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ABSTRACT

This is a report on a course taught at OTH Regensburg
in the summer term of 2018. The students in this course
built their own SQL-on-Hadoop engine as a term project
in just 8 weeks. miniHive is written in Python and com-
piles SQL queries into MapReduce workflows. These
are then executed on Hadoop. miniHive performs gene-
ric query optimizations (selection and projection push-
down, or cost-based join reordering), as well as Map-
Reduce-specific optimizations.

The course was taught in English, using a flipped class-
room model. The course material was mainly compiled
from third-party teaching videos. This report describes
the course setup, the miniHive milestones, and gives a
short review of the most successful student projects.

1. MOTIVATION

When taking a big data course at an applied uni-
versity of sciences such as OTH Regensburg, stu-
dents expect a hands-on, coding-intensive experi-
ence. Since the majority of our students pursues
a career in industry, they expect to get in touch
with technology that will be an immediate asset for
their CVs. Currently, this seem to be the Apache
projects HDFS, Hadoop, Hive, and Spark.

Yet to the first-time user, interacting with HDFS
may just feel like a simple file system. “Teaching
HiveQL” is tricky, too: For the student fluent in
SQL, writing first HiveQL queries seems unspectac-
ular. Of course, these first impressions are treacher-
ous, as there are language features in HiveQL that
require a deeper understanding of the MapReduce
data flow (e.g., SORT-BY versus ORDER-BY).

In designing her Master-level course titled “Mod-
ern Database Concepts”, the author of this report
wanted to teach the ideas behind engines like Hive,
as well as the design decisions regarding query lan-
guage constructs.

The students were therefore asked to build mini-
Hive, an SQL-on-Hadoop engine for compiling SQL
queries into MapReduce workflows. miniHive was
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designed according to the original presentation of
Hive as a VLDB demo [14] in 2009: This version of
Hive supported no updates, used an internal algebra
to represent query plans, and could perform com-
mon logical optimizations (in particular, selection
and projection pushdown). Back then, all physical
operators were implemented as MapReduce jobs.
As a MapReduce-specific optimization, Hive merges
jobs using a technique called chain folding [11].
Among the 60 students taking the final exam,
25 students built a working SQL-on-Hadoop engine,
which compiles SQL queries, performs generic log-
ical optimizations, and executes them on Apache
Hadoop. This is impressive insofar as the term
project was optional, and stretched over just 8 weeks.
Moreover, 11 submissions of miniHive also imple-
mented chain folding among further optimizations.

Structure. In the following, we describe the course
and its term project. Section 2 outlines the develop-
ment of miniHive in four milestones, as well as how
the students then perceived working with Apache
Hive and Apache Spark. Section 3 describes the
testbed and evaluation. Section 4 concludes.

2. THE FOUR MILESTONES

In “flipping” the course, the instructor relied on
students to prepare the required theory on their
own. Each week, they were assigned videos or book
chapters. While studying the material, they an-
swered a set of questions and submitted their an-
swers online, prior to class. Since the students were
allowed to take these notes into the final exam as
reference material, they were motivated to diligently
compile their answers.

During the weekly classroom sessions, the instruc-
tor and the students revised the prepared notes to-
gether, and worked on paper-based exercises to prac-
tice and apply the material.

During the lab sessions and in the students’ own
time, miniHive was built with Python 3.6 in four
successive milestones. The deadlines for submitting
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the milestones were spaced two weeks apart, which
admittedly, is a sporty pace. Milestone specifica-
tions came with unit tests that submissions had to
pass. Successful submissions were awarded bonus
points that counted towards the exam.'

We now describe the scope of each milestone,
the required material for self-study, and the coding
challenges, in turn. We then report on our obser-
vations how students interacted with Apache Hive
and Spark, having already built miniHive.

2.1 Compiling SQL to Relational Algebra

Scope: In the first milestone, the students im-
plemented the canonical translation of conjunctive
SQL queries into relational algebra. In particular,
we support the fragment of queries of the form

SELECT DISTINCT ( list of attributes to select )
FROM  ( list of relation names )
[ WHERE ( condition ) |

where the condition is a conjunction of atomic
equality conditions. Different from Hive, miniHive
does not support nested relations. The translation
into an equivalent relational algebra expression was
intended as a warm-up exercise for students new
to Python. For instance, the following query over
Jennifer Widom’s pizza scenario [7] produces the
ages of all persons who eat mushroom pizza:

SELECT DISTINCT P.age
FROM Person P, Eats E
WHERE P.name = E.name AND E.pizza = 'mushroom'

The compilation of this query into relational al-
gebra is by the book. Below, we make use of the
straightforward syntax of the radb interpreter for
relational algebra [15]. This interactive interpreter
was written by Jun Yang from Duke University and
is a great teaching tool.

\project_{P.age}
\select_{P.name = E.name and E.pizza = 'mushroom'}
(\rename_{P:*}(Person) \cross \rename_{E:*}(Eats))

Several MapReduce-specific algebras have been
proposed that provide powerful operators, e.g. [13].
However, this author chose to settle with traditional
relational algebra, which is taught as part of the un-
dergraduate database course at OTH Regensburg.

Independent Study: In advance, students taught
themselves Python with a free course offered on
the Udacity MOOC platform [10]. Moreover, they

!Examination regulations at OTH Regensburg for this
course require that the final grade is determined by a
written exam. They further prohibit that the final grade
is earned in part by an assignment. Thus, bonus points
are our incentive for students to write code.
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watched Jennifer Widom’s video lectures for a re-
fresher on relational algebra, offered on Stanford’s
MOOC platform Lagunita [7]. This teaching unit
comes with interactive exercises that use the very
same radb syntax as above.

The video lectures were to be completed over the
first four weeks of the semester. The author took
great care in choosing appealing material. Indeed,
in the course evaluation, several students stated
that they very much enjoyed taking these altogether
excellent online courses.

Coding: The students then set out to compile SQL.
As a query parser, they used the Python module
sqlparse [1]. With over 50 contributors and over
1,600 stars on GitHub, this is a popular SQL parser.
As datastructures to represent relational algebra
queries, the students simply used the Python classes
declared within the radb source code [15].

2.2 Selection Pushdown

Scope: In the second milestone, the students per-
formed selection pushing on the relational algebra
queries, and translated cross products into joins,
where possible. For this milestone, a data dictio-
nary was provided. Selection pushing is also a key
feature in first public release of Hive, as described
in [14], whereas projection pushing, also included
in the first release of Hive, was left as an optional
feature for the final milestone.

In the example from before, this yields the fol-
lowing equivalent query in radb syntax:

\project_{P.age}
(\rename_{P:*}(Person) \join_{P.name = E.name}
(\select_{E.pizza = 'mushroom'}
\rename_{E:*} (Eats)))

Independent Study: For the theory on logical
query optimization (selection and projection push-
down, as well as cost-based join reordering), the
students followed parts of Jens Dittrich’s flipped
database course, which comes complete with in-
class quizzes and exercises [3]. This material covers
more than what is necessary for milestone 3, but is
also a basis for the final milestone, where students
could choose which optimizations to implement.
Coding: Coding for this milestone mainly involved
recursive rewriting of the relational algebra trees.
This gave the students the opportunity to familiar-
ize themselves with the radb module.

2.3 A First Physical Query Plan

Scope: In the third milestone, logical operators
were mapped to physical, MapReduce-based oper-
ators. The output is a tree-shaped workflow of
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OUTPUT

Reduce: [RTp,.]
Map:  [M7tp, ]

1

Reduce: [RNP.name=E,name]
Map:  [Mp3me-e.name)

'\

| Map: [O¢ izza=mushroom'] |

INPUT
Person

Figure 1: Naive physical query plan: Each
node implements a single operator.

OUTPUT

Reduce: [R7Tp ]
Map:  [M7Tp, ]

Reduce: [RXp1ame-g name]
Map: if INPUT is from Person:

[pP | M NF’Aname:E,name]
else:

[pE | oE.pizza:'mushroom' | Mpa P.name:E.name]

INPUT INPUT
Person Eats

Figure 2: Plan after chain folding.

MapReduce jobs. Figure 1 shows the physical query
plan for our running example. The data flow is
from bottom to top. Renaming and selection can
be realized as Map-only jobs. In the syntax used
in this figure, this is denoted as “Map: [pg]” and
“Map: [UE.pizza:'mushroom']” respectively, where we
first specify the type of the function (either Map
or Reduce), and then state the relational algebra
operator implemented in brackets.

In contrast, join and relational projection (due
to duplicate elimination) require a full MapReduce
job. Let us consider the final MapReduce job imple-
menting the projection. The implementation of the
Map-job, which we denote as “Map: [M7p age]”,
will emit key-value pairs where the key is the per-
son’s age. The Reduce-job “Reduce: [R7p age]”
simply outputs the unique key from its input.?

The resulting workflow can be immediately exe-

2We chose this involved syntax in preparation for chain
folding, as shown in Figure 2, where code from different
jobs is merged into stages. This allows us to track which
parts of the code go where.
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cuted on Hadoop, to naively evaluate SQL queries.
Like in Hive, the intermediary results of the physi-
cal operators in the query plan are stored in HDF'S.

Independent Study: The students familiarized
themselves with MapReduce processing by taking
an online course offered by Cloudera [9]. This course
also uses Python and contains a set of introductory
MapReduce coding exercises. MapReduce jobs can
be run on Hadoop on a Linux-based virtual ma-
chine, the Cloudera Quickstart VM3.

Implementing relational algebra operators with
MapReduce is comprehensively described in the book
“Mining Massive Datasets” [5].

Coding: The students were started off with skele-
ton code that translates radb-encoded relational al-
gebra expressions to a luigi-managed workflow of
MapReduce jobs. luigi [8] is a Python package
for building pipelines of long-running batch pro-
cesses. luigi supports several execution platforms,
and among them, Hadoop. The students were al-
ready provided with this code. Thus, they could
focus on implementing the code stubs for realizing
selection, projection, renaming, and join.

Figure 3 shows the skeleton code for a luigi-task
that implements the relational selection-operator as
a Map-only job on Hadoop. All that remains for the
students to do is to flesh out lines 25 through 29,
having ready access to the selection predicate (see
line 22) represented with radb datastructures. The
mapper-function is invoked once for each line of in-
put, which is then parsed into a key-value pair.

The input is formatted as shown in Figure 4,
consisting of the relation name as the key and the
JSON-encoded tuple as its value. Like in the origi-
nal Hive, all intermediate results are stored in HDFS
before they are processed by the next operator.

The code skeleton supports three mode of operan-
di: (1) Reading and writing to main memory only,
and merely mocking a cluster-based execution en-
vironment. This makes unit testing easy, hermetic,
and fast. (2) Reading and writing to local disk,
rather than HDFS, and again mocking a cluster-
based environment. This is the development mode,
with quick turnaround times and the option to in-
spect all intermediate data in local files. Moreover,
the development mode does not require an HDF'S or
Hadoop installation. Finally, (3) reading and writ-
ing to HDFS, and running on a Hadoop cluster in
the Cloudera Quickstart VM. This was the intended
production mode.

Switching between these modes with a runtime
flag, the students experienced the pain of debug-

3 Available at https://www.cloudera.com/downloads/
quickstart_vms/5-13.html.
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# SelectTask implements selection as a Map-only job.
class SelectTask(luigi.contrib.hadoop.JobTask):

# The radb-encoded relational algebra expression

# that this operator evaluates, serialized as a string
# of the form "\select_{cond}(R)".

gs = luigi.StringParameter()

# Omitting some luigi/workflow-specific code.

def mapper(self, line):
# Parses the input line into a key-value pair,
# where the key is the relation name and the
# tab-separated value is a JSON-encoded tuple.
relation, tuple = line.split('\t')
json_tuple = json.loads(tuple)

# Deserializes the query string into an radb expression
# to gain access to the selection condition.

query = radb.parse.one_statement_from_string(self.qgs)
condition = query.cond

'*' .... fill in your code below ....''"'

yield("foo", "bar") # To be replaced with your code.

''' .... fill in your code above .... '''

Figure 3: The luigi skeleton code for the
selection operator from relational algebra.

"female"}
"male"}

Person {"name":
Person {"name":

"Amy", "age": 16, "gender":
"Ben", "age": 21, "gender":

Eats {"name": "Amy", "pizza": "pepperoni'"}
Eats {"name": "Amy", "pizza": "mushroom"}
Eats {"name": "Ben", "pizza": "pepperoni"}
Eats {"name": "Ben", "pizza": "cheese"}

Figure 4: The pizza data instance [7] encoded
as key-value pairs. The key is the relation
name, the value is a JSON-encoded tuple.

ging in a distributed environment: Just because the
unit tests passed and everything worked fine in de-
velopment mode is no guarantee that their imple-
mentation succeeds in the production environment
(often due to careless use of global variables, or pro-
prietary packages not available in the production
environment). Digging through the logs and trou-
bleshooting Hadoop turned out to be cumbersome,
which in itself is a good learning experience.

2.4 Beyond Selection Pushdown

Scope: With the third milestone, the students had
already built a working SQL-on-Hadoop engine. Yet
since each MapReduce stage only evaluates a single
relational algebra operator, and reads its input from
HDFS, the runtimes are unnecessarily high.
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Thus, in the fourth milestone, the students were
asked to optimize their query engine. While the ear-
lier milestones came with tight specifications, the
students could now decide for themselves which op-
timizations to implement. As an incentive, the top
ranking solutions would receive extra points.

It was stated as a requirement that for a pre-
defined set of queries over TPC-H data, the stu-
dents had to beat their milestone 3 implementation
in 75% of the cases. These queries had been engi-
neered such that the students would see the benefits
of the optimization techniques discussed in class.
The students were further provided with the car-
dinality estimates from the official TPC-H bench-
mark. For instance, execution of the following query

SELECT DISTINCT CUSTOMER.C_CUSTKEY

FROM CUSTOMER, NATION, REGION

WHERE CUSTOMER.C_NATIONKEY = NATION.N_NATIONKEY
AND NATION.N_REGIONKEY = REGION.R_REGIONKEY

benefits from projection pushdown (provided the
pushed projections do not remove duplicates), in
combination with chain folding. Moreover, reorder-
ing the joins, so that the relations with smaller car-
dinalities (REGION and NATION have only 5 and 25
tuples respectively, whereas the CUSTOMER relation
contains a multiple of 150K tuples, depending on
the scale factor chosen when generating the data)
are joined first. This effectively reduces the costs
for storing intermediary results in HDFS.

As a practical means for capturing the effects of
optimization, we measured the amount of interme-
diate data stored in HDFS. Of course, it would have
been great to actually benchmark the students’ so-
lutions on a Hadoop cluster. Yet since the course
was taught without any supporting staff, the in-
structor had to find a way to limit the adminis-
trative overhead for validation: In the development
mode of miniHive, where all data is stored as local
files on disk, measuring the data temporarily stored
in HDF'S can be realized with basic shell script com-
mands. Also, the metric chosen is roughly aligned
with the communication costs introduced in [5].

Independent Study: In preparation to the fi-
nal milestone, several optimizations, some of them
MapReduce-specific, were addressed:

(1) Chain Folding. The most “bang” for one’s
money was to be gained with rewriting the work-
flow of MapReduce jobs by merging several jobs into
multi-functional stages. This approach is sketched
in the original Hive paper [14], and has meanwhile
been explored systematically in academic research,
e.g. also motivated and described in [13] and bench-
marked in [6]. This is considered a generic MapRe-
duce design pattern also among practitioners [11].

SIGMOD Record, June 2019 (Vol. 48, No. 2)



We go by the terminology of [11] and refer to this
strategy as chain folding. By chain folding, which
can be as simple as collapsing sequences of Map-
only jobs, we need to store fewer temporary files in
HDFS. This evidently reduces the overall communi-
cation costs, and accordingly, the elapsed wall-clock
time. In Figure 2, we show the physical query plan
for our running example after chain folding. Now,
renaming, selection and join are evaluated within a
single stage (symbolized by the Unix pipe operator).
(2) Projection Pushdown. Projection pushdown
only makes sense in combination with chain folding,
provided that the pushed projections do not elim-
inate duplicates and therefore can be implemented
as Map-only jobs. These can be merged in sub-
sequent chain folding. Otherwise, adding blocking
Reduce jobs drives up the communication costs.
(3) Multi-way Joins. Besides Reduce-side joins,
we further discussed multi-way joins, covered in [5].

Coding: For the final milestone, the students were
provided with a list of queries over TPC-H data, to-
gether with the cardinality estimates for this data
model. The most successful student submission im-
plemented optimizations (1) through (3) from above,
as well as cost-based join reordering, heuristically
joining the relations with lower cardinalities first.

2.5 Moving from miniHive to Apache Hive

Included in Cloudera Quickstart VM is an instal-
lation of Apache Hive, as well as Spark. Towards
the end of the term, students interacted with these
systems. By then, they had gained an apprecia-
tion for the scalability of Hive. Moreover, the stu-
dents could now make sense of the output of Hive’s
EXPLAIN statements, and had an easier time un-
derstanding certain design decisions, such as Hive
trying to avoid MapReduce jobs in query compila-
tion. For instance, a simple exploratory query like
“SELECT * FROM Person LIMIT 10” can be evalu-
ated without spinning up MapReduce jobs, just by
scanning a single chunk of the input file on HDFS.

Having implemented eager query evaluation in
miniHive, the students now understood how lazy
evaluation, as implemented in Spark, can make for
a great interactive user experience.

3. TESTBED AND EVALUATION

Figure 5 summarizes the number of submissions.
In total, 60 students participated in the final exam.
The majority of these students also submitted a so-
lution to milestone 1. A Python script was used to
unpack the submitted zip files, run the unit tests,
and to cross-check solutions with pycode-similar,
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Figure 5: Submissions and points earned for
the milestones in a class of 60 students.

Rank Improvement

Top 1 4.6x
Top 2 2.9%
Top 3 2.8%

Figure 6: Improvements in milestone 4 over
milestone 3 by the top-3 solutions.

a simple plagiarism checker.* This immediately re-
vealed 10 submissions as plagiates, which their au-
thors also admitted to.? In consequence, these stu-
dents received no points for their submissions.

One milestone 1 submission was awarded no points,
since the majority of unit tests had failed. A total
of 30 submissions received full points, having passed
all unit tests. 12 submissions further received re-
duced points, since non-public unit tests had failed.
These tests checked for simple syntactic variations
of the provided queries, and revealed submissions
where students had not tested their code diligently.
The students had been made aware that their sub-
missions would undergo non-public unit tests.

Fewer students made submissions for the later
milestones, which is owed to the fact that submis-
sions were time-intensive, optional, and awarded
only with bonus points. Nevertheless, the enthu-
siasm of the participating students remained high,
and with milestone 3, still 40% of the students sub-
mitted a working SQL-on-Hadoop engine.

Figure 6 lists the improvements achieved by the
top 3 submissions to milestone 4. As described ear-
lier, we compare the size of data written into tem-

‘https://github.com/fyrestone/pycode_similar.
5 Apparently, code plagiarism is quite common in com-
puter science education, a topic also noted by the press,
e.g. [2]. It is a debate whether this problem is specific
to our field, or merely revealed by tool-based checks.
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porary files into HDF'S against the milestone 3 im-
plementation. As the specifications for milestone 3
were tight, all successful milestone 3 submissions
had the same baseline regarding costs. The best
miniHive engine achieved a 4.6 x improvement, us-
ing all optimizations discussed in Section 2.4.

4. SUMMARY AND OUTLOOK

In their anonymous course feedback, the students
described miniHive as work-intensive. When asked
about the time spent on the individual milestones,
the students reported anything between five and
forty hours per milestone. It is up to debate whether
this may be seen as evidence of the “factor 10 coder”
effect, a controversial theory among developers stat-
ing that some coders are more effective by a fac-
tor 10. At the same time, the majority of students
who participated in the project stated that they
believed they had learned a lot. The students who
completed miniHive where literally ecstatic about
the improvements that they had achieved.

While the term project was not mandatory, the
students who did well with miniHive also excelled in
the final exam, since they had acquired a solid un-
derstanding of MapReduce processing and the asso-
ciated communication costs. It is one thing to learn
about the theory of query optimization, it’s another
thing to watch your own code perform the magic.

As a future feature for miniHive, it would be
very instructive to add partition pruning, as also
implemented in the first version of Hive from 2009:
Provided that a Hive table is partitioned into sev-
eral HDFS folders, based on attribute values (sim-
ilar to building a traditional cluster index), Hive
can ignore irrelevant folders in evaluating selection
predicates. Indexing for Hadoop processing has, of
course, also been explored in research, e.g. [12], so
this would be an opportunity to integrate more re-
cent research results into class. Experiencing the
speedups achievable by indexing would be a further
valuable learning experience.

The miniHive material for students, including the
assignment descriptions as well as skeleton code and
unit tests, is available at: https://github.com/
miniHive/assignment.

To instructors, the complete course material, in-
cluding a prototype and selected student solutions,
can be made available upon request.

Acknowledgements: In 2006, my PhD advisor Christoph
Koch taught a database systems course at Saarland Univer-
sity, where students built a native XML database that could
evaluate a practical fragment of XQuery [4]. The miniHive

term project is inspired by this experience.
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