections 2 and 3, in an Oracle
database, version 12c. Each execution of the example
consisted of creating the tables and inserting the test
data from scratch, in order to avoid malfunctions
owing to data kept in the cache. We have carried out
various tests applied to the previous example in order

to compare the use of a set of triggers with that of
materialized views (one normal and one using the
FAST REFRESH option). We have specifically
developed four triggers, because there are four
situations in which the constraint can be violated:

- The first three are fired when a new employee is
inserted, when the salary of an existing employee is
modified, or when an existing employee is assigned to
a different department. These triggers share virtually
the same code, and need only compare the salary of the
new or existing employee with the salary of the
manager of the department.

- The fourth trigger is fired when the manager of an
existing department is modified. In this case, the
trigger needs to check that the salary of every
employee in the department is not greater than the
salary of the new manager. Note that this trigger does
not need to be fired when a new department is inserted,
because in this case no employees are still assigned to
it.

Table 1. Inserting 100 employees (seconds)

MATERIALIZED	
VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS

MATERIALIZED	
VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS

10,000	EMPLOYEES 0.0765 0.1190 0.0264 0.9057 2.2282 0.0253
50,000	EMPLOYEES 0.0886 0.1182 0.0247 2.2106 2.4138 0.0271
100,000	EMPLOYEES 0.1098 0.1229 0.0253 3.7018 2.8495 0.0278
200,000	EMPLOYEES 0.1314 0.1266 0.0261 6.7539 3.4744 0.0293
300,000	EMPLOYEES 0.1650 0.1357 0.0254 9.8549 4.1711 0.0277

ONE	FINAL	COMMIT ONE	COMMIT	AFTER	EACH	INSERT

Table 2. Updating 100 managers (seconds)

MATERIALIZED	
VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS

MATERIALIZED	
VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS

10,000	EMPLOYEES 0.0564 0.1102 0.0701 0.9656 2.9299 0.0934
50,000	EMPLOYEES 0.0666 0.1118 0.3174 2.2747 3.2582 0.3738
100,000	EMPLOYEES 0.0836 0.1178 0.6468 3.8715 3.8114 0.7125
200,000	EMPLOYEES 0.1182 0.1256 1.3163 7.1413 4.4121 1.4020
300,000	EMPLOYEES 0.1445 0.1370 1.9195 10.4417 5.3521 2.0144

ONE	FINAL	COMMIT ONE	COMMIT	AFTER	EACH	UPDATE

Table 1 shows the average results obtained after repeating
the insertion of 100 new employees into the EMPLOYEE
table 10 times with 10,000, 50,000, 100,000, 200,000 and
300,000 tuples (in seconds). The first three columns show
the results when only one commit is executed after the
100 insertions. The last three columns show the results
when one commit is forced after each insertion.

The performance of the triggers is similar in both cases
(with or without commits), and the size of the table has no
significant effect, because the trigger only compares the
salary of the employee with the salary of the manager of
the department. Moreover, the triggers clearly perform
better than materialized views, especially in the case of
forcing a commit after each insert. In the case of

26 SIGMOD Record, September 2019 (Vol. 48, No. 3)

materialized views, the FAST REFRESH option only has
a clear effect when the tables affected have a lot of tuples
and a lot of commits have to be done. It seems reasonable
that in almost empty tables the fact of having the
additional task of managing a set of materialized view
logs does not have any effect, or even a negative effect.

Table 2 shows the average results obtained after repeating
the modification of 100 managers 10 times, again when
the EMPLOYEES table has 10,000, 50,000, 100,000,
200,000 and 300,000 tuples.

In this case, the performance of the materialized views is
similar to the previous one (Table 1), but the performance
of the triggers has worsened. In this case, the performance
of the triggers is affected by the size of the tables, because
this trigger has to compare the salary of the new manager
with the salary of all the employees in the department.

The main difference between both results (Table 1 and
Table 2) is the performance of the triggers. The triggers
that fire in the case of inserting a new employee (Table 1),
or modifying an existing employee, only have to compare
his/her salary with the salary of the manager of the
department to which he/she belongs. Nevertheless, the
trigger that fires in the case of the modification of the
manager of one department (Table 2) is more complex,
because it has to check that every employee in that
department has a salary which is not greater than the
salary of the new manager.

The following figures provide a graphic summary of the
aforementioned tests. They show the performance of the
triggers and materialized views after inserting 100
employees plus modifying the manager of a department
100 times (that is, the result of adding the results of Table
1 and Table 2). Figure 2 shows the results when a single
commit is executed after each 100 operations and Figure
3 shows the result of forcing one commit after each
operation. A linear trend line has also been added for each
situation.

Figure 2. Inserting 100 employees and updating 100

managers, one final commit.

Figure 3. Inserting 100 employees and updating 100

managers, one commit after each insert/update.
As can be seen, the trend line fits very well with the
results obtained. In Figure 2, when commits are executed
only after the operations, triggers are the worst option
when the Employees table has more than 20,000-25,000
tuples. With regard to the FAST REFRESH option, it
starts to provide its benefits when the Employees table
has about 200,000 tuples.

In Figure 3, when one commit is forced after each
operation, triggers are always the best option. Although
materialized views perform reasonably well in small
tables, their performance worsens in the case of large
tables, especially when the FAST REFRESH option is not
used. The FAST REFRESH option starts to provide its
benefits when the Employees table has about 75,000
tuples.

5. CONCLUSION
In an RDBMS, almost any constraint can be specified as
an SQL query. Virtually any constraint could, therefore,
be expressed using an assertion. Unfortunately, no
commercial RDBMS product supports assertions. This
signifies that cross-row constraints are usually
implemented using a set of complex triggers, or are
included in the applications. In some cases, this method is
more efficient, although it is error-prone owing to the
quantity of possible situations that must be taken into
account. In some situations, it might therefore be better to
automate this codification task and delegate it to the
RDBMS.

In this paper, we have proposed an automatic and easy
means of implementing assertions in RDBMSs which
support materialized views and allow an ON COMMIT
refresh of these views.

To the best of our knowledge, the only approach for the
automatic implementation of assertions is that of Oriol et
al. [14], who propose an incremental approach consisting
of implementing assertions that create several triggers in
order to capture the update requested by the user and
placing it in auxiliary tables in SQL Server. Their method
consists of generating a set of triggers and views that
check the assertions, all in a semi-automatic manner
(manual intervention is necessary because the user has to

SIGMOD Record, September 2019 (Vol. 48, No. 3) 27

manually invoke a procedure called safeCommit at the
end of each transaction). The results provided by the
authors in order to check the assertions range from 0.01 to
1.29 seconds, which are similar to those obtained in our
experiments in the case of using triggers, signifying that
they are reasonable. Unfortunately, the aforementioned
authors’ method does not take into account the possibility
of including aggregation functions in assertions, which is
a fundamental disadvantage, since it works only for very
simple assertions.

Our main objective was to analyze whether implementing
assertions by means of materialized views is a viable
method. We have shown that it is possible, and that it can
be easily automated. Although our proposal is specific to
Oracle, it would be applicable to any system that supports
CHECK constraints and REFRESH ON COMMIT on
materialized views. However, to the best of our
knowledge, no system other than Oracle currently
supports all of these aspects.

We have also carried out some preliminary tests in order
to evaluate the efficiency of our approach. These tests
showed that the method provides good results (even better
than triggers) when making a unique commit after a set of
inserts or updates. Nevertheless, it performs worse than
when using a set of triggers when a commit is forced after
each insertion or update. The following conclusions may
be obtained from the aforementioned experiments:

- Materialized views perform similarly, independently of
the cause that violates the constraint. It depends mainly on
the size of the table.

- The performance of the triggers depends mainly on the
particular constraint, and less on the size of the table.

- Using the FAST REFRESH option in materialized views
provides benefits only in large tables.

- In general, materialized views perform better than
triggers in the case of issuing a single commit for all the
modifications made, as the condition is evaluated only
once (when the commit is performed). In the case of the
triggers, which are part of the same transaction of the
firing statement, the condition is evaluated for each
operation. The performance of both triggers and
materialized views obviously also depends on the
complexity of the condition to be evaluated and the
operation that can fire the assertions.

Our method, therefore, fits better in environments with a
high number of complex constraints but a low number of
transactions. It is less appropriate for environments in
which a high number of simple transactions are present.
We are currently working on a detailed categorization of
when it is worth using this method, along with its
automatic implementation in a tool.

6. ACKNOWLEDGMENTS
This work has been partially supported by the
Access@City research project (TIN2016-78103-C2-1-R),
funded by the Spanish Ministry of Science, Innovation
and Universities.

7. REFERENCES
[1] C.J. Date, 2015. SQL and Relational Theory: How to Write

Accurate SQL Code. Third ed., O’Reilly.

[2] A. Behrend, R. Manthey and B. Pieper, 2001. An
Amateur’s Introduction to Integrity Constraints and
Integrity Checking in SQL, Datenbanksysteme in Büro,
Technik und Wissenschaft. A. Heuer, F. Leymann and D.
Priebe, eds, Informatik aktuell. Springer, Berlin,
Heidelberg, 405-423.

[3] ANSI Standard, 1992. The SQL 92 Standard.
http://savage.net.au/SQL/sql-92.bnf.htm

[4] J. Melton and A. R. Simon, 2002. SQL 1999:
Understanding Relational Language Components, Morgan
Kaufmann.

[5] Y.I. Chang and F.L. Chen, 1997. RBE: A Rule-by-example
Active Database System, Software: Practice and
Experience, 27(4):365-394.

[6] M. Brucato, A. Abouzied and A. Meliou, 2017. A Scalable
Execution Engine for Package Queries. SIGMOD Record,
46(1): 24-31.

[7] Oracle. http://www.oracle.com

[8] T. Koppelaars, 2016. SQL Assertions / Declarative multi-
row constraints”. https://community. oracle.com/ideas/
13028.

[9] R. Elmasri and S. Navathe,2010. Fundamentals of Database
Systems, Sixth ed., Addison-Wesley.

[10] H.T. Al-Jumaily, D. Cuadra and P. Martínez, 2008
“OCL2Trigger: Deriving active mechanisms for relational
databases using Model-Driven Architecture”, Journal of
Systems and Software, 81(12):2299-2314.

[11] H. Zhang, H.B.K. Tan, L. Zhang, X. Lin, X. Wang, C.
Zhang and H. Mei, 2011. Checking enforcement of
integrity constraints in database applications based on code
patterns”, Journal of Systems and Software, 84(12):2253-
2264.

[12] Oracle Database SQL Language Reference, 11g Release 2
(11.2).http://docs.oracle.com/cd/E11882_01/server.112/e41
084.pdf

[13] P. Lane and P. Potineni, 2014. Oracle Database Data
Warehousing Guide, 12c Release 1 (12.1). Oracle.

[14] X. Oriol, E. Teniente and G. Rull, 2016. TINTIN: a Tool
for Incremental INTegrity checking of Assertions in SQL
Server”, 19th International Conference on Extending
Database Technology (EDBT): 632-635.

28 SIGMOD Record, September 2019 (Vol. 48, No. 3)

Michael	Franklin	Speaks	Out	on		
Data	Science	

	
Marianne	Winslett	and	Vanessa	Braganholo	

Mike Franklin

https://cs.uchicago.edu/people/profile/michael-franklin/

Welcome to ACM SIGMOD Record series of interviews with distinguished members of the database community. I’m
Marianne Winslett, and today we’re at the 2017 SIGMOD and PODS conference in Chicago. I have here with me
Mike Franklin, who is the chair of the Computer Science department at the University of Chicago. Before that, for
many years, Mike was a professor at Berkeley where he also served as a chair of the Computer Science division. Mike
was a co-founder and director of the Algorithms, Machines, and People Lab, better known as the AMPLab. He is an
ACM fellow, a two-time winner of the SIGMOD Ten Year Test of Time Award, and a founder of the successful startup,
Truviso. Mike’s Ph.D. is from the University of Wisconsin Madison. So, Mike, welcome!

SIGMOD Record, September 2019 (Vol. 48, No. 3) 29

Everyone wants to know why you moved from Silicon
Valley, the epicenter of all things computer, to the
Midwest?

I had a great 17 years at UC Berkeley and being in and
around Silicon Valley. But I moved to Chicago to take
advantage of an amazing opportunity here to help build
computer science and data science in a new way that’s
integrated into the fabric of the university. The
University of Chicago has tremendous programs across
a huge range of fields, ranging from biological sciences
to public policy, economics, of course, social sciences,
and humanities and they’ve decided as a university that
they want computer science and data science to play an
increasingly central role across all those different fields.

And so, the opportunity I have at Chicago is to build a
modern Computer Science department that in its very
nature is built to work with people across all these
different disciplines. And that combined with the
opportunities of the growing tech field in Chicago and
the Midwest more generally, it just seemed that after a
great run at Berkeley it was time to do something new
and so that’s what I signed up for.

What do you miss most about Silicon Valley?

Silicon Valley is really a unique place. The energy, the
sense of adventure, the sense of just trying to make
something big happen that permeates the whole place is
something that is hard to replicate somewhere else. So,
I miss that, yeah.

You miss it, but it is a bubble.

Yeah, so the downside of all that energy is it’s really all-
encompassing. And when you’re there, you’re out
talking to people, you’re sitting in a café, you’re at a
restaurant, the topic of conversation is stock options and
the next round of funding and the minimal viable
product and all this. At some point, it does get to be a
bit much.

One of the great things about Chicago and the Midwest
in general is it’s a much more diversified place. There’s
no one industry that dominates the Chicago economy
and because of that you get people with widely varying
interests all talking together, working together. It’s, in
some ways a refreshing change.

You weren’t very bullish on the short-term prospects for
real-time streaming analytics when you gave a keynote
on that topic at a VLDB 2015 workshop. Have your
views shifted in the two years since then?

So, I think some people might have misunderstood what
I was saying in that talk, and I’ve given versions of that

talk in different places. So, just for some history, we
were working on streaming in the early 2000s when that
was a hot topic in the database community, and the
company you mentioned, Truviso, was a streaming
analytics company. My view has always been that
stream processing is absolutely going to be an integral
part of any data analytics platform because it’s just the
most efficient way to answer queries that you already
know you want to ask.

If you already have a bunch of queries, which often you
do, that you know you’re going to want the answer to,
it’s much more efficient to answer them incrementally
on the fly as the data’s arriving as opposed to storing the
data off and then going to find it later and then starting
the query from scratch. So, my view has always been
that streaming would be a component of analytic
systems. Now, what I did push back on is this idea that
everybody is going to want instantaneous answers to
queries, no matter what they’re doing, and that’s just not
the way it turned out the first time we did it, and it’s not
going to turn out this way either, and there are a few
reasons for that.

One reason is: business processes and other types of
processes just have a natural cadence and that for a lot
of reasons you can only make decisions every so often.
And getting people the freshest data instantaneously
when they’re not able to make a decision or act on a
decision is, in the best case, a waste of time, and in the
worst case, a big distraction.

The other problem is, if you’re trying to answer queries
instantly when the data comes in, you don’t have time
to deal with problems in that data. So, for example, if
there’s out of order data, which is very typical in
streaming environments, if you’re trying to answer
things instantaneously, you’re going to miss a lot of
data. If there’s an error in the data and you’re not able
to analyze it properly, you’re going to cause problems
that way. So, really, my view on it is that if you ask
people, do they want faster query answers, they’re going
to say yes. If you ask people, “for the problem you’re
trying to solve, how often do you need a correct
answer,” you’d get probably a very different and in
many cases a much slower rate. So my view on it is that
stream processing is really important because it’s a
fundamental way of dealing with large volumes of data,
but you’ve got to take into account what people are
actually trying to do and then target the solution to the
latency needs of that application.

That’s true of life in general, wouldn’t you say? You
need to have situational awareness. Too much
situational awareness is bad; you end up with helicopter
parents and things like that. And too little can lead to a
disaster because you don’t know what’s going on. So,

30 SIGMOD Record, September 2019 (Vol. 48, No. 3)

it’s a lesson that we need to think about in applications
for data.

Yeah, I think that’s right.

 The AMPLab is about algorithms, machines, and
people. Unlike the other parts of the AMPLab, the
people component hasn’t produced results that have
made their way into industry. Why is that?

Right, that’s a great question. So, the premise of the
AMPLab when we started it was exactly that. If you’re
going to try to make sense of big data, you have three
types of resources you can use. You can use algorithms
in terms of machine learning and statistical processing.
The machines part of the agenda was about cloud
computing and cluster computing and basically
throwing more scalable hardware at the problems. And
the people part was initially about crowdsourcing and
about bringing people to bear on the parts of the
problems that weren’t adequately addressed by the
algorithms and the machines. The dream was that we
would build an integrated system that combined all of
these.

Now, what happened was certain parts of the AMPLab
agenda just took off like rocket ships. The one that, of
course, is most famous is Apache Spark and all the
things around it. Apache Spark and its ecosystem has
taken a leadership role, not just in academia, but more
so in industry in terms of what people are doing with big
data. And so when people look at the AMPLab, they see
the Spark part of the agenda, and they say, wow, that
was a huge success and really beyond what you’d expect
from an academic project. But when you look at some
of the other parts of what we were doing, they didn’t

1 At the time of the interview (2017), this was referring to:

Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti
Ramesh, Reynold Xin: CrowdDB: Answering Queries with
Crowdsourcing, SIGMOD Conference 2011: 61-72. As of
the time of publication (2019), a different AMPLab paper
now holds this position: Michael Armbrust, Reynold S. Xin,

have that same industrial impact as your question says –
at least they haven’t had it yet.

But one thing I like to point out (it’s a little defensive
about the people part of the agenda) is if you look at
what happened for the people who worked on that part
of the agenda, we had best paper awards, we had a series
of papers including, I believe, the most referenced paper
in SIGMOD from the previous five years1. The students
and postdocs who worked on that project are now at
some of the top universities in the country. So, by any
metric, the people part of the agenda was a huge
research success, but when you stand it up next to
Apache Spark, it doesn’t have that same industrial
impact, which was your question.

So, now the question is: Why is that? There are two
things. One is the nature of the way people think about
people in an overall systems architecture. If you look at
large web companies that are ingesting and trying to
make sense of lots of data, and you ask them to draw out
their systems architecture, you’ll see racks of machines
running certain processes and communicating in certain
ways. All of those companies have armies of people that
are doing exactly what we set out to do in the AMPLab,
which is to have the people do those things that you just
couldn’t get the right fidelity out of the algorithms and
the machines to handle properly. But nobody draws
their architecture saying, “oh, and the hard stuff that we
can’t afford to get wrong, we’re going to show to this
group of 500 people that we’re paying”. And so part of
it is just there isn’t the set of systems abstractions yet for
how people fit into the architecture. Everyone thinks
about it as those people are somehow separate from the
architecture.

Well, yeah, now that Facebook has to deal with the fake
news in a very people-intensive manner, do you think
that that will cause a change in people’s thinking of
what an architecture consists of?

I’m not sure because they’ve been doing that all along.
Companies have been bringing in people for solving
those hard problems.

True, but 2,000 of them, I think that’s the number.

Right, yeah.

Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali
Ghodsi, Matei Zaharia: Spark SQL: Relational Data
Processing in Spark. SIGMOD Conference 2015: 1383-
1394.

[…]	getting	people	the	
freshest	data	

instantaneously	when	
they’re	not	able	to	make	a	
decision	or	act	on	a	decision	
is,	in	the	best	case,	a	waste	of	
time,	and	in	the	worst	case,	a	

big	distraction.	

SIGMOD Record, September 2019 (Vol. 48, No. 3) 31

Do you think that will show up on future diagrams?

I don’t know what it would take to make it just standard
practice to have the people part show up on diagrams. I
think if there are enough stories like that where it starts
coming out more in the open, maybe it will.

The other reason I think that industrial impact of the
research has been a little slower than in other areas is
because we don’t yet have the relational algebra of
crowdsourcing. We don’t have a standard set of
abstractions, of operators, of benchmarks that you need
to make it so that people in industry can get their heads
around a particular set of concepts and then start
understanding what their needs are and what the
alternative solutions are and how they compare. So, part
of it is just this awareness about the fact that people are
already integral parts of these systems. And the other
part is that we in the research community have to do a
better job of determining what are the fundamental
abstractions of crowdsourcing to make it happen.

What’s next for you in your research life?

Well, so I’ve taken on a pretty big administrative role
these days, and I’m focused on basically doubling the
size of our department. We’re building a new building2,
we’re building a lot of new programs, and so I think
that’s going to keep me pretty occupied for a little while.
But as I talk to people around campus about what their
needs are for data science, it’s a lot of those fundamental
problems that the SIGMOD community has been
beating their heads against the wall on for a long time
that still need to be addressed: data integration, data
cleaning, and data quality.

There’s an improved awareness now of how bias and
other problems in the underlying data can impact the
results that are coming out of analytics, and so really
what I want to focus my research on, for the next wave
of my research, is those types of data quality issues.

You are currently building up a big new data science
center in Chicago. How do you decide what to include
in the scope?

The challenge of data science is exactly that. That if you
look across the disciplines in a modern university, pretty
much all of them are doing more and more with data and
feel that they need to be involved in data science. And
so I’ve been taking a pragmatic approach, looking to see
who’s willing to step up and contribute and basically
using that as my guide for what to keep in because

2 The U Chicago CS Department moved into its new facility

in August 2018.

intellectually, you really can’t make an argument that
these people are doing data, but that’s not data science
whereas these people are. But I think finding out who
really wants to collaborate, who’s willing to put some
hard work into thinking about curricular issues and
putting some time into it, that’s what’s going to drive
who’s involved, at least in the beginning.

Could there be a problem later on if initial successes
make a bunch more departments want to get on board,
but you’re built up or scoped out or whatever?

I think whatever we design is going to have to be
designed with the assumption that eventually everybody
is going to want to be involved in some way.

The University of Chicago has a great books
curriculum. What do you think are the equivalent of
great books in computer science?

The University of Chicago curriculum, as far as I
understand it, has moved away from the great books a
little bit and is more of what they call now as a core. The
core is determined less by specific titles and more by
concepts and techniques and philosophies that you need
to understand to be an educated person in the 21st
century. And if you look at it from that point of view, I
think it’s pretty obvious that to be an educated person in
the 21st century you need to understand something
about computation, right? – this idea of computational
thinking and how algorithms work and what they are
and what they can do and what they can’t do. And also
you need to understand data, and you need to understand
how to make arguments given data. You need to
understand when somebody’s presenting you an
argument that supposedly comes from data, how to
determine what might be right or wrong about that, and
so that’s more sort of a data literacy. If you think about

[…]	there	isn’t	the	set	of	
systems	abstractions	yet	for	
how	people	fit	into	[…]	[a	
system’s]	architecture.	

Everyone	thinks	about	it	as	
those	people	are	somehow	

separate	from	the	
architecture.	

32 SIGMOD Record, September 2019 (Vol. 48, No. 3)

computational thinking and data literacy, I fully believe
that they will end up in the core set of things that the
university decides all undergraduates need to know, and
I think that’s going to happen everywhere.

Do you think there’ll ever be classics?

I think that there certainly will be classics about
understanding the relationship between computation
and thought, right, and around the limits and the
opportunities of artificial intelligence and things like
that. If I had to give everybody a book to read, it would
probably be the Gray and Reuter Transaction Processing
book.

I thought of that as a possibility, but you give it to the
average or even a computer science major, and they’re
going to be “oh my God, I had no idea, I don’t want to
know.”

Right, so that’s the problem. The amount of things you
need to learn and do until you can understand what’s in
that book is too high.

The level of complexity is kind of astonishing.

Yup.

Alright, we’d like to hear your advice for having a
successful startup in the data space beyond all the
advice we can already find on the internet.

Okay, well, I’ll say a couple of things, and you can tell
me if it’s already out there. It probably is.

Okay.

Related to that, one piece of advice I got when I started
my company was that you’re going to find people who
have a similar or the same idea that you have and that’s
actually not a bad thing. If you’re the only person who’s
come up with an idea in a hot area, there’s probably
something fundamentally wrong with it. And so, if I’m
giving you advice, it’s probably already out on the
internet somewhere or it’s wrong advice.

But the thing that I learned about data-driven startups
that surprised me was – you know, our first customer in
our company was a hedge fund that was doing currency
trading and we built an amazing application for them
that let them see things in real-time that they couldn’t
see before. And in that business, you really do need to
see things in real-time. We had that running, and we
then went over to have a meeting with a computer
security company, and they said, “oh, well, do you have
a demo of your product” and we said “absolutely”. Then

we showed them the demo of this currency trading
application. And they said, “well, what’s that?”, and we
explained it. They said, “well, what does that have to do
with computer security?” We said, “well, you
understand, right, there’s streams of data coming in,
there are these comparisons and metrics and thresholds
and other things are being computed in real-time and
they’re being shown. So, you can imagine that these are
now network events coming in and the things that
you’re querying are security events…” But they just
totally couldn’t get it – and these were smart people,
these were not dumb people. And then this repeated in
a bunch of other industries as well.

What if you’d framed it as situational awareness
because security community does have that concept?

It could be that we were missing the terminology, but
really, I think what I learned from that is as data people,
we’re able to think about data and queries in the abstract
– we see patterns, we see similarities. A customer that’s
trying to solve their problem sees only their problem,
and they see it in the set of data that they deal with, and
the set of questions that they ask. It’s extremely rare, if
not impossible, to find somebody at a company that’s
trying to solve a problem that has that same idea of
abstraction that a database person would have.

So, my advice for people doing data-driven startups is
to really put yourself in your potential customer’s shoes
and gear whatever you’re presenting to solving their
problems, not a bottom-up way about the technology
itself.

Interesting, so in the particular example you gave, does
that mean you need to cobble together a fake network
monitoring demo for them to get it?

Yeah, I think cobbling a demo or…

That’s a lot of work!

It’s a lot of work, and I guess a corollary to that is you
should very quickly pick a small number of verticals,
maybe just one, and focus your energies on that for
exactly that reason.

Times have definitely changed, so do you think if you
come back to a big network-oriented company today
with your saying “here’s your real-time dashboard
situational awareness,” would that now be an easy sell
or would it be the exact same thing all over again?

I think there’s increased awareness. I mean, the story I
told is probably a ten-year-old story. So, you’re right, in
the past ten years it’s possible that there’s a greater

SIGMOD Record, September 2019 (Vol. 48, No. 3) 33

appreciation now for data science in general, but I still
think at the end of the day things that are very natural
for you as a database technologist are not natural for a
domain expert, and you just have to be aware of that.

You spent years working at MCC before you went for
your Ph.D. Did you plan to get a Ph.D all along?

I actually bounced between industry and academia quite
a bit during my career. I worked after my bachelor’s
degree and then the MCC job was after I got a master’s
degree. I really had no intention of getting a Ph.D at the
time when I took that job, but I worked with a lot of
Ph.Ds and during the course of that project, we built a
system called Bubba3, which was one of the first
massively parallel database systems. And working with
the people who were Ph.Ds kind of impressed me. I
liked the way they thought, I liked the way they thought
about problems, and the way they attacked big
problems, and it kind of gave me an appreciation for that
and realized that that was something I wanted to learn
how to do.

Now, that’s interesting. So, I guess master’s degrees
were the highest degree offered by where you got your
master’s degree. Do you think if you’d been at a place
that also had Ph.D students you would have had that
same reaction at that time?

That’s a good question. I always encourage people at
universities now (especially undergrads), to do some
research, to get involved in a research project to see if
they like it, because you’re right, had I been at a place
that was actively doing research projects, I might have
had that same experience.

Interesting. Did your time away from the university
affect what you ultimately chose to do for your Ph.D?

Oh, absolutely. So, at MCC, in addition to working with
some amazing people at MCC, I also had the
opportunity to work with Mike Carey who eventually
became my Ph.D advisor and Dave DeWitt, both of

3 Haran Boral, William Alexander, Larry Clay, George P. Copeland,

Scott Danforth, Michael J. Franklin, Brian E. Hart, Marc G. Smith,

whom were consultants on that project and they were
the reason I went to the University of Wisconsin.

Most people go straight through school for a variety of
reasons. For people who think they want to get an
additional degree, under what situations do you think
they should spend time away from school first?

Well, I often encourage people – if you’re in a place that
has a one-year master’s program, there are a number of
schools that you do your bachelor’s, if you stay another
year, you get the master’s… I think that’s a really great
opportunity for people and I also encourage people to
do that. To go for your Ph.D, that’s a whole other thing.
One thing that students who are considering a Ph.D
don’t often understand is that everything up to the Ph.D,
often including the master’s, is basically course driven,
so you take your courses, you do the exams, you do the
projects. At the end of the semester, you’re done, and
you move on.

As you know, a Ph.D isn’t like that at all. It’s kind of an
unbounded enterprise that you’re getting involved in
and it’s a very different set of criteria for success. And
you often don’t get that regular feedback, that regular
sense of accomplishment – certainly in the first few
years when you’re just trying to find your way around
the research world. So I always encourage people, even
who think they want to get a Ph.D, to maybe take a little
time and spend some time in industry and see what’s out
there, to see if that’s going to be a better path for them.
My feeling, and it’s just based on my own personal
experience, is as long as you’re not out too long, if you
really want to go back, you will, and there will be
opportunities to do that.

What approach to advising do you take with your own
Ph.D students?

My approach with students has, I think, tended a little
more towards the hands-off approach. I try to give
students a direction and pose problems and then turn
them loose on those problems and not dictate what I
think the solution should be.

When I first became a professor, I ran into Jeff
Naughton, who was one of my professors at Wisconsin,
and he had asked me how it was, was I enjoying faculty
life and whatever. I said, well, I really am, except that I
really wish I could figure out what it takes for a given
student to be successful because things that work for one
student don’t work for another. There are some people
who need a little bit of pressure, there are some people

Patrick Valduriez: Prototyping Bubba, A Highly Parallel Database
System. IEEE Trans. Knowl. Data Eng. 2(1): 4-24 (1990).

[…]	we	don’t	yet	have	the	
relational	algebra	of	
crowdsourcing.	

34 SIGMOD Record, September 2019 (Vol. 48, No. 3)

who crack under pressure… I haven’t figured out an
approach to make students successful in general. And
Jeff, who had been teaching for a number of years at that
point, said to me, well, yeah, when you figure it out, let
me know.

So, I think you do have to understand that people are
motivated in different ways, but the best way to work
with me is to be open-minded about the problems that
you’re going to work on and then be creative about the
solutions you come up with.

Do you have any other words of advice for fledgling or
mid-career database researchers?

We’re really lucky in the database world. Those of us
who have been in the business for a long time remember
when it was one of the less glamorous parts of the field,
where it was hard to get people to take the classes, it was
hard to get people to want to do research compared to
some of the sexier parts of computer science. But
because of the big data revolution and because of data
science and all the companies that are clearly being
driven by data, that’s not true anymore. I guess my
advice is really to just enjoy being in a field that’s
having such an impact on the world and that has so
many open problems.

Among all your past research, do you have a favorite
piece of work?

Well, the AMPLab is hard to beat as a research project
for a number of reasons. One, the impact that we had
was really just, as I said, well beyond what you would
ever hope for from an academic project and that’s been
really wonderful. But the other great thing about the
AMPLab was that it was a collaboration of a large
number of faculty, a large number of students, and these
were people not just from databases – actually not even
just from systems, but we had machine learning people,
we had HCI people, we had security people, and then
we had applications people around the campus who we
were working with. So overall, it’s hard to beat that
experience as a research project.

If you magically had enough extra time to do one
additional thing at work that you’re not doing now,
what would it be?

I haven’t written a book yet and I think I need to write a
book, so if I magically had time, that’s what I would
probably do.

What would the topic be?

Well, clearly, we need a new database textbook for
undergraduates and somebody has to do that. The other
one would be about building systems for large-scale
machine learning.

Okay, if you could change one thing about yourself as a
computer science researcher, what would it be?

If I could go back to my education, there’s definitely
some math classes I would have paid more attention to,
because I’m finding now that a lot of the techniques that
are taught in those courses are more important to me as
a database researcher than I thought they would have
been.

Is that, in some sense, a failure of the professor or was
the class so generic that the teachers themselves could
not have envisioned all the different ways that their
students might put that work to use?

Well, I think, particularly for databases, advanced
analytics and machine learning have now become so
important that a lot of techniques around linear algebra
and stochastic processes and optimization are just much
more important to the field than they were even ten
years ago.

Okay, great, thank you very much for talking with us
today.

Thank you.

I	fully	believe	that	
[computational	thinking	and	
data	literacy]	will	end	up	in	
the	core	set	of	things	that	
the	university	decides	all	
undergraduates	need	to	

know.	

SIGMOD Record, September 2019 (Vol. 48, No. 3) 35

Report on the First and Second
Interdisciplinary Time Series Analysis Workshop (ITISA)

Themis Palpanas
Paris Descartes University

themis@mi.parisdescartes.fr

Volker Beckmann
CNRS, Paris Diderot University

beckmann@in2p3.fr

ABSTRACT
The analysis of time-series data associated with modern-
day industrial operations and scientific experiments is
now pushing both computational power and resources to
their limits. In order to analyze the existing and (more
importantly) future very large time series collections,
new technologies and the development of more efficient
and smarter algorithms are required. The two editions
of the Interdisciplinary Time Series Analysis Workshop
brought together data analysts from the fields of com-
puter science, astrophysics, neuroscience, engineering,
electricity networks, and music. The focus of these work-
shops was on the requirements of different applications
in the various domains, and also on the advances in both
academia and industry, in the areas of time-series man-
agement and analysis. In this paper, we summarize the
experiences presented in and the results obtained from
the two workshops, highlighting the relevant state-of-
the-art-techniques and open research problems.

1. INTRODUCTION
Time series1 have gathered the attention of the

data management community for more than two
decades [1, 15, 30]. They are one of the most com-
mon data types, present in virtually every scien-
tific and social domain: they appear as audio se-
quences [13], shape and image data [29], financial [26],
environmental monitoring [25] and scientific data [11],
and they have many diverse applications, such as in
health care, astronomy, biology, economics, etc.

Recent advances in sensing, networking, data pro-
cessing and storage technologies have significantly
eased the process of generating and collecting data
series. It is not unusual for applications to involve
numbers of sequences in the order of hundreds of
millions to billions [21]. These data have to be
analyzed to identify patterns, gain insights, detect

1Time series, or data series, or sequences are values
measured and ordered over a dimension (usually time,
but could also be mass in mass spectroscopy, angle in ra-
dial chemical profiles, or position in genome sequences).

anomalies, and extract new knowledge.
A key observation is that analysts need to process

a sequence (or subsequence) of values as a single
object, rather than the individual points indepen-
dently, which is what makes the management and
analysis of data sequences a hard problem. Note
that even though a sequence can be regarded as
a point in n-dimensional space, traditional multi-
dimensional approaches fail in this case, mainly due
to the combination of the following two reasons: (a)
the dimensionality is typically very high, i.e., in the
order of several hundreds to several thousands, and
(b) dimensions are strictly ordered (imposed by the
sequence) and neighboring values are correlated.

Current time series analysis solutions require cus-
tom code, which implies huge investments in time
and effort, and duplication of effort across different
teams. Existing systems (e.g., based on DBMSs,
Column Stores, or Array Databases) do not provide
a viable solution, since they have not been designed
for managing and processing sequence data [21].
Therefore, they do not offer a suitable declarative
query language, storage model, auxiliary data struc-
tures, and optimization mechanism that can sup-
port a variety of sequence query workloads in an ef-
ficient manner [6,31]. (In Section 4, we discuss more
reasons why existing solutions are inadequate.)

The Interdisciplinary Time Series Analysis Work-
shop provided a forum for researchers and practi-
tioners that approach time series from different an-
gles, ranging from data management and process-
ing, to analysis, mining and machine learning. The
core research issues considered in the workshop in-
clude: management and indexing, interactive visu-
alization, machine learning, privacy preserving an-
alytics, uncertainty and missing values, and appli-
cations of those in astrophysics, neuroscience, engi-
neering, electricity networks, and music.

The program of the two editions of the workshop
included 14 keynote talks, 2 hands-on sessions, and
2 panel discussions. We summarize here the ideas

36 SIGMOD Record, September 2019 (Vol. 48, No. 3)

that were presented and discussed in the two work-
shops that took place in June and December 2016
(in Paris, France) with over 80 participants in to-
tal. The detailed program and the slides for the
talks are available at the ITISA web pages.
1st edition: https://indico.in2p3.fr/event/13186/
2nd edition: https://indico.in2p3.fr/event/13934/

2. KEYNOTE TALKS
2.1 Computer Science

Prof. Anthony Bagnall (University of East An-
glia) focused on Time series classification problems
(TSC). He described the recent advances in time
series classification, and presented a taxonomy of
algorithms based on the nature of discriminatory
features used to classify. Finally, he presented an
experimental comparison of over 20 algorithms on
85 of the UCR-UEA datasets. The results showed
that the collective of transformation-based ensem-
bles (COTE) was significantly more accurate than
all other approaches, because it could utilize fea-
tures from each of the five promising representations
identified in the algorithm taxonomy.

Prof. Abdullah Mueen (University of New Mex-
ico) talked about algorithms and applications of
three primitive temporal patterns, namely, motifs,
shapelets, and discords. Motifs are repeating seg-
ments in seemingly random time series data; Shapelets
are small segments of long time series characteriz-
ing their sources; and Discords are anomalous wave-
forms in long time series that do not repeat any-
where else. He discussed efficient algorithms to dis-
cover these patterns, and presented corresponding
use cases. Applications included activity classifi-
cation using accelerometer and brain activity data,
correlated clusters in social media data, and anomaly
detection in online review data.

Prof. Themis Palpanas (Paris Descartes Univer-
sity) presented techniques for time series indexing.
He described recent efforts in designing techniques
for indexing and mining massive collections of time
series, and showed that the main bottleneck is the
time taken to build the index. He presented the
state of the art techniques that adaptively create
time series indexes, allowing users to correctly an-
swer queries before the indexing task is finished.

Prof. Anastasia Bezerianos (University Paris-Sud),
Dr. Theophanis Tsandilas (Inria), and Ms. Anna
Gogolou (Inria) talked about interactive visual ex-
ploration of large time series collections. They pro-
vided an overview of existing interaction and vi-
sualization techniques for time series exploration
and analysis, and noted the absence of focus on
their scalability to multi-terabyte time series collec-

tions. To this end, they described work directions
for achieving both visual scalability (how can we
visualize billions of data series) and response-time
scalability (how can we get answers quickly in inter-
active response times), including approximate and
progressive result mechanisms.

2.2 Astrophysics
Dr. Dimitrios Emmanoulopoulos (University of

Southampton) talked about astrophysical time se-
ries, and in particular AGN light curves2, whose
variability allow astrophysicists to study the physi-
cal conditions around a black hole. In order to test
any theoretical model though, it is crucial to at-
tribute a precise statistical significance to any tim-
ing property. Dr. Emmanolopoulos presented a new
statistical method that can produce random light
curves that contain all the genuine statistical and
variability properties of the observed ones, i.e., the
same flux distribution (quantified by the probability
density function) and same power spectral density.

Dr. Jerome Rodriguez (CEA) discussed methods
for diagnosing and analyzing the fast time variabil-
ity in X-ray binaries3. He introduced the Fourier
analysis and generic techniques used in high energy
astrophysics, and explained how these tools help un-
derstand the properties of fast variabilities in X-ray
binaries time series.

Dr. Gabriele Ponti (Max Planck Institute) also
focused on the variabilities of X-ray binaries time se-
ries. He showed that the characteristic time-scales
of such variations depend linearly on the mass of
the black hole, and that by studying the correla-
tions between the emission at various energy bands
(through cross spectra and lag frequency spectra),
it is possible to determine delays between radiation
produced by different components of the system.
From this, it is possible to draw conclusions about
the geometry of the regions around black holes.

Dr. Vivien Raymond (Cardiff University) focused
on Gravitational Wave (GW)4 detection using the
Advanced Laser Interferometer Gravitational-wave
Observatory (LIGO). He stressed that at the core of
this new observational medium for GW-astronomy

2An Active Galactic Nucleus (AGN) is a compact region
at the center of a galaxy that has an unusually high
luminosity. A light curve is an astrophysical time series
that measures the amount of light as a function of time.
3X-ray binaries (a.k.a. microquasars) are a class of bi-
nary stars that host the most compact objects (neutron
stars and black holes), and are luminous in X-rays.
4Gravitational waves are ripples in space-time caused by
violent and energetic processes in the universe (e.g., the
merge of two black holes). Albert Einstein predicted the
existence of gravitational waves in 1916 in his general
theory of relativity, and they were first detected in 2016.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 37

is the analysis of the time series of space-time de-
formations recorded by the GW detectors. He pre-
sented the time series analysis techniques currently
used in signal detection, detector noise analyses,
and source properties inference.

Dr. Eric Chassande-Mottin (CNRS) talked about
the detection of GW in space. It is believed that
the space-based LISA GW detector data stream
will contain approximately 60 million simultaneous
sources. He emphasized that in analyzing these
time series data, there are two important goals: the
first is to separate the various sources from each
other, and the second is to estimate the astrophysi-
cal parameters of each source. In this task, matched
filtering is the main tool of GW astronomy, a method
that requires the use of accurate theoretical tem-
plates for each source type. development of sophis-
ticated Bayesian algorithms.

2.3 Neuroscience
Dr. Katia Lehongre (ICM Institute for Brain

and Spinal Cord) talked about times series anal-
ysis in neuroscience, and elaborated on the elec-
trophysiology of epilepsy. Patients with epilepsy
present abnormal brain activity, like epileptic spikes
and seizures that can be recorded with electroen-
cephalography (EEG). In order to localize the re-
gion of the brain that produces this abnormal activ-
ity, EEG from the patients is recorded continuously
for 2 to 3 weeks. Usual clinical practice involves a
neurologist reviewing visually the signal in order to
determine the spatial localization and the temporal
dynamics of the epileptic activity. As Dr. Lehongre
pointed out, several studies tried to develop an au-
tomatic and reliable detection / characterization of
the epileptic events in time and space, however, no
fully non-supervised methods are commonly used
by the neurologists, because they are not accurate
enough. An efficient time series analysis could be of
great interest to speed up the signal analysis, and
in turn to increase the number of patients handled.

Prof. Uri Hasson (University of Trento) discussed
time series in relation to the brain. He began with a
brief overview of the sorts of time series that mod-
ern cognitive neuroscience can obtain from human
participants and the principles of the instrumenta-
tion used to obtain those. The second part of the
talk focused on approaches for analyzing these times
series. These include quantification of correlations
between different brain regions and network parti-
tioning strategies. It was noted that more recent
work is focusing on fast, non-oscillatory signatures
in brain dynamics that also contain important in-
formation. These signatures are either driven by
an input or internally generated. Several methods

based on the analysis of peaks and pits in neu-
ral time series were discussed, as well as methods
for decomposing spatiotemporal data into series of
micro-states and motifs. The last part summarized
these technologies from the perspective of temporal
search engines, highlighting the importance of ap-
proximate searches on multivariate time series, and
in the context of real-time analysis.

2.4 Engineering and Electricity Networks
Dr. Dohy Hong (Safran) shared his experience on

multivariate time series analysis in aeronautics, and
aircraft engines in particular. He pointed out that
one of the main future challenges in aeronautics is
the use of available data in order to enable the opti-
mal management of maintenance processes (e.g., a
per engine-based individual management strategy),
and later its integration in the design process. The
overall data processing along the engine cycle in-
cludes several technical challenges: weak signal de-
tection in continuous multivariate usage time se-
ries (hidden layer/rules learning/extraction), man-
agement of heterogeneous data (maintenance repair
and operation data, test bench or inspection data,
configuration data, etc.), integrating and consoli-
dating the existing expert knowledge (from design
model to residual life time estimate practice), and
others. All these challenges have to be addressed
under the constraint of certifiability, which implies
interpretability and robustness.

Dr. Georges Hebrail (EDF) made the case for
privacy-preserving use of individual smart meter data
for customer services. The advent of on-body/at-
home sensors connected to personal devices leads
to the generation of fine grain highly sensitive per-
sonal data at an unprecedented rate. However, de-
spite the promises of large scale analytics there are
obvious privacy concerns that prevent individuals
to share their personal data. Dr. Hebrail presented
Chiaroscuro, a solution for clustering personal time
series, with strong privacy guarantees. The exe-
cution sequence produced by Chiaroscuro is mas-
sively distributed on personal devices, coping with
arbitrary connections/disconnections. Chiaroscuro
builds on a novel data structure, which allows the
participating devices to collaborate privately by com-
bining encryption with differential privacy.

2.5 Music
Prof. Philippe Esling (IRCAM) talked about mu-

sical time series. Music inherently conveys several
open and interesting scientific questions, which all
embed the notion of time. Specifically, musical or-
chestration is the subtle art of writing musical pieces

38 SIGMOD Record, September 2019 (Vol. 48, No. 3)

for orchestra, by combining the spectral properties
specific to each instrument in order to achieve a
particular sonic goal. Prof. Esling described novel
learning and mining algorithms on multivariate time
series that can cope with the various time scales
that are inherent in musical perception, and can
be used for orchestration. His current research is
focused on automatic inference through deep rep-
resentational learning to allow the automatic deci-
phering of these dimensions in order to provide op-
timal features for orchestration, by targeting corre-
lations existing in the work of notorious composers.

3. HANDS-ON SESSIONS
The workshop also offered two hands-on sessions.
The first hands-on session was organized by Dr.

Vivien Raymond, and walked participants through
the process of analyzing real time series signals col-
lected at LIGO, and visualize a GW that was buried
in the signal. This session aimed at teaching par-
ticipants all the preprocessing steps necessary for
cleaning the time series, and for amplifying the true
signal, i.e., the GW. This process involved filter-
ing and noise removal and downsampling steps5,
which had to be performed either in the time- or
frequency-domain. The main take-away message
of this session was that the time series processing
workflow that analysts apply (often times) requires
many preprocessing and data transformation steps.

The second hands-on session was led by Ms. Anna
Gogolou, and dealt with the challenges in interac-
tive visual exploration of large time series. The par-
ticipants were asked to reply to a questionnaire that
was divided in three parts: background information,
scenarios, and detailed examples of their questions
and problems at hand. Participants came mainly
from two different domains: neuroscience and astro-
physics. Analyzing their answers, led to the conclu-
sion that their goal on multi-dimensional time series
data is to find: similar patterns, abnormal patterns,
time length of events, specific times of variability in
data (periodicity), and correlation. Moreover, some
are interested in working with quick, but rough re-
sults (e.g., approximations or incomplete answers),
while they wait for the complete and exact answer.

4. DISCUSSION SESSIONS
Finally, we report on the discussion sessions of the

workshop, which greatly helped in putting all pre-
vious information in perspective, and in identifying
the research directions that are useful and promis-
ing. Below, we summarize the main points of the
discussion, and relevant open research problems.
5https://www.gw-openscience.org/tutorials/

(1) Preprocessing: In most cases, time series must
be preprocessed before being analyzed: this involves
selecting the series and intervals of interest, and ap-
plying techniques from signal processing (e.g., band
filters, denoising), several of which operate in the
frequency domain. Thus, time series management
systems [12] and analysis workflows should allow
analysts to easily extract subsets of interest, and
embed their data in different spaces (e.g., time, fre-
quency), suitable for the various analysis techniques.
(2) Analysis Operations: The analysis task itself
encompasses several different operations, including
similarity search, correlation, clustering, classifica-
tion, anomaly (or discord) detection, motif (or fre-
quent patterns) discovery, and causal modeling6.
Similarity search is a key operation that is expen-
sive per se, and if performed fast then it can help
speedup several of the other analysis operations, as
well. We note that in some cases, the analysis op-
erations need to be performed in a way that takes
into account spatial information7, pointing to the
need for the development of corresponding query
languages and index structures.
(3) Versatility: Even though there exists a sizable
number of studies on time series analysis techniques
in the literature (and some of them have found their
way into real systems), these techniques are usu-
ally not versatile enough for use in the real world.
Real applications require scalable techniques that
can serve ad-hoc queries and analysis workflows,
have the ability to select and operate on sets of
sequences selected using complex conditions8, oper-
ate on both entire sequences and subsequences, sup-
port the analysis of variable-length subsequences9,
treat value uncertainty10 [4] as a first class citizen
and be able to carry confidence and significance val-
ues along the analysis workflow, as well as allow for
privacy-preserving analytics.
(4) Interaction with Users: Despite the signif-
icant effort of the visualization community in this
area [2], most of the available systems are far from
scaling to the sizes of time series collections that
are used in practice. Recent advances in time se-
ries indexing can be of help here, though, novel
approaches are required in order to really address
the current and future needs. Interactive visualiza-
tions are important for users, and when the datasets

6For example, Granger causality.
7Neuroscientists are interested in correlations among
signals recorded by sensors that are spatially close.
8Based on metadata, time intervals, value thresholds.
9Consider for example that most of the current time
series indexes only support fixed-length queries.

10In several cases, this uncertainty is inherent in the mea-
surement instrument.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 39

grow very large some of the most promising ways to
achieve interactive response times is through the use
of fast approximate and/or progressive answers [27],
with the support of appropriate visualizations.
[Summary] Overall, we observed a slight discon-
nect between the needs of scientists and practition-
ers that process and analyze time series, and Com-
puter Science (CS) researchers that work on time
series. The problems that CS researchers have been
studying are for the most part simplified, clean, and
sanitized versions of the real problems and analy-
sis workflows that practitioners have to address in
the real world. Despite the remarkable progress in
this area by the CS community during the recent
years [6, 8, 12, 14, 18, 22], there are still many chal-
lenging open problems.

Efficiently supporting similarity search [3, 16, 17,
23,24,28] is still challenging for large data series col-
lections [6,7]. Only very recently attention has been
given to solutions that can support variable-length
queries [19, 20], and there are still a lot to be done
in terms of supporting uncertain series [5]. Scalable
visualization solutions are direly needed, especially
in support of progressive analytics [10, 27]. At the
same time, even some basic problems, such as the
interplay between visual perception and similarity
measures [9], deserves to be studied in more detail.
Evidently, in order to be used in practice, all the
above components should be combined in general,
easy-to-use by non-experts, time series management
systems [6,12], a task that is by itself a challenge.

5. WORKSHOP CONCLUSIONS
Even though time series are a very common data

type, no available system can inherently accommo-
date and support the dataset sizes and complex an-
alytics required by users. Our discussions showed
that applications across different domains share com-
mon requirements: fulfilling them is a challenging
goal, involving many interesting research problems.
[Acknowledgements] The workshops were sup-
ported by the CNRS Mastodons TimeClean project.

References
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient simi-

larity search in sequence databases. In FODO, 1993.

[2] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Vi-
sualization of Time-Oriented Data. Springer, 2011.

[3] G. Chatzigeorgakidis, D. Skoutas, K. Patroumpas, T. Pal-
panas, S. Athanasiou, and S. Skiadopoulos. Local pair and
bundle discovery over co-evolving time series. In SSTD,
2019.

[4] M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Palpanas.
Uncertain time-series similarity: Return to the basics.
PVLDB, 5(11), 2012.

[5] M. Dallachiesa, T. Palpanas, and I. F. Ilyas. Top-k nearest
neighbor search in uncertain data series. PVLDB, 8(1),
2014.

[6] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Ben-
brahim. The Lernaean Hydra of Data Series Similarity
Search: An Experimental Evaluation of the State of the
Art. PVLDB, 12(2), 2018.

[7] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Ben-
brahim. Return of the Lernaean Hydra: Experimental
Evaluation of Data Series Approximate Similarity Search.
PVLDB, 2019.

[8] C. Faloutsos, J. Gasthaus, T. Januschowski, and Y. Wang.
Forecasting big time series: Old and new. PVLDB, 11(12),
2018.

[9] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos.
Comparing similarity perception in time series visualiza-
tions. TVCG, 25(1), 2019.

[10] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos.
Progressive similarity search on time series data. In EDBT
BigVis Workshop, 2019.

[11] P. Huijse, P. A. Estévez, P. Protopapas, J. C. Principe, and
P. Zegers. Computational intelligence challenges and appli-
cations on large-scale astronomical time series databases.
IEEE Comp. Int. Mag., 9(3):27–39, 2014.

[12] S. K. Jensen, T. B. Pedersen, and C. Thomsen. Time series
management systems: A survey. TKDE, 29(11), 2017.

[13] K. Kashino, G. Smith, and H. Murase. Time-series active
search for quick retrieval of audio and video. In ICASSP,
1999.

[14] E. J. Keogh. Indexing and mining time series data. In
Encyclopedia of GIS., pages 933–939. 2017.

[15] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Paz-
zani. Locally adaptive dimensionality reduction for indexing
large time series databases. In SIGMOD, 2001.

[16] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Pal-
panas. Coconut Palm: Static and Streaming Data Series
Exploration Now in your Palm. In SIGMOD, 2019.

[17] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Pal-
panas. Coconut: Sortable Summarizations for Scalable In-
dexes over Static and Streaming Data Series. VLDBJ, ac-
cepted for publication, 2019.

[18] J. Large, P. Southam, and A. J. Bagnall. Can automated
smoothing significantly improve benchmark time series clas-
sification algorithms? CoRR, abs/1811.00894, 2018.

[19] M. Linardi and T. Palpanas. Scalable, variable-length
similarity search in data series: The ULISSE approach.
PVLDB, 11(13), 2018.

[20] M. Linardi, Y. Zhu, T. Palpanas, and E. J. Keogh. Matrix
profile X: VALMOD - scalable discovery of variable-length
motifs in data series. In SIGMOD, 2018.

[21] T. Palpanas. Data series management: The road to big
sequence analytics. SIGMOD Record, 44(2), 2015.

[22] T. Palpanas. Big sequence management: A glimpse of the
past, the present, and the future. In SOFSEM, 2016.

[23] B. Peng, P. Fatourou, and T. Palpanas. Paris: The next
destination for fast data series indexing and query answer-
ing. In IEEE BigData, 2018.

[24] B. Peng, P. Fatourou, and T. Palpanas. MESSI: In-Memory
Data Series Indexing. In ICDE, 2020.

[25] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P.
Picco. Practical data prediction for real-world wireless sen-
sor networks. TKDE 27(8), 2015.

[26] D. Shasha. Tuning time series queries in finance: Case stud-
ies and recommendations. DEBull, 22(2), 1999.

[27] C. Turkay, N. Pezzotti, C. Binnig, H. Strobelt, B. Hammer,
D. A. Keim, J. Fekete, T. Palpanas, Y. Wang, and F. Rusu.
Progressive data science: Potential and challenges. CoRR,
abs/1812.08032, 2018.

[28] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Pal-
panas. Massively distributed time series indexing and
querying. TKDE (to appear), 2019.

[29] L. Ye and E. J. Keogh. Time series shapelets: a new prim-
itive for data mining. In KDD, 2009.

[30] K. Zoumpatianos, S. Idreos, and T. Palpanas. ADS: the
adaptive data series index. VLDBJ, 25(6), 2016.

[31] K. Zoumpatianos and T. Palpanas. Data series manage-
ment: Fulfilling the need for big sequence analytics. In
ICDE, 2018.

40 SIGMOD Record, September 2019 (Vol. 48, No. 3)

Report on the First International Workshop on
Semantic Web Technologies for Health Data

Management (SWH 2018)

Haridimos Kondylakis
ICS-FORTH

Heraklion, Greece
kondylak@ics.forth.gr

Kostas Stefanidis
Tampere University
Tampere, Finland

kostas.stefanidis@uta.fi

Praveen Rao
University of Missouri-Kansas

Kansas City, USA
raopr@umkc.edu

ABSTRACT
Better information management is the key to a more
intelligent health and social system. To this direction,
many challenges must be first overcome, enabling seam-
less, effective and efficient access to various health data
sets and novel methods for exploiting the available in-
formation. The First International Workshop on Se-
mantic Web Technologies for Health Data Management
aimed at bringing together an interdisciplinary audience
interested in the fields of semantic web, data manage-
ment and health informatics to discuss the challenges in
health-care data management and to propose novel and
practical solutions for the next generation data-driven
health-care systems. In this paper, we summarize the
outcomes of the first instance of the workshop, and we
present interesting conclusions and key messages.

1. INTRODUCTION
Key in achieving the vision of affordable, less in-

trusive and more personalized care, is the efficient
and effective exploitation of health data. Ultimately
this has the potential to increase the quality of life
as well as to lower mortality. However, the lifelong
patient data to be exploited for this purpose are
complex, with hundreds of attributes per patient
record, that will continually evolve as new types
of calculations and analysis/assessment results are
added to these records over time. In addition, data
exist in many different formats, from textual docu-
ments and web tables to well-defined relational data
and APIs. Furthermore, they pertain to ambiguous
semantics and quality standards resulted from dif-
ferent collection processes across sites. The vast
amount of data generated and collected comes in so
many different streams and forms from physician
notes, personal health records, images from patient
scans, health conversations in social media, to con-
tinuous streaming information collected from wear-
ables and other monitoring devices.

To this direction, semantic technologies can pro-
vide effective solutions for enabling interoperabil-
ity and common language among health systems,
and can lead to the disambiguation of the infor-
mation through the adoption of various terminolo-
gies and ontologies available. On the other hand,
cloud-based technologies and micro-services are the
key for large-scale health systems deployment, data
storage and analysis. The goal of this workshop is
to bring together researchers cross-cutting the fields
of semantic web, data management and health in-
formatics to discuss the challenges in health-care
data management and to propose novel and practi-
cal solutions for the next generation of data-driven
health-care systems. Developing optimal frame-
works for integrating, curating and sharing large
volumes of Health Record data has the potential
for a tremendous impact on health-care, enabling
better outcomes at a lower cost.

Next, we summarize the outcomes of the first
workshop instance held in conjunction with ISWC
2018 in Monterey, USA.

2. INVITED TALK

2.1 Benchmarking Big Linked Data: The
case of the HOBBIT Project

Irini Fundulaki, in her keynote talk, discussed the
results of the European H2020 HOBBIT (Holistic
Benchmarking for Big Linked Data) Project. More
specifically, she talked about the benchmarks de-
veloped in the context of the project, that target
all the steps of the Big Data Value Chain. Spe-
cial focus was given on the following two bench-
marks: the link discovery benchmarks that aim at
testing link discovery systems which address one of
the most important problems of data integration,
and the versioning benchmark that can be used to
check the performance of systems that manage ver-
sions of linked datasets.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 41

The HOBBIT project worked towards providing
innovative benchmarks with the following charac-
teristics:

• Realistic benchmarks: Benchmarks are com-
monly generated with synthetic data that re-
flect a single and specific domain. HOBBIT
created mimicking algorithms to generate syn-
thetic data from different domains.

• Universal benchmarking platform: HOBBIT
developed a generic platform that is able to ex-
ecute large scale benchmarks across the Linked
Data lifecycle. The platform provides refer-
ence implementations, as well as dereference-
able results and automatic feedback to tools
developers.

• Industry relevant Key Performance Indicators
(KPIs): In addition to the classical KPIs de-
veloped over the last decades, HOBBIT col-
lected relevant KPIs from industry to assess
technologies based on the industrial needs.

Finally, Irini Fundulaki discussed what are the
benchmarks that are of interest for health-care sys-
tems and applications, and provided some vision as
to what are the lines of research that we should pur-
sue in order to be able to have good quality bench-
marks for such critical systems.

3. PAPER PRESENTATIONS

3.1 An Ontology-Driven Elderly People
Home Mobilization Approach

Proposing exercise games to elderly is a chal-
lenging area of research. Age-related changes in
balance, gait, strength, visual and hearing senses,
memory and attention, and their deterioration over
time make it difficult to assess individual status
and adapt appropriately the corresponding recom-
mendations. The authors in [5] propose an intel-
ligent agent, that automatically and continuously
adapts to the user profile, and provides correspond-
ing incentives for mobilization at home. In order to
construct the user profile, the agent incrementally
builds a knowledge base capturing behavioral char-
acteristics and movement sequences. The tracking
of the users is realized by 3D sensors, which cap-
ture individual tracks throughout the day. Process-
ing those tracks, information regarding active time
in room, active time of day, average gait velocity,
average stand up time and average walking time is
calculated and stored in the knowledge base. The
information in the knowledge base is modeled using
an ontology. Instances of this ontology match the
condition of the available rules for providing person-
alized recommendations. Those rules are in essence

SPARQL queries, which propose personalized rec-
ommendations regarding games which include walk-
ing exercises or mind games. REST APIs imple-
mented on top provide CRUD functionality on the
available data and expose the movement sequences
processed by other components of the agent. The
evaluation performed confirm the effectiveness and
efficiency of the approach.

3.2 Integrating clinical data from hospital
databases

Research in various fields of medicine often re-
quires the process and analysis of large amounts of
possibly heterogeneous data that appear in differ-
ent sources, like hospitals or scientific laboratories.
By integrating such data, researchers extract new
knowledge related to their field of study, that are
not able to obtain when working with each data
source independently. In general, the goal of data
integration is to provide a uniform access over a set
of data sources that have been created and stored
autonomously [4, 3].

To fully exploit the integrated clinical data, it is
important to be able to reveal the semantic rela-
tionships among them. For example, as stated in
[6], to translate patients data describing dementia
symptoms into effective Alzheimer’s disease diag-
nosis, it is important that these data are related
to additional patients information, such as genetic
data, as well as to biological markers, such as pro-
teins and electroencephalography. Specifically, the
authors are interested in integrating clinical data
related to the human brain. This work has been
developed to meet the needs of the Medical Infor-
matics Platform (MIP) of the Human Brain Project
(HBP) that aims to develop technologies that en-
hance the scientific research related to human brain.
Towards this effort, MIP provides a data integration
mechanism to collect clinical data, such as Elec-
tronic Health Records (EHR) and imaging features
stored in hospitals local databases.

3.3 Knowledge Engineering Framework
to Quantify Dependencies between
Epidemiological and Biomolecular
Factors in Breast Cancer

The relationship between social determinants of
health and chronic disease risks is crucial for the
prevention of chronic diseases. Such associations
are relatively easier to uncover for simple diseases,
like obesity. But for complex diagnoses like can-
cer, a large number of factors contribute to the on-
set of the disease. Cancer Registries as the source
of health data are used widely in epidemiological

42 SIGMOD Record, September 2019 (Vol. 48, No. 3)

research. Being collected by health professionals,
they reduce research costs and embrace the whole
population. However, the primary purpose of those
sources is not being used for research, e.g., many
times the structure of records is not appropriate in
order to build an epidemiological model. Therefore,
a data adjusting issue arises. To fit data from Can-
cer Registries to the epidemiological model, the au-
thors create a knowledge engineering framework uti-
lizing controlled vocabularies, using Bayesian Net-
works to quantify and predict factors that influence
hormonal patterns of breast cancer, which can lead
to better patient care.

3.4 The FairGRecs Dataset
FairGRecs is a synthetic dataset that can be used

for evaluating and benchmarking methods [8] that
produce recommendations related to health docu-
ments based on individual health records. Specifi-
cally, FairGRecs can create, via a fully parametrized
API, synthetic patients profiles, containing the
same characteristics that exist in a real medical
database, including both information about health
problems and also relevant documents. More specif-
ically, [10] relies on the EMRBots dataset1, which
contains synthetic patients profiles, containing the
same characteristics that exist in a real medical
database, such as patients admission details, de-
mographics, socioeconomic details, labs and med-
ications, extending it with a document corpus and
a rating dataset. By exploiting the FairGRecs
dataset, interested users can create patients that
have provided rankings for health documents. To
link document contents with patients, the authors
use the ICD102 ontology, namely the International
Statistical Classification of Diseases and Related
Health Problems, which is a standard medical clas-
sification list maintained by the World Health Orga-
nization. FairGRecs is fully parametrized, is offered
via an API, and has been used already in [11].

3.5 Towards the Development of a
National eHealth Interoperability
Framework to Address Public Health
Challenges in Greece

Large amounts of health data are daily generated
and stored in regional health systems across Europe.
Opening and reusing these data can be the key for
improving healthcare efficiency and effectiveness.
As such, the development of national interoperabil-
ity frameworks (NIF) is essential and towards this
direction the EU has announced guidelines for a

1http://www.emrbots.org
2http://www.icd10data.com/

European interoperability framework (EIF) [1], in-
cluding 47 concrete recommendations for legal, or-
ganizational, semantic and technical interoperabil-
ity. In Greece, healthcare is provided by the na-
tional health system with multiple of services al-
ready available such as ePrescription, eReferral for
primary care, eConfirmation for insurance status
verification, eReimbursement, eAppointments for
doctors in the primary care etc. [7]. The Greek
national health system has recognized the impor-
tance of implementing a NIF. The prerequisites for
enabling data reuse include a well-defined process
model, available and agreed terminology and reli-
able clinical content.

3.6 The Case for Designing Data-Intensive
Cloud-Based Healthcare Applications

Cloud computing is a major source of revenue
for companies like Amazon, Google, and Microsoft.
Today, it is attracting a lot of interest among the
healthcare community due to its benefits such a
lower cost and ease of deployment. [2] argues for a
microservices-based architecture for designing data-
intensive cloud-based healthcare applications. A
healthcare vendor may consider moving an exist-
ing software application by deploying them through
virtual machines (VMs). However, VMs are heavy-
weight and are not suited for rapid deployment and
recovery. Rethinking the design of the software ap-
plication using microservices will provide the abil-
ity to quickly scale, be fault-tolerant, and provide
high levels of security and availability. Microser-
vices allow an application to be composed of loosely
coupled services. Kubernetes3 is a popular frame-
work for orchestrating microservices. The authors
propose a generic architecture for designing health-
care applications using microservices by decoupling
storage, compute, and non-functional requirements
such as availability, security, scalability, capacity
planning, and others. Services for data analytics
and machine learning can be incorporated using the
software-as-a-service model.

3.7 A De-centralized Framework for Data
Sharing, Ontology Matching and Dis-
tributed Analytics

The HarmonicSS platform [9] is a decentralized
platform with the target to address all the afore-
mentioned needs, tackling appropriately all ethical,
legal and privacy issues for data sharing. The data
sharing framework includes the data assessment and
the data sharing management modules, ensuring
that the framework respects all General Data Pro-

3https://kubernetes.io

SIGMOD Record, September 2019 (Vol. 48, No. 3) 43

tection Regulation requirements for both the data
providers and data processors. The clinical data are
stored on a private cloud, specifically designed for
each cohort, whereas a data curation module per-
forms data cleaning. For data harmonization, an
ontology has been defined and ontology matching
is used for mapping the schema of each individual
cohort to the ontology.

The proposed architecture is used to integrate
and harmonize 7500 records out of 22 cohorts, in-
cluding a variety of patients with primary Sjogren
syndrome. A data processor who wishes to pro-
cess cohort data has first to request access. Then
the corresponding data providers can allow or deny
data access. Data analytic services on top are then
executed locally on the private cloud and the results
are combined in a distributed learning fashion en-
suring that the data never leave the clinical center.

4. WORKSHOP CONCLUSIONS
One important message was made clear by the

workshop presentations and the participants: given
the proliferation of health data and applications,
there is a need to view and manage health data
from different perspectives. A number of key ob-
servations and research directions emerged that we
summarize below.

• Semantic technology can leverage behavioral
characteristics into personalized recommenda-
tions. In this direction, user context and in-
teractivity need to be emphasized.

• Personal health data can be leveraged for ex-
ploring the past and personalizing the user
experience. Personal data exploration even
in the health domain can take into account
psychological and behavioral patterns to build
novel exploration paradigms.

• System performance, in particular response
time experienced by the user, remains a major
challenge in the domain of health data man-
agement.

• Given the growing interest among the health-
care community to adopt cloud services for
large-scale health data management, microser-
vices come to the foreground, holding the
promise for designing the next generation of
data-intensive health-care applications.

• Researchers can employ different clinical ter-
minologies (e.g., ICD10, SNOMED CT) for
building knowledge/data management solu-
tions for healthcare data based on the country
of deployment.

This first instance of the Semantic Web Technolo-
gies for Health Data Management Workshop made

clear that a lot of research work still needs to be
done in the general area of semantic health data
management. Given the growing interest in indus-
try and academia, we are looking forward to the
next instance of this workshop.

5. REFERENCES
[1] The new european interoperability framework.

https://ec.europa.eu/isa2/eif_en.
Accessed: 2018-10-30.

[2] S. Bhagavan, K. Alsultan, and P. Rao. The
case for designing data-intensive cloud-based
healthcare applications. In SWH, 2018.

[3] V. Christophides, V. Efthymiou, and
K. Stefanidis. Entity Resolution in the Web of
Data. Synthesis Lectures on the Semantic
Web: Theory and Technology. Morgan &
Claypool Publishers, 2015.

[4] A. Doan, A. Y. Halevy, and Z. G. Ives.
Principles of Data Integration. Morgan
Kaufmann, 2012.

[5] S. Karagiorgou, D. Ntalaperas, G. Vafeiadis,
D. Alexandrou, K. Perakis, D. Baltas,
C. Amza, A. Wanka, H. Freitag, M. Blok,
M. Kampel, V. de Rond, T. Münzer, and
R. Planinc. An ontology-driven elderly people
home mobilization approach. In SWH, 2018.

[6] K. Karozos, I. Spartalis, A. Tsikiridis,
D. Trivela, and V. Vassalos. Integrating
clinical data from hospital databases. In
SWH, 2018.

[7] D. G. Katehakis, A. Kouroubali, and
I. Fundulaki. Towards the development of a
national ehealth interoperability framework to
address public health challenges in greece. In
SWH, 2018.

[8] H. Kondylakis, L. Koumakis, E. Kazantzaki,
M. Chatzimina, M. Psaraki, K. Marias, and
M. Tsiknakis. Patient empowerment through
personal medical recommendations. In
MEDINFO 2015, page 1117, 2015.

[9] V. C. Pezoulas, K. D. Kourou, T. P.
Exarchos, V. Andronikou, T. A. Varvarigou,
A. G. Tzioufas, S. de Vita, and D. I. Fotiadis.
A de-centralized framework for data sharing,
ontology matching and distributed analytics.
In SWH, 2018.

[10] M. Stratigi, H. Kondylakis, and K. Stefanidis.
The fairgrecs dataset: A dataset for
producing health-related recommendations. In
SWH, 2018.

[11] M. Stratigi, H. Kondylakis, and K. Stefanidis.
Fairgrecs: Fair group recommendations by
exploiting personal health information. In
DEXA, 2018.

44 SIGMOD Record, September 2019 (Vol. 48, No. 3)

