
Evaluation of an Implementation of Cross-Row
Constraints Using Materialized Views

José María Cavero Barca
Rey Juan Carlos University

C/ Tulipán s/n
28933 Móstoles (Spain)

josemaria.cavero@urjc.es

Belén Vela Sánchez
Rey Juan Carlos University

C/ Tulipán s/n
28933 Móstoles (Spain)
belen.vela@urjc.es

Paloma Cáceres García de
Marina

Rey Juan Carlos University
C/ Tulipán s/n

28933 Móstoles (Spain)
paloma.caceres@urjc.es

ABSTRACT
SQL assertions are a powerful means used to specify
cross-row constraints, and have been available in the
SQL standard since 1992. Unfortunately, assertions are
not supported in commercial database management
systems. Although triggers and application programs
can be efficiently used to constrain database content,
they are more complex to write and more error-prone.
The objective of this paper is to analyze whether the
use of materialized views could be a viable solution as
regards the automatic implementation of SQL
assertions. Materialized views are views that
physically store the result of a query and are
periodically updated. The method consists of defining
a materialized view which contains the number of
tuples that violate the condition expressed in the
assertion. The materialized view will contain a
CHECK constraint that guarantees that the number of
tuples that violate the assertion is equal to zero. The
proposed method is an easy and automatic means of
implementing the integrity constraints described using
assertions. We have carried out a series of tests, and
although triggers perform better than materialized
views in most situations, there are some in which
materialized views would be an efficient option. They
are easily automatable and less error prone than
triggers.

1. INTRODUCTION
In relational databases, an integrity constraint is
basically a Boolean expression that must be evaluated
as TRUE [1]. A database integrity constraint,
therefore, constrains the values that can appear in a
given database.

The standard language for relational databases
(Structured Query Language, SQL) provides several
means to deal with integrity constraints [2]: table
constraints, column constraints, domain constraints and
assertions. The first three include UNIQUE,
PRIMARY KEYS, FOREIGN KEYS and CHECKS,
and are supported in most commercial Relational
Database Management Systems (RDBMSs). The last
(assertions) are the most general form of integrity
constraint, and they are a simple and easy method by

which to enforce cross-row constraints (that is,
constraints across related rows, possibly in different
tables). In short, their structure includes a condition
that must be fulfilled. The RDBMS is responsible for
ensuring that the condition is satisfied in every state of
the database.

Unfortunately, although assertions have been part of
the SQL standard since 1992 [3,4], commercial
RDBMSs do not support assertions, and many cross-
row integrity constraints are, therefore, usually
implemented by means of triggers (which are used “to
detect some conditions that happen in a database and
then react to the database” [5]), or are included in the
applications used to access the database. Recently, a
few works related with constraints that affect
collectively several tables have appeared. For example,
in [6] the authors propose adding more functionality to
core SQL by means of package queries to support
constraints that the set of result rows to a query must
satisfy. However, if a RDBMS supported assertions, it
would be easy to control integrity constraints, thus
eliminating the need to use triggers or application
programs to control the integrity of the database or any
other mechanism. While assertions only specify the
condition that must be fulfilled to satisfy the constraint,
triggers and application programs must be
programmed by taking into account every possible
situation that could violate the constraint.

In this paper we show an automatic implementation of
assertions using materialized views. Materialized
views are database objects that contain the result of a
query at a specific time, are updated from time to time,
and are used to increase the speed of queries in very
large databases. As will be shown in the following
sections, the implementation of the method requires a
RDBMS that supports materialized views and that can
include CHECK constraints, along with an automatic
procedure that can be used to refresh the view. We
have chosen the Oracle database [7] since we have
prior expertise in using it, and because it supports all
the conditions that must be satisfied in order to carry
out the implementation and even some additional
features. This approach has some basic advantages that

SIGMOD Record, September 2019 (Vol. 48, No. 3) 23

could make it useful in certain environments, although
in many situations it performs worse than when using
triggers.

The organization of the remainder of this paper is as
follows. In Section 2, we summarize SQL assertions
and the example that will be used in the rest of the
paper. Section 3 focuses on materialized views and
how they can be used to implement assertions. Section
4 shows the results of some tests in which triggers are
compared with materialized views. Finally, Section 5
discusses the results and presents some conclusions.

2. SQL ASSERTIONS
In standard SQL, users can specify general constraints
via the CREATE ASSERTION statement. An SQL
assertion is “a CHECK constraint at the database level
that is allowed to contain queries” [8]. One basic
technique employed to write assertions is that of
specifying a query that selects the tuples that violate
the condition. By including this query in a NOT
EXISTS clause, the assertion will specify that the
query result must be empty. Any constraint that can be
expressed in terms of a query that selects the tuples
that violate the desired constraint could, therefore, be
expressed using an assertion in the following way:

CREATE ASSERTION Assertion_Name
CHECK (NOT EXISTS (Query that selects
the tuples that violate the
constraint));

Fig. 1. Relational database schema.

In the remainder of the paper, we use a simplified
version of an example regarding the storage of
information concerning employees and departments
from [9]. Every Employee belongs to one Department,
and every Department has an Employee who works as
a Manager. The schema is shown in Figure 1.

The following assertion constrains “that the salary of
an employee must not be greater than the salary of the
manager of the department that the employee works
for”:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS

(SELECT *
FROM EMPLOYEE E,

EMPLOYEE M,

DEPARTMENT D
WHERE E.Salary > M.Salary

AND E.Dno = D.Dnumber
AND D.Mgr_ssn = M.Ssn));

This simple assertion guarantees that none of the
employees violate the condition in any state of the
database. The RDBMS should reject insertions,
deletions and updates that make an employee’s salary
greater than that of the manager of his/her department.

None of the most frequently used commercial RDBMS
support assertions, although some attempts have been
made to build support for assertions, particularly in
Oracle. For example, back in 2016, this possibility was
considered in Oracle's Database Ideas [8].
Implementation alternatives were proposed, and
complexity and performance problems that could
appear were also discussed. It would, however, appear
that the idea was eventually discarded owing to its
complexity.

As mentioned previously, no commercial product
supports assertions. A previous assertion is, therefore
commonly implemented in the application programs,
or by using a set of triggers that should be executed in
the case of events that could provoke a violation of the
constraint. A very simple assertion like that previously
described could be implemented by, for example, using
four triggers that will be fired when an employee is
inserted or updated, when the manager of a department
is updated, etc. Sometimes, a lot of situations have to
be taken into account when programming triggers to
support constraints, that is, sometimes, as stated in [10]
“transforming integrity constraints into triggers for
verifying database consistency produces a serious and
complex problem”. Moreover, “manually checking
integrity constraint enforcement at the application level
is usually difficult, as the code base to be examined
could be large” [11].

Therefore, although triggers and application programs
can be efficiently used to constrain database content,
they are more complex to write and more error-prone.
In the following section, we show how to implement
constraints in a RDBMS by simulating assertions and
using materialized views.

3. IMPLEMENTING ASSERTIONS
USING MATERIALIZED VIEWS
An assertion checks that the condition that follows the
keyword CHECK holds true for every database state.
The NOT EXISTS (query) clause returns TRUE if the
query returns no tuples. This is equivalent to saying
that the result of applying the COUNT function to the
query must be zero. That is, the previous condition is

24 SIGMOD Record, September 2019 (Vol. 48, No. 3)

equivalent to saying that the following query returns
zero:

SELECT COUNT (*) AS Invalid_Tuples
FROM

(SELECT *
FROM EMPLOYEE E,

EMPLOYEE M,
DEPARTMENT D

WHERE E.Salary > M.Salary
AND E.Dno = D.Dnumber
AND D.Mgr_ssn = M.Ssn));

In a RDBMS, a view is a virtual table that represents
the result of a query. If a view contains the result of the
previous SELECT, a simply CHECK column
constraint (for example, CONSTRAINT CK_ASC
CHECK (Invalid_Tuples = 0)) should therefore be
sufficient to guarantee this constraint. Unfortunately,
traditional views are not allowed to include CHECK
constraints. Simple integrity constraints stated in a
view could imply very complex constraints in the base
tables (base tables are the tables from which the view
obtains the data). Nevertheless, CHECK constraints
can be included in a kind of views called materialized
views, as will be shown in the following paragraphs.

Some RDBMSs also implement “materialized views”.
Materialized views were first implemented in the
Oracle Database. A materialized view (also called a
snapshot) is a database object that contains the result of
a query at a specific time, and is periodically updated
on the basis of certain criteria. A materialized view
eventually enables efficient access to the cost of some
data that may potentially be out-of-date. In Oracle, the
content of a materialized view may be updated
manually or automatically: for example, every day by
using the clause START WITH SYSDATE NEXT
SYSDATE + 1, or when a commit occurs in the base
tables by using the ON COMMIT clause. Materialized
views are very useful in data warehousing
environments, in which frequent queries regarding
historical data can be expensive.

In Oracle, materialized views can include CHECK
constraints, as common tables (or can even be stored in
a previously created table). It would, therefore, be
possible to define CHECK constraints in order to
constrain the values stored in the materialized view.
This would, in turn, constrain the values of the base
tables used in the query defined in the materialized
view.

Oracle therefore satisfies all the conditions that must
be fulfilled in order to automatically implement
assertions using materialized views. The basic
procedure is as follows: a materialized view has to be
created for each assertion. The materialized view will

contain only one column, Invalid_Tuples, which will
contain the number of tuples that violate the constraint
specified in the assertion. Moreover, a CHECK column
constraint constrains that the value of the column must
be equal to zero.

The refresh method used will be ON COMMIT. This
guarantees that for every commit the materialized view
will be updated and, therefore, if the CHECK column
constraint is violated, the operation that provoked the
commit will be rejected. We therefore guarantee that
when a/some invalid tuple/s appear/s, the materialized
view is immediately updated. This obviously implies
that if a particular operation in a transaction violates
the constraint, the whole transaction will be rolled back
instead of committed

We, therefore, first create the materialized view with a
REFRESH ON COMMIT option:

CREATE MATERIALIZED VIEW
ASSERTION_SALARY_CONSTRAINT
REFRESH ON COMMIT
AS SELECT COUNT(*) AS Invalid_Tuples

FROM
(SELECT *
FROM EMPLOYEE E,

EMPLOYEE M,
DEPARTMENT D

WHERE E.Salary > M.Salary
AND E.Dno = D.Dnumber
AND D.Mgr_ssn = M.Ssn);

We then modify the materialized view using an
ALTER TABLE sentence, adding a CHECK constraint
that guarantees that the number of invalid tuples is
always zero:

ALTER TABLE
ASSERTION_SALARY_CONSTRAINT
 ADD CONSTRAINT CK_ASC

 CHECK (Invalid_Tuples = 0);

If we make some updates in the database that cause an
employee to have a salary that is greater than that of
the manager of the department that the employee
works for, we will obtain the following error message
when a commit occurs:

Error SQL: ORA-12008: error in
materialized view refresh path

ORA-02290: check constraint
(SYSTEM.CK_ASC) violated

The main disadvantage of the REFRESH ON
COMMIT option is that the time required to complete
the commit will be longer because of the extra

SIGMOD Record, September 2019 (Vol. 48, No. 3) 25

processing involved. Although this should not be an
issue in a data warehouse environment, because it is
unlikely that concurrent processes will be attempting to
update the same table [12], this could be a problem in a
transactional environment. Oracle has an option (the
FAST REFRESH option) that can be used to improve
the performance of the refreshing. The FAST
REFRESH option performs an incremental refresh and
requires the creation of a series of materialized view
logs that store the changes made to the base tables
since the last commit. The FAST REFRESH option
also has some restrictions, such as the type of
SELECT, aggregations, remote tables, etc [13].

4. RESULTS
We have carried out various experiments with the
example shown in Sections 2 and 3, in an Oracle
database, version 12c. Each execution of the example
consisted of creating the tables and inserting the test
data from scratch, in order to avoid malfunctions
owing to data kept in the cache. We have carried out
various tests applied to the previous example in order

to compare the use of a set of triggers with that of
materialized views (one normal and one using the
FAST REFRESH option). We have specifically
developed four triggers, because there are four
situations in which the constraint can be violated:

- The first three are fired when a new employee is
inserted, when the salary of an existing employee is
modified, or when an existing employee is assigned to
a different department. These triggers share virtually
the same code, and need only compare the salary of the
new or existing employee with the salary of the
manager of the department.

- The fourth trigger is fired when the manager of an
existing department is modified. In this case, the
trigger needs to check that the salary of every
employee in the department is not greater than the
salary of the new manager. Note that this trigger does
not need to be fired when a new department is inserted,
because in this case no employees are still assigned to
it.

Table 1. Inserting 100 employees (seconds)

MATERIALIZED	
VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS MATERIALIZED	

VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS

10,000	EMPLOYEES 0.0765 0.1190 0.0264 0.9057 2.2282 0.0253
50,000	EMPLOYEES 0.0886 0.1182 0.0247 2.2106 2.4138 0.0271
100,000	EMPLOYEES 0.1098 0.1229 0.0253 3.7018 2.8495 0.0278
200,000	EMPLOYEES 0.1314 0.1266 0.0261 6.7539 3.4744 0.0293
300,000	EMPLOYEES 0.1650 0.1357 0.0254 9.8549 4.1711 0.0277

ONE	FINAL	COMMIT ONE	COMMIT	AFTER	EACH	INSERT

Table 2. Updating 100 managers (seconds)

MATERIALIZED	
VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS MATERIALIZED	

VIEW

MATERIALIZED	
VIEW														

(FAST REFRESH)
TRIGGERS

10,000	EMPLOYEES 0.0564 0.1102 0.0701 0.9656 2.9299 0.0934
50,000	EMPLOYEES 0.0666 0.1118 0.3174 2.2747 3.2582 0.3738
100,000	EMPLOYEES 0.0836 0.1178 0.6468 3.8715 3.8114 0.7125
200,000	EMPLOYEES 0.1182 0.1256 1.3163 7.1413 4.4121 1.4020
300,000	EMPLOYEES 0.1445 0.1370 1.9195 10.4417 5.3521 2.0144

ONE	FINAL	COMMIT ONE	COMMIT	AFTER	EACH	UPDATE

Table 1 shows the average results obtained after repeating
the insertion of 100 new employees into the EMPLOYEE
table 10 times with 10,000, 50,000, 100,000, 200,000 and
300,000 tuples (in seconds). The first three columns show
the results when only one commit is executed after the
100 insertions. The last three columns show the results
when one commit is forced after each insertion.

The performance of the triggers is similar in both cases
(with or without commits), and the size of the table has no
significant effect, because the trigger only compares the
salary of the employee with the salary of the manager of
the department. Moreover, the triggers clearly perform
better than materialized views, especially in the case of
forcing a commit after each insert. In the case of

26 SIGMOD Record, September 2019 (Vol. 48, No. 3)

materialized views, the FAST REFRESH option only has
a clear effect when the tables affected have a lot of tuples
and a lot of commits have to be done. It seems reasonable
that in almost empty tables the fact of having the
additional task of managing a set of materialized view
logs does not have any effect, or even a negative effect.

Table 2 shows the average results obtained after repeating
the modification of 100 managers 10 times, again when
the EMPLOYEES table has 10,000, 50,000, 100,000,
200,000 and 300,000 tuples.

In this case, the performance of the materialized views is
similar to the previous one (Table 1), but the performance
of the triggers has worsened. In this case, the performance
of the triggers is affected by the size of the tables, because
this trigger has to compare the salary of the new manager
with the salary of all the employees in the department.

The main difference between both results (Table 1 and
Table 2) is the performance of the triggers. The triggers
that fire in the case of inserting a new employee (Table 1),
or modifying an existing employee, only have to compare
his/her salary with the salary of the manager of the
department to which he/she belongs. Nevertheless, the
trigger that fires in the case of the modification of the
manager of one department (Table 2) is more complex,
because it has to check that every employee in that
department has a salary which is not greater than the
salary of the new manager.

The following figures provide a graphic summary of the
aforementioned tests. They show the performance of the
triggers and materialized views after inserting 100
employees plus modifying the manager of a department
100 times (that is, the result of adding the results of Table
1 and Table 2). Figure 2 shows the results when a single
commit is executed after each 100 operations and Figure
3 shows the result of forcing one commit after each
operation. A linear trend line has also been added for each
situation.

Figure 2. Inserting 100 employees and updating 100

managers, one final commit.

Figure 3. Inserting 100 employees and updating 100

managers, one commit after each insert/update.
As can be seen, the trend line fits very well with the
results obtained. In Figure 2, when commits are executed
only after the operations, triggers are the worst option
when the Employees table has more than 20,000-25,000
tuples. With regard to the FAST REFRESH option, it
starts to provide its benefits when the Employees table
has about 200,000 tuples.

In Figure 3, when one commit is forced after each
operation, triggers are always the best option. Although
materialized views perform reasonably well in small
tables, their performance worsens in the case of large
tables, especially when the FAST REFRESH option is not
used. The FAST REFRESH option starts to provide its
benefits when the Employees table has about 75,000
tuples.

5. CONCLUSION
In an RDBMS, almost any constraint can be specified as
an SQL query. Virtually any constraint could, therefore,
be expressed using an assertion. Unfortunately, no
commercial RDBMS product supports assertions. This
signifies that cross-row constraints are usually
implemented using a set of complex triggers, or are
included in the applications. In some cases, this method is
more efficient, although it is error-prone owing to the
quantity of possible situations that must be taken into
account. In some situations, it might therefore be better to
automate this codification task and delegate it to the
RDBMS.

In this paper, we have proposed an automatic and easy
means of implementing assertions in RDBMSs which
support materialized views and allow an ON COMMIT
refresh of these views.

To the best of our knowledge, the only approach for the
automatic implementation of assertions is that of Oriol et
al. [14], who propose an incremental approach consisting
of implementing assertions that create several triggers in
order to capture the update requested by the user and
placing it in auxiliary tables in SQL Server. Their method
consists of generating a set of triggers and views that
check the assertions, all in a semi-automatic manner
(manual intervention is necessary because the user has to

SIGMOD Record, September 2019 (Vol. 48, No. 3) 27

manually invoke a procedure called safeCommit at the
end of each transaction). The results provided by the
authors in order to check the assertions range from 0.01 to
1.29 seconds, which are similar to those obtained in our
experiments in the case of using triggers, signifying that
they are reasonable. Unfortunately, the aforementioned
authors’ method does not take into account the possibility
of including aggregation functions in assertions, which is
a fundamental disadvantage, since it works only for very
simple assertions.

Our main objective was to analyze whether implementing
assertions by means of materialized views is a viable
method. We have shown that it is possible, and that it can
be easily automated. Although our proposal is specific to
Oracle, it would be applicable to any system that supports
CHECK constraints and REFRESH ON COMMIT on
materialized views. However, to the best of our
knowledge, no system other than Oracle currently
supports all of these aspects.

We have also carried out some preliminary tests in order
to evaluate the efficiency of our approach. These tests
showed that the method provides good results (even better
than triggers) when making a unique commit after a set of
inserts or updates. Nevertheless, it performs worse than
when using a set of triggers when a commit is forced after
each insertion or update. The following conclusions may
be obtained from the aforementioned experiments:

- Materialized views perform similarly, independently of
the cause that violates the constraint. It depends mainly on
the size of the table.

- The performance of the triggers depends mainly on the
particular constraint, and less on the size of the table.

- Using the FAST REFRESH option in materialized views
provides benefits only in large tables.

- In general, materialized views perform better than
triggers in the case of issuing a single commit for all the
modifications made, as the condition is evaluated only
once (when the commit is performed). In the case of the
triggers, which are part of the same transaction of the
firing statement, the condition is evaluated for each
operation. The performance of both triggers and
materialized views obviously also depends on the
complexity of the condition to be evaluated and the
operation that can fire the assertions.

Our method, therefore, fits better in environments with a
high number of complex constraints but a low number of
transactions. It is less appropriate for environments in
which a high number of simple transactions are present.
We are currently working on a detailed categorization of
when it is worth using this method, along with its
automatic implementation in a tool.

6. ACKNOWLEDGMENTS
This work has been partially supported by the
Access@City research project (TIN2016-78103-C2-1-R),
funded by the Spanish Ministry of Science, Innovation
and Universities.

7. REFERENCES
[1] C.J. Date, 2015. SQL and Relational Theory: How to Write

Accurate SQL Code. Third ed., O’Reilly.

[2] A. Behrend, R. Manthey and B. Pieper, 2001. An
Amateur’s Introduction to Integrity Constraints and
Integrity Checking in SQL, Datenbanksysteme in Büro,
Technik und Wissenschaft. A. Heuer, F. Leymann and D.
Priebe, eds, Informatik aktuell. Springer, Berlin,
Heidelberg, 405-423.

[3] ANSI Standard, 1992. The SQL 92 Standard.
http://savage.net.au/SQL/sql-92.bnf.htm

[4] J. Melton and A. R. Simon, 2002. SQL 1999:
Understanding Relational Language Components, Morgan
Kaufmann.

[5] Y.I. Chang and F.L. Chen, 1997. RBE: A Rule-by-example
Active Database System, Software: Practice and
Experience, 27(4):365-394.

[6] M. Brucato, A. Abouzied and A. Meliou, 2017. A Scalable
Execution Engine for Package Queries. SIGMOD Record,
46(1): 24-31.

[7] Oracle. http://www.oracle.com

[8] T. Koppelaars, 2016. SQL Assertions / Declarative multi-
row constraints”. https://community. oracle.com/ideas/
13028.

[9] R. Elmasri and S. Navathe,2010. Fundamentals of Database
Systems, Sixth ed., Addison-Wesley.

[10] H.T. Al-Jumaily, D. Cuadra and P. Martínez, 2008
“OCL2Trigger: Deriving active mechanisms for relational
databases using Model-Driven Architecture”, Journal of
Systems and Software, 81(12):2299-2314.

[11] H. Zhang, H.B.K. Tan, L. Zhang, X. Lin, X. Wang, C.
Zhang and H. Mei, 2011. Checking enforcement of
integrity constraints in database applications based on code
patterns”, Journal of Systems and Software, 84(12):2253-
2264.

[12] Oracle Database SQL Language Reference, 11g Release 2
(11.2).http://docs.oracle.com/cd/E11882_01/server.112/e41
084.pdf

[13] P. Lane and P. Potineni, 2014. Oracle Database Data
Warehousing Guide, 12c Release 1 (12.1). Oracle.

[14] X. Oriol, E. Teniente and G. Rull, 2016. TINTIN: a Tool
for Incremental INTegrity checking of Assertions in SQL
Server”, 19th International Conference on Extending
Database Technology (EDBT): 632-635.

28 SIGMOD Record, September 2019 (Vol. 48, No. 3)

