
Wilkinson’s Tests and SQL Packages

B. D. McCullough
Decision Sciences & MIS

Drexel University
Philadelphia, PA USA

bdmccullough@drexel.edu

Taha Mokfi
Independent Researcher

Connecticut, USA
mokfi.taha@gmail.com

Mahsa Almaeenjad
Independent Researcher

Connecticut, USA
almaee.mahsa@gmail.com

ABSTRACT
Wilkinson’s Tests are used to benchmark the accuracy of
some statistical functions in six SQL packages: Apache
Hive, Microsoft Access, Microsoft SQL Server, MySQL,
Oracle 11g SQL, and SAP Hana. Using the best choice
of data type, we find that different packages use differ-
ent rounding schemes, two packages use unreliable al-
gorithms to compute the sample variance, one package
returns the population standard deviation when the sam-
ple standard deviation is called, and one package has an
unstable algorithm for computing the correlation coef-
ficient. Using the wrong data type all but guarantees
inaccurate results.

1. INTRODUCTION
A database is an organized collection of data. A

database is managed by a database management
system (DBMS). The popularity of DBMSs increased
with the advent of relational database management
systems (RDBMS). Query operations on tables were
introduced through the Structured Query Language
(SQL). Even though the SQL syntax was standard-
ized, many vendors developed SQLs on their own.
Hence, some of the standard functionality might
not be the same and the underlying code might
also make a di↵erence. This is especially impor-
tant since many authors advocate the use of SQL
for data mining activities: Wei et al [12], Trueblood
and Lovett [20], Lino↵ [10], Alexander [1], Celko [4],
Fotache and Strimbel [7], Ordonez and Pitchaimalai
[16], and Pearson and Mackey [17]. None of these
authors warns the reader that SQL software might
be inaccurate for statistical purposes.

In particular, di↵erent SQL packages might give
di↵erent answers to the same problem. Indeed, the
situation is even more problematic: the same pack-
age can give di↵erent answers to the same prob-
lem! Recently Niranjan and Nandi [15] found errors
in various SQL packages in the implementation of
the calculation of sample variance; not all packages
could accurately compute the sample variance. We

extend their work with an eye toward elementary
statistical calculations using a collection of bench-
mark tests known as “Wilkinson’s Tests” based on
Wilkinson’s [21] Statistics Quiz that presents six
suites of tests: reading an ASCII file; real numbers;
missing data; regression; analysis of variance; and
operating on a database. Wilkinson’s Tests have
a long track record of being applied to statistical
packages by, among others, Wilkinson [22], Saw-
itzki [18], Bankhofer and Hilbert [3], McCullough
[13], Choi and Kiefer[6], Lomax [11], Keeling and
Pavur [8], and McCullough and Yalta [14].

While Statistics Quiz o↵ers six suites of tests, for
present purposes only the “Real Numbers,” “Miss-
ing Data,” and “Regression” suites are relevant. All
the applicable tests are applied to the most recent
versions of RDBMS packages. We have tested:

• Hive version 1.2.1

• MS Access 2016 v16.0 (64 bit)

• Microsoft SQL Server Management Studio v12.0
(henceforth, MS SQL)

• MySQL workbench v6.3.6 buit 511 CE (64 bit)

• Oracle Database Express edition 11g

• SAP Hana version 2.0 [Express Edition]

All programs were run on a laptop wtih Intel(R)
Core(TM) i5-5200U CPU 2.2 RAM: 8 GB System
with a 64 bit Windows 10 Operating System.

To date, we were unable to find any research as-
sessing the accuracy of statistical functionality in
SQL packages. This is important, because SQL is
frequently advocated for both statistical analysis of
data and data mining:

2. THE DATA
Table 1 below displays the data set “Nasty”. The

values for BIG are about the size of the population
of Egypt, while the values of HUGE are the same
order of magnitude as the American federal budget
deficit.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 17



LABEL$ X ZERO MISS BIG
ONE 1 0 . 99999991
TWO 2 0 . 99999992

THREE 3 0 . 99999993
FOUR 4 0 . 99999994
FIVE 5 0 . 99999995
SIX 6 0 . 99999996

SEVEN 7 0 . 99999997
EIGHT 8 0 . 99999998
NINE 9 0 . 99999999

LITTLE HUGE TINY ROUND
0.99999991 1.0E12 1.0E-12 0.5
0.99999992 2.0E12 2.0E-12 1.5
0.99999993 3.0E12 3.0E-12 2.5
0.99999994 4.0E12 4.0E-12 3.5
0.99999995 5.0E12 5.0E-12 4.5
0.99999996 6.0E12 6.0E-12 5.5
0.99999997 7.0E12 7.0E-12 6.5
0.99999998 8.0E12 8.0E-12 7.5
0.99999999 9.0E12 9.0E-12 8.5

Table 1: Data Set NASTY.DAT

Immediately we encountered di�culties reading
the data. For SQL and MySQL we tried to im-
port the data from a .csv file but both packages
read all the columns as character when they should
be numeric, so we manually changed the type of
all columns to be double precision. In contrast,
Oracle could import data from csv with numeric
types. In general, after reading in the data for each
package, we had to set the type for each column.
This turned out to be a critical step. One might
think that NUMERIC, BINARY FLOAT and BI-
NARY DOUBLE would give similar answers, but
such is not the case. For example, when computing
the standard deviation of the variables, to four dec-
imals all answers should be 2.7386 raised to some
power of ten, with the exceptions of ZERO which
should be 0 and MISS which should be missing. Yet,
Table 2 shows some results from Oracle for various
data types.

Observe that the first column, NUMERIC, gives
correct answers. In contrast, BINARY FLOAT and
BINARY DOUBLE correctly compute the sample
standard deviation for X, HUGE, TINY and ROUND,
but fail for other variables. Oracle was not alone in
exhibiting this type of behavior. Specifically why
Oracle and other packages erratically compute the
standard deviation for the BINARY FLOAT and
BINARY DOUBLE types is beyond the scope of
this paper, but the point is that specifying the best
data type is critical. Therefore we ran all the tests
for all the data types for all the packages and only

variable NUMERIC BINARY BINARY

FLOAT DOUBLE

X 2.7386 2.7386 2.7386
ZERO 0 0 0
MISS – – –
BIG 2.7386 0 2.4494
LITTLE 2.7386E-08 0 1.4901 E-08
HUGE 2.7386E12 2.7386E+12 2.7386E12
TINY 2.7386E-12 2.7386E-12 2.7386E-12
ROUND 2.7386 2.7386 2.7386

Table 2: Oracle Std. Dev. Results for Vari-

ous Data Types

used the best choice.
The failures of MS SQL are presented in Table 3.

None of the types provides correct answers for all
the variables. See that the standard deviation of
LITTLE can take on three di↵erent values, none of
which is correct. REAL gives the same answers as
SINGLE, and so is omitted from the table.

variable NUMERIC DECIMAL SINGLE DOUBLE

X 2.7386 2.7386 2.7386 2.7386

ZERO 0 0 0 0

MISS NULL NULL NULL NULL

BIG 2.4495 2.4495 4.2426 2.4495

LITTLE 0 2.9802E-8 3.6500E-8 2.9802E-8

HUGE 2.7386E12 2.7386E12 2.7386E12 2.7386E12

TINY 0 2.7386E-12 2.7386E-12 2.7386E-12

ROUND 2.7386 2.7386 2.7386 2.7386

Table 3: MS SQL Std. Dev. Results for

Various Data Types

MS SQL server supports di↵erent numeric data
types. The type DECIMAL has fixed precision and
scale and takes two arguments: precision (Maxi-
mum total number of decimal digits which is be-
tween 1 to 38) and scale (The number of decimal
digits that will be stored to the right of the decimal
point which is between 0 and precision). FLOAT
and DOUBLE types are approximate and have only
one argument n (precision and storage size which
can be between 1 and 53). A precision from 0 to
23 results in a 4-byte single-precision FLOAT col-
umn. A precision from 24 to 53 results in an 8-
byte double-precision DOUBLE column. All the
other types such as: INT, BIGINT, SMALLINT,
and TINYINT are exact-number data types that
use integer data depending on the data points. For
MS SQL, DECIMAL is specified as DECIMAL(38,12),
SINGLE as FLOAT(24), and DOUBLE as FLOAT(53).
In MySQL, NUMERIC is implemented as DECI-
MAL, so the following remarks about DECIMAL

18 SIGMOD Record, September 2019 (Vol. 48, No. 3)



apply equally to NUMERIC.
For the six packages, the options and our best

choices for data type are given in Table 4 (we ex-
clude integer types), where an asterisk denotes that
the data type could not correctly compute the stan-
dard deviation. The prevalence of asterisks shows
that whether a package can correctly compute the
standard deviation depends on the data type spec-
ified.

most
package variable types accurate
Hive FLOAT*, DOUBLE, DECIMAL DOUBLE

Access SINGLE*, DOUBLE* DOUBLE

MS SQL NUMERIC*, DECIMAL*, FLOAT(53)

SINGLE*, DOUBLE*, REAL*

MySQL NUMERIC*, DECIMAL, DOUBLE

FLOAT*, DOUBLE

Oracle NUMERIC, BINARY FLOAT*, NUMERIC

BINARY DOUBLE*

Hana FLOAT, REAL*, DOUBLE, DOUBLE or

DECIMAL FLOAT

Table 4: Options and best data type for each

package

3. THE TESTS

3.1 Real Numbers

3.1.1 Test II-A: Print ROUND to one digit.
The program should follow IEEE-754, which spec-

ifies “round to even”, so the correct answer is 0, 2, 2,
4, 4, 6, 6, 8, 8. For all packages, we used the com-
mand: Round(X,1) and results are presented in Ta-
ble 5.

package result package result
Apache Hive fail MySQL pass
MS Access fail Oracle 11g fail
MS SQL fail SAP Hana fail

Table 5: Results of Test II-A: print ROUND

Only MySQL passes this test. All other pack-
ages return 1, 2, 3, 4, 5, 6, 7, 8, 9 instead of the cor-
rect answer, which indicates that they are not us-
ing IEEE-754 rounding. We see again that di↵erent
SQL packages will return di↵erent answers to the
same problem.

For an example of why correct rounding is impor-
tant, consider this example from an SQL discussion
board [2]:

I am currently working on POC for mi-
grating Oracle to SQL Server 2008 R2.
Stuck with an issue related to rounding
o↵ calculations.

There is this ”rate” value we are calcu-
lating using POWER functions (it has
nested POWER functions actually). I
am getting mismatches because the val-
ues are not correctly round o↵ during cal-
culation. There are around 258 rows where
the values are 0.01 less than the required
value (ex. I get the rate value as 6.31
where actually it should be 6.32).

In order to correct this issue, I changed
the data types of the fields in the cal-
culation from FLOAT to NUMERIC to
correct out the precision. This is able to
resolve the issue with the above 258 rows,
but now I have another 61 rows where
the value is 0.01 more than the required
value (I get the rate value as 7.42 where
actually it should be 7.41).

All the fields in the Oracle calculation is
using NUMBER datatype (without any
precision), so cant really figure out what
equivalent data type should be used in
SQL Server. Currently I am using FLOAT
datatype.

Please advise if you have any pointers.

With di↵erent SQL packages using di↵erent round-
ing schemes, migrations are needlessly complicated
and can produce unintended errors.

3.1.2 Test II-B: Plot HUGE against TINY and
plot BIG against LITTLE in a scatter plot.

Figure 1: Test II-B Results for MS Access.

For each case the answer is a 45-degree straight
line. MS ACCESS is the only package o↵ering plot-
ting capability. As Figure 1 shows, MS ACCESS
passes this test; the other two graphs are correct
and are omitted to conserve space.

SIGMOD Record, September 2019 (Vol. 48, No. 3) 19



MS ACCESS
HUGE v. TINY pass
BIG v. LITTLE pass

X v. ZERO pass

Table 6: Results of Test II-B

3.1.3 Test II-C: Calculate the mean and stan-
dard deviation of each variable.

The mean should be equal to the fifth value of
each variable. Each package passes this test.

Standard deviations should be “undefined” or miss-
ing for MISS, zero for ZERO, and 2.738612788 (times
10 to some power) for all other variables (in the ta-
ble the powers of ten are omitted). The relevant
command for each package is: STDDEV SAMP.
The standard deviation results by di↵erent pack-
ages are listed in Table 7.

Hive ACCESS MS SQL MySQL Oracle Hana

X 2.582 p p p p p
ZERO p p p p p p
MISS p p p p p p
BIG p 2.309 2.450 p p p

LITTLE p 2.810 2.980 p p p
HUGE p p p p p p
TINY p p p p p p

ROUND p p p p p p

Table 7: Results of Test II-C – calculate

the standard deviation (correct answers in-

dicated by ‘p’ for ’pass’)

Accurately computing the sample standard devi-
ation is a solved problem, and there is no excuse
for any software developer to use a bad algorithm.
For a discussion of the various algorithms, see Ling
[9] or Chan, Golub and Leveque [5]. Of course, if
one uses the command STDDEV, one gets di↵er-
ent answers depending on the package. STDDEV
is supposed to be an alias for STDDEV SAMP, but
Hive returns 2.5820: in Hive, STDDEV is an alias
for STDDEV POP, so the documentation for STD-
DEV is wrong. Observe that MS SQL and MS Ac-
cess both are using bad algorithms for computing
the sample standard deviation, but apparently dif-
ferent bad algorithms! The same software company
appears to be using two di↵erent algorithms, and
neither of them is correct.

Consider performing a one-sample test of means
on 29 observations. Let H0 : µ = 11 against H1 :
µ 6= 11. Suppose the correct standard deviation is
2.7386; then the calculated t-statistic is 1.966 and
the null hypothesis is just barely rejected. If the
standard deviation were incorrectly calculated as

X ZERO BIG LITTLE HUGE TINY ROUND

X 1 NA 1 1 1 1 1
ZERO NA NA NA NA NA NA NA

BIG 1 NA 1 1 1 1 1
LITTLE 1 NA 1 1 1 1 1
HUGE 1 NA 1 1 1 1 1
TINY 1 NA 1 1 1 1 1

ROUND 1 NA 1 1 1 1 1

Table 8: Correct answer for II-D, Correlation

Matrix

2.980 then the calculated t-statistic would be 1.81
and the null hypothesis would not be rejected. If
the standard deviation were incorrectly calculated
as 2.309 and many would incorrectly conclude that
the null hypothesis had been even more strongly
rejected.

3.1.4 Test II-D: Compute the correlation between
all the variables.

The correlation coe�cient is calculated as

⇢wz =
cov(w, z)

�w�z
(1)

where cov(w, z) is the covariance between w and z

and and �w is the standard deviation of w. Since
the standard deviation of ZERO is zero, Equation 1
has zero in the denominator and so its correlation
with any other variable is undefined. Only Oracle
and Hive o↵er a correlation function. The correct
answer is given in the top of Table 8.

For the data type FLOAT, in addition to some-
times giving the correct answer of 1.0, running HIVE
with FLOAT also produces answers 0.614, 0.836
and 0.866 instead of 1.0 for some pairs of variables.
For the preferred data type DOUBLE, correlating
ROUND with X or ROUND produces NaN instead
of the correct answer of 1.0.

Oracle, using the preferred data type NUMERIC,
correctly calculates the correlation matrix. How-
ever, when using either BINARY FLOAT or BI-
NARY DOUBLE it gives wildly incorrect answers.

The user-guides for these packages should warn
that accuracy depends on choosing the correct data
type, as the packages will not warn the user if a bad
data type has been chosen.

3.1.5 Test II-E: Plot X against X.
In this test we try to plot the same variable with

itself. The answer should be a graph with a 45
degree line.

Only MS Access lets us make a plot but it lets us
select a variable only once and we cannot select it
again. Therefore, we are unable to make this graph.

20 SIGMOD Record, September 2019 (Vol. 48, No. 3)



3.1.6 Test II-F: Regress BIG on X.
If the constant intercept is 99999990, then we can

expect the slope to be 1. Only Oracle 11g o↵ers
regression, and it gives the correct answer. Oracle
passes.

3.2 Missing Data
Missing values have been encountered commonly

in all the areas. It could be due to bad data en-
try or simply no reading at all at that respective
time. SQL queries do handle NULL or missing val-
ues quite e�ciently and it might simply exclude the
readings or include them in the results of queries.
We however define handling missing values and sim-
ply excluding them in a di↵erent way.

3.2.1 Test III-A: MISSING in a conditional state-
ment.

Implement the below pseudo-code in the package:

IF MISS = 3

THEN TEST = 1

ELSE TEST = 2

Ideally, the correct result should be equal to 2, since
the MISS values do not have any value and defi-
nitely do not equal to 3. We use a select statement
with the below syntax:

package command
Hive if(Miss = 3,1,2)

SQL/MySQL Iif(Miss = 3,1,2)

Oracle CASE WHEN Miss = 3 THEN 1

ELSE 2 END
MS Access IIf(Miss=3,1,2)

SAP Hana CASE WHEN Miss = 3 THEN 1

ELSE 2 END

All packages pass this test. In cases, where an
IF..ELSE.. statement could not be used, we could
use a similar functional statement. For example, we
have used NVL2 function to test the IF.ELSE loop
since it o↵ers a similar functionality. All packages
pass.

3.2.2 Test III-B: Is MISSING summable?
We apply the following test in this section

IF MISS = <missing> THEN MISS = MISS + 1

Ideally, the correct answer is missing, since we
cannot add to any NULL value. The specific com-
mand used for each package is given in Table 9.

MS Access does not return a missing value indi-
cator, but simply an empty table. This is an error.

package command
SQL/MySQL isnull(x, x+1)
Oracle NVL(x, x+1)
MS Access IIf(IsNull([miss]),[MISS]+1)
Hive if(isnull(Miss), Miss +1, Miss)
Hana ifnull(MISS,MISS+1)

Table 9: Commands for IF MISS... test

Hive MS Access MS SQL MySQL Oracle Hana
pass fail pass pass pass pass

Table 10: Results of Test III-B

3.3 Regression
Another very common computation is the compu-

tation of regression models. These models are useful
in many ways and form the basis of data analysis.
We can calculate the regression models in di↵er-
ent ways by using the formula. Only Oracle o↵ers
functions to calculate the regression values and co-
e�cients. It does not give us all the information
about the regression model, but it gives us specifi-
cally what we might query. For example, the slope
and intercept are displayed separately.

3.3.1 Test IV-A
In this test, we regress X on a constant term and

powers of X. However, none of the packages o↵ers
multiple regression, so we cannot apply this test.

3.3.2 Test IV-B: Regress X with a constant and
X.

The intercept should be zero and the slope should
be one. Oracle passes this test.

3.3.3 Test IV-C: Regress X on a constant, BIG
and LITTLE.

This is a multiple regression, and no package can
perform this test.

3.3.4 Test IV-D: Regress ZERO vs a constant
and X.

Because ZERO has no variance, the program should
either fail to compute coe�cients and report that
ZERO has no variance, or it should return zero for
both the intercept and the slope. Oracle returns
zero for the intercept and the slope. Oracle passes
this test.

4. CONCLUSIONS
Wilkinson’s test are designed to uncover flaws

in statistical function of software packages. In our
analysis of six SQL packages, we have identified sev-
eral flaws:

SIGMOD Record, September 2019 (Vol. 48, No. 3) 21



1. An incorrect choice of data type all but guar-
antees inaccurate statistical results; a correct
choice does not guarantee correct results.

2. Di↵erent packages use di↵erent rounding schemes.
Only MySQL adheres to IEEE-754 rounding;
the others do not.

3. MS Access and MS SQL use unreliable algo-
rithms to compute the sample variance.

4. Hive returns the population standard devia-
tion instead of the sample standard deviation
using STDDEV.

5. The Oracle correlation function is unstable. It
gives a correct answer for the preferred data
type and incorrect answers for other data types.

6. MS Access fails to correctly handle a missing
value case.

Developers should fix these errors qiuckly and,
until then, users should avoid them. Further, “ac-
curacy of algorithms” should be incorporated into
the SQL standards [19].

5. REFERENCES
[1] Michael Alexander. Microsoft Access 2007

Data Analysis. Wiley, 2007.
[2] anonymous. https://social.msdn.micro

soft.com/forums/sqlserver/en-US/9daa1b

60-d11c-421b-8b87-e38a299e372c/roundi

ng-off-issue-during-oracle-to-sql-ser

ver-migration, 2013. Accessed: 2019-07-15.
[3] U. Bankhofer and A. Hilbert. Statistical

software packages for windows: A market
survey. Statistical Papers, 38:393–407, 1997.

[4] Joe Celko. SQL for Smarties: Advanced SQL
Programming, 5e. Morgan Kaufman, 2015.

[5] T. F. Chan, Golub G. H. and R. J. Leveque.
Algorithms for computing the sample
variance: Analysis and recommendations.
American Statistician, 37:242–247, 1983.

[6] Hwan-sik Choi and Nicholas Kiefer. Software
evaluation: Easyreg international.
International Journal of Forecasting,
21(3):609–616, 2005.

[7] Marin Fotache and Catalin Strimbel. Sql and
data analysis. some implications for data
analysis and higher education. Procedia
Economics and Finance, 20:243–251, 2015.

[8] Kellie Keeling and Robert Pavur. Statistical
accuracy of spreadsheet software. The
American Statistician, 65(4):265–273, 2011.

[9] R. F. Ling. Comparison of several algorithms
for computing sample means and variances.
Journal of the American Statistical
Association, 69:859866, 1974.

[10] Gordon S. Lino↵. Data analysis using SQL
and Excel. Wiley, 2015.

[11] Richard G. Lomax. Statistical accuracy of
ipad applications: An initial examination. The
American Statistician, 67(2):105–108, 2009.

[12] Wei Lu, Jiajia HouYing, YanMeihui, Zhang
Xiaoyong, and Thomas Moscibroda. Msql:
e�cient similarity search in metric spaces
using sql. The VLDB Journal, 26(3):829–854,
2017.

[13] B. D. McCullough. Wilkinson’s tests and
econometric software. Journal of Economic
and Social Measurement, 29(1-3):261–270,
2004.

[14] B. D. McCullough and A. Talha Yalta.
Spreadsheets in the cloud – not ready yet.
Journal of Statistical Software, 52(7):1–14,
2013.

[15] Kamat Niranjan and Arnab Nandi. A closer
look at variance implementations in modern
database systems. SIGMOD Record,
45(4):28–33, 2016.

[16] C. Ordonez and S. K. Pitchaimalai. Bayesian
classifiers programmed in sql. IEEE
Transactions on Knowledge and Data
Engineering, 22(1):139–144, 2010.

[17] William R. Pearson and Aaron J. Mackey.
Using sql databases for sequence similarity
searching and analysis. Current Protocols in
Bioinformatics, 59(1):1–22, 2017.

[18] G. Sawitzki. Report on the numerical
reliability of data analysis systems.
Computational Statistics and Data Analysis,
18(2):289–301, 1994.

[19] Charles Severance. Elizabeth Fong: Creating
the SQL Database Standards. Computer,
47(8):7–8, 2014.

[20] Robert P. Trueblood and Jr. John N. Lovett.
Data mining and statistical analysis using
SQL. Apress, 2001.

[21] Leland Wilkinson. Statistics Quiz. Systat Inc.,
1985. http://web.stanford.edu/~clint/
bench/wilk.txt.

[22] Leland Wilkinson. Practical guidelines for
testing statistical software. In P. Dirschedl
and R. Ostermann, editors, Computational
Statistics. Physica-Verlag, Heidelberg, 1994.

22 SIGMOD Record, September 2019 (Vol. 48, No. 3)


