
Don’t Even Ask:
Database Access Control through Query Control

Richard Shay Uri Blumenthal Vijay Gadepally
Ariel Hamlin John Darby Mitchell Robert K. Cunningham

MIT Lincoln Laboratory, Lexington, MA USA
{richard.shay, uri, vijayg, ariel.hamlin, mitchelljd, rkc} @ ll.mit.edu

ABSTRACT
This paper presents a vision and description for query
control, which is a paradigm for database access con-
trol. In this model, individual queries are examined be-
fore being executed and are either allowed or denied by
a pre-defined policy. Traditional view-based database
access control requires the enforcer to view the query,
the records, or both. That may present difficulty when
the enforcer is not allowed to view database contents
or the query itself. This discussion of query control
arises from our experience with privacy-preserving en-
crypted databases, in which no single entity learns both
the query and the database contents. Query control is
also a good fit for enforcing rules and regulations that
are not well-addressed by view-based access control.
With the rise of federated database management sys-
tems, we believe that new approaches to access control
will be increasingly important.

1. INTRODUCTION
There are great opportunities associated with large-

scale data collection, but also associated risks. In-
creasing privacy concerns about data collection are
demonstrated by the recent European Union Gen-
eral Data Protection Regulation (GDPR) [6]. There
is a need for greater privacy protections in securing,
storing, and transmitting big data [22]. In this pa-
per, we advance the concept of query control, an
expressive database access control strategy.

Commonly used view-based access control restricts
a user’s view of the database. Query control is an
alternative, complementary database access control
strategy based on examining what queries a user is

DISTRIBUTION STATEMENT A. Approved for

public release. Distribution is unlimited. This material

is based upon work supported under Air Force Contract

No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any

opinions, findings, conclusions or recommendations ex-

pressed in this material are those of the author(s) and

do not necessarily reflect the views of the U.S. Air Force.

submitting. Each querier is assigned a query con-
trol policy ; that querier’s queries can only execute
if they conform to the policy. Query control limits
the questions being asked, rather than directly lim-
iting the data being returned. Query control may be
especially useful in enforcing policies that limit the
questions that are allowed to be asked of a database,
or limiting how data sets are utilized [32].

The use case that first motivated the develop-
ment of query control is access control for privacy-
preserving databases, in which encrypted queries
are executed against encrypted data and encrypted
results are returned to the querier [9, 14]. In ad-
dition to protecting data privacy, such databases
protect the privacy of queries submitted and results
returned from both the data owner and the entity
processing the queries. As we will elaborate upon
in Section 3, query control allows a third party to
enforce access control on encrypted queries for an
encrypted database, while preserving data privacy
for both. Another promising use case of query con-
trol is in management systems supporting multiple
heterogenous, federated databases. Such systems
may need the ability to execute a single query across
multiple individual database engines, each with its
own access control and data storage approach [31].
Query control will enable database-agnostic access
control policies to e↵ect centralized, unified access
control across diverse, composite database systems.

We present a brief overview of database access
control, highlighting where query control fits, in
Section 2. We present the background and history
of query control, with a focus on privacy-preserving
databases, in Section 3. Section 4 discusses salient
use cases for query control. In Section 5, we present
a high-level overview of our reference implementa-
tion for query control; while the focus of this pa-
per is highlighting the case for using it, this ref-
erence implementation demonstrates its feasibility.
Finally, we present promising future applications of
query control in Section 6 and conclude in Section 7.

SIGMOD Record, September 2018 (Vol. 47, No. 3) 17



2. DATABASE ACCESS CONTROL
In order to understand the function of query con-

trol in database access control, it is useful to be-
gin with a larger picture of database access control
and then zoom in. Access control in databases has
played an integral role in their development and
popularity [7, 12]. Access control can be used at
granularities such as the level of a table, individual
rows, or even individual cells. Depending on the ac-
cess control implementation, controlling which users
can access what data entries can be a challenging
task [3], sometimes amplified by application-specific
requirements [4].

In general, database access control limits the ac-
cess of a principal, a user or users, to the con-
tents of a database. We separate the concepts of
access control strategies and access control mech-
anisms. An access control strategy refers to how
access control policies are assigned to principals,
whereas an access control mechanism determines
how access to the database is restricted. View-
based access control, the most common access con-
trol mechanism found in production database sys-
tems, is data-dependent and is often implemented
through metadata. Query control places a restric-
tion on the queries that a principal can issue, and
is therefore not data-dependent.

Access control strategies are orthogonal to ac-
cess control mechanisms. For example, role-based
strategies can be applied to view-based or query-
based mechanisms. For the most part, relational
database management systems have concentrated
on view-based mechanisms with varying access con-
trol strategies. Therefore, these terms are often con-
flated and role-based access control in many con-
texts implies a view-based access control mecha-
nism with a role-based strategy. It should be noted
that multiple access control mechanisms need not
be mutually exclusive. On a single database, query
control can be used to limit the queries that are ac-
tually executed, and view-based access control can
be used to limit the results returned.

2.1 Traditional Database Access Control
In a view-based database access control model, a

principal requests access to database contents. The
system evaluates whether the principal is autho-
rized to access the database contents by examining
the access control policy. Often, an access control
policy depends on the contents being accessed. The
system issues a decision that either allows or denies
access. View-based access control uses a database
view as an abstraction mechanism for the data avail-
able to a particular principal [12].

There are a number of historical models for access
control strategies applied to the view-based access
control mechanism [1, 2]. Some early strategies,
such as Discretionary Access Control and Manda-
tory Access Control [25], were often implemented
via individual or group level access control. Role-
based access control is a popular way to implement
access control policies [24].

Query re-writing was initially explored for opti-
mization [13]. Rizvi et al. discuss using it for access
control, such as ensuring a given column has a spe-
cific value [23]. This changes a query to match a pol-
icy, rather than rejecting a non-conforming query
like query control. Re-writing requires the enforce-
ment mechanism to have direct query access, which
may not work in the privacy preserving use case for
which query control was created.

2.2 Query Control Policy Definition
We formally define Query Control as a protocol

between four entities: a data owner who provides
the database and policies; a data host who hosts
the database; a policy enforcer who determines if a
query is valid according to the given policy; and, fi-
nally, a querier who is the principal issuing queries.
Often the data host is the same entity as the data
owner or policy enforcer.

The querier has been assigned a policy to restrict
the queries that it can issue. There may be multiple
queriers, each with separate query control policies.
Each query issued by the querier is evaluated by
the policy and met with either accept or reject. The
decision is accept if and only if the query is properly
formed and is acceptable based on the applicable
policy. Otherwise, the decision is reject.

Figure 1: Placement of access control mech-
anisms on the database interaction path.

Figure 1 shows where the access control mech-
anisms can be applied. The traditional approach
applies access control to the query result before be-
ing returned to the querier, filtering out what the

18 SIGMOD Record, September 2018 (Vol. 47, No. 3)



querier is not allowed to receive. This contrasts with
query control, where the received query is evaluated
against policy before it is executed by the database.

3. PRIVACY-PRESERVING DATABASES
The concept of query control came from IARPA

research into privacy-preserving databases, which
allow organizations to share data in a precisely con-
trolled way [14]. Here, a privacy-preserving database
means the data owner is the source of database
records and wants assurance that any query ad-
heres to a given policy. A querier submitting a
query learns the details of any records that satisfy
that query, but the data owner does not learn the
contents or results of the query. Selecting query
control as a model to preserve privacy enables a
third party to enforce access control without learn-
ing about database contents and without the data
owner learning about the contents of queries. Fuller
et al. contains a more detailed explanation of the
di↵erent design approaches and leakage tradeo↵s of
privacy-preserving databases [9].

This approach to a privacy-preserving database,
with encrypted database and encrypted queries, con-
strains how access control can be implemented. En-
abling a privacy budget requires that a single entity
calculate on the distribution of data and also view
queries. In this model, there is no such entity, and
therefore a traditional privacy budget is not feasi-
ble. Further, this does not lend itself to changing
permissions based on system load, as access control
decisions may be made by an entity without any
insight into the state of the database system.

The predecessor to SPAR, the Automatic Pri-
vacy Protection (APP) program, initially developed
technology that included coarse query control [14].
Kagal used the AIR language for creating and en-
forcing permissions for semantic web technology [18],
with language features such as restricting database
columns [15]. Further work demonstrated that pol-
icy compliance can be enforced without being able
to view database contents [27].

Following the success of APP, the SPAR pro-
gram substantially increased the scope of research
into privacy preserving databases. Performers de-
signed their own mechanisms to express and enforce
policies and integrated query control securely into
query processing [14]. These query control mech-
anisms demonstrated a diverse range of capabili-
ties but were found to be insu�cient to express and
enforce the variety of policy rules the government
wanted. As a result, the query control policy lan-
guage in Section 5 was developed under the sub-
sequent Security and Privacy Assurance Research

Software Evaluation (SPARSE) program. This pro-
gram illustrates a real-world situation that called
for query control, and provided an opportunity to
create a reference implementation for a query con-
trol policy language.

4. QUERY CONTROL USE CASES
Query control can complement traditional view-

based access control by filling in gaps in that access
control strategy. Query control can replicate some
types of control found in the view-based access con-
trol strategy – specifically column-based portions
of view-based access control. Further, there are a
number of restrictions that can be placed on queries
issued by the querier that would not be easily im-
posed by view-based access control. These mecha-
nisms are not mutually exclusive and can be used
in tandem.

Query control policies can utilize any number of
conjunctions (AND, OR, NOT) and can therefore
express and enforce rules that contain conditionals.
This means query control is well-suited for some
types of natural-language database access control
policies. Consider a policy that requires a query to
ask only about a particular doctor’s patients, un-
less that query also restricts itself to patients with
a particular medical condition. This is easy to ex-
press in English, but not easily expressed using a
database view. Because there is a conditional in
this policy, no single static view of the database suf-
fices to represent it. However, this policy can eas-
ily be expressed as a set of atomic rules combined
with conjunctions (using the language to be pre-
sented in Section 5): (doctor last name == “Tyre”)
or (med condition is included).

Query control can be enforced without needing
access to the underlying database contents. Both
approaches require access to the database schema,
but view-based access control also requires access to
the database contents. With query control, the re-
sults of the evaluation do not change if the database
contents change. Further, defects in the data do not
impact the query control decision.

Query control also lends itself more naturally to
some types of time-based policies that might mir-
ror natural language policy text. Kagal points out
that a policy permitting access only to records on
individuals who are at least 18 years of age can be
di�cult to implement using view-based access con-
trol [16]. Using query control, this becomes trivial:
birthday at least 18 years ago. More complex policy
examples will be presented in Section 5.1.

5. REFERENCE IMPLEMENTATION

SIGMOD Record, September 2018 (Vol. 47, No. 3) 19



In this section, we briefly describe a language
we developed for query control, called Query Con-
trol Policy Language (QCPL). This is a preliminary
sketch to demonstrate the feasibility of a query con-
trol language, and not a complete language specifi-
cation. QCPL facilitates the specification of query
control policies, which are comprised of one or more
query control rules. A query control rule is made up
of any number of atomic query control rules, com-
bined with conjunctions. These conjunctions (AND,
OR, NOT) combining atomic query control rules en-
able expressive and complex query control policies.

A query control rule specifies a requirement for
a query. For example, the rule Count = 3 speci-
fies that queries may only be accepted if they re-
quire that database column Count have the value
3. Query SELECT * FROM table WHERE ((Count
= 3)) satisfies this rule, but SELECT * FROM table
WHERE ((Count > 1)) does not. This rule is satis-
fied by the following query statement because both
clauses satisfy the rule: (Count = 3 AND A = 1)
OR (Count = 3 AND A = 2) However, this rule is
not satisfied by the following because its second
clause does not require that Count be 3, and there-
fore it does not ensure that Count have a value of
3 : (Count = 3 AND A = 1) OR (Count = 2).

In order to demonstrate its feasibility, we imple-
mented the language in 1,486 lines of Ruby.1 We
evaluated a set of 1203 queries, with a mean of 7.3
operations per query, across ten policies. In the in-
terest of space, we describe only a few of these poli-
cies. P1 limits searching on low-cardinality fields;
P3 ensures queries are within a particular time-
frame; and P10 ensures that searches are limited
to one event within a particular timeframe. It took
only 18 seconds to evaluate all 1203 queries against
all ten policies, of which 16.1 seconds were used to
parse the queries. Figure 2 depicts the evaluation
time of all queries by each policy.

5.1 Query Control Policy Example
Consider query control on a hypothetical database

of hospital patients. A policy that only allows queries
on patients who are at least 18 years old unless they
were admitted in the past week would be non-trivial
to implement via view-based access control. It is
simple to express using QCPL, combining atomic
rules via conjunctions: (birthday at least 18 years
ago) OR (admit date at most 7 days ago). Consider a
a policy that requires that any query with a patient
name must also include a patient birthday. This
can be created by combining not and or operators:
(not (patient name is included)) OR (doctor name is

1ruby 2.0.0p648

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Policy being evaluated

10-6

10-4

Ev
al

ua
tio

n 
Ti

m
e 

(s
)

Figure 2: Evaluation time of 10 di↵erent
query policies on 1203 SQL queries. Mean
time is indicated by the red line. Box edges
denote 25th and 75th percentiles. The Y-axis
depicts time in seconds in log scale.

included) Further conjunctions are likewise simple
to add to this policy. This illustrates how some ac-
cess control policies that would be complex to im-
plement in view-based access control can be easily
expressed in QCPL.

6. PROMISING FUTURE APPLICATIONS

6.1 Securing Consumer Data
Query control has promising applications in de-

veloping secure data-sharing solutions. One such
use-case is securing consumer data. The big data
phenomenon has resulted in numerous organizations
collecting, storing, and processing large quantities
of sensitive data. Once collected, data can be shared
between organizations and within an organization –
such as WhatsApp sharing user data with Facebook
for advertisements [20]. In a context such as mobile
devices, privacy concerns arise from users being un-
able to know who has their data and how their data
are being used [19, 28]. If an organization is plan-
ning to share its user data with another organiza-
tion, query control might be used to restrict how
the second organization can access customer data.

6.2 Federated Database Systems
Developing heterogenous database management

systems [31] may also benefit from an access control
mechanism based on query control. These systems
are built with the notion that future database sys-
tems may need to support multiple database “sizes”
that are tuned to the underlying data they are stor-
ing or processing [29]. These systems are often
characterized by support for heterogenous database
management systems and multiple query and/or pro-
cessing engines [26].

An example of such a system is the BigDAWG
polystore system [10, 21]. Its current version [11]
supports data querying of data stored in Apache Ac-

20 SIGMOD Record, September 2018 (Vol. 47, No. 3)



cumulo [17], a distributed key-value store database;
PostGRES [30], a relational database; and SciDB [5],
an array database. Each of these composite sys-
tems has its own access control mechanisms and
strategies. Currently, developing access control for
such systems may require using the “greatest com-
mon factor” of access-control-mechanism granular-
ity across the disparate systems. As new systems
are added, this challenge is compounded. Further,
view-based access control heavily depends on the
data being stored. Modern systems, such as Big-
DAWG, routinely copy data from one system to an-
other in order to execute a query. Such challenges
call for a new way of thinking about access control
in database systems.

We believe that a query-based access control strat-
egy can be readily applied to such systems, creat-
ing a centralized and abstract access control mecha-
nism. Its evaluation need not depend on the database
engine of any one system. Query control can be ap-
plied to any system with data stored in a predefined
schema, which almost all database systems support.
Thus, in the example system presented above, ac-
cess control could be evaluated on the query directly
and would not rely on the access control of under-
lying systems.

6.3 Usability Research
Query control has been initially studied through

pilot testing under SPAR [8]. Further work is needed
for validation of both query control as a concept and
the QCPL language in particular. User studies can
continue examination of how a user’s experience is
impacted if his or her queries are rejected. Fur-
ther studies can examine how well data owners are
able to express their ideal access control policies via
QCPL, leading to improvements in the language.

Future work may also focus on how much a querier
learns about a query control policy in a protected
database. Attempting to obscure the query control
policy from the querier leads to a number of inter-
esting questions. If a querier is allowed an unlimited
number of queries, he or she may discover that ex-
ecuting similar queries with minor changes allows
discernment of part or all of the query control pol-
icy. Likewise, the querier may be able to compare
the timing of queries that do and do not return re-
sults to learn about the query control policy.

7. CONCLUSION
In this paper, we have discussed query control

and how it fits into the larger context of database
access control. We have highlighted the past, present,
and future of query control – how it was created

to meet the needs of privacy-preserving databases,
how organizations might benefit from it today, and
how future use-cases might benefit from it even more.
We advocate for further research into the space of
query control, and for further usability studies. We
believe that query control will become increasingly
important as more data is accumulated, databases
are increasingly federated, and searchable encryp-
tion becomes increasingly popular.

8. ACKNOWLEDGMENTS
The authors thank the many participants and

program managers on IARPA-funded projects for
interesting discussions and helpful feedback that im-
proved this work.

9. REFERENCES
[1] E. Bertino and J. Crampton. Security for

distributed systems: Foundations of access
control. Information Assurance: Survivability
and Security in Networked Systems, 2008.

[2] E. Bertino, G. Ghinita, and A. Kamra. Access
control for databases: Concepts and systems.
In Foundations and Trends in Databases,
2010.

[3] E. Bertino and R. Sandhu. Database
security-concepts, approaches, and challenges.
IEEE Transactions on Dependable and secure
computing, 2005.

[4] M. A. Brookhart, T. Stürmer, R. J. Glynn,
J. Rassen, and S. Schneeweiss. Confounding
control in healthcare database research:
challenges and potential approaches. Medical
care, 2010.

[5] P. G. Brown. Overview of SciDB: large scale
array storage, processing and analysis. In
SIGMOD International Conference on
Management of data, 2010.

[6] European Commission. 2018 reform of EU
data protection rules. https:
//ec.europa.eu/commission/priorities/
justice-and-fundamental-rights/
data-protection/
2018-reform-eu-data-protection-rules_
en.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R.
Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control.
TISSEC, 2001.

[8] B. Fuller, D. Mitchell, R. Cunningham,
U. Blumenthal, P. Cable, A. Hamlin,
L. Milechin, M. Rabe, N. Schear, R. Shay,
M. Varia, S. Yakoubov, and
A. Yerukhimovich. SPAR pilot evaluation.

SIGMOD Record, September 2018 (Vol. 47, No. 3) 21



Technical report, MIT Lincoln Laboratory,
2015.

[9] B. Fuller, M. Varia, A. Yerukhimovich,
E. Shen, A. Hamlin, V. Gadepally, R. Shay,
J. D. Mitchell, and R. K. Cunningham. SoK:
Cryptographically protected database search.
Oakland, 2017.

[10] V. Gadepally, P. Chen, J. Duggan, A. Elmore,
B. Haynes, J. Kepner, S. Madden,
T. Mattson, and M. Stonebraker. The
bigdawg polystore system and architecture. In
HPEC, 2016.

[11] V. Gadepally, K. O’Brien, A. Dziedzic,
A. Elmore, J. Kepner, S. Madden,
T. Mattson, J. Rogers, Z. She, and
M. Stonebraker. Bigdawg version 0.1. In High
Performance Extreme Computing Conference
(HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

[12] P. P. Gri�ths and B. W. Wade. An
authorization mechanism for a relational
database system. Transactions on Database
Systems (TODS), 1976.

[13] A. Y. Halevy. Answering queries using views:
A survey. VLDB Journal, 2001.

[14] Intelligence Advanced Research Projects
Activity. Security and privacy assurance
research (SPAR) program broad agency
announcement, 2011.

[15] L. Kagal. Policy compliance of queries for
private information retrieval. IARPA BAA
Appendix E, August 2010.

[16] L. Kagal. Policy compliance of queries for
private information retrieval. http:
//dig.csail.mit.edu/2009/IARPA-PIR/,
August 2011.

[17] J. Kepner, W. Arcand, D. Bestor,
B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen,
A. Prout, et al. Achieving 100,000,000
database inserts per second using accumulo
and d4m. In HPEC, 2014.

[18] A. Khandelwal, J. Bao, L. Kagal, I. Jacobi,
L. Ding, and J. Hendler. Analyzing the air
language: A semantic web (production) rule
language. In International Conference on Web
Reasoning and Rule Systems, 2010.

[19] P. G. Leon, B. Ur, Y. Wang, M. Sleeper,
R. Balebako, R. Shay, L. Bauer,
M. Christodorescu, and L. F. Cranor. What
matters to users? Factors that a↵ect users’
willingness to share information with online
advertisers. In SOUPS, 2013.

[20] N. Lomas. WhatsApp to share user data with
facebook for ad targeting – here’s how to opt

out. https://techcrunch.com/2016/08/25/
whatsapp-to-share, August 2016.

[21] T. Mattson, V. Gadepally, Z. She,
A. Dziedzic, and J. Parkhurst. Demonstrating
the bigdawg polystore system for ocean
metagenomics analysis. In CIDR, 2017.

[22] President’s Council of Advisors on Science
and Technology. Big data and privacy: A
technical perspective. Technical report,
Executive O�ce of the President,
https://bigdatawg.nist.gov/pdf/pcast_
big_data_and_privacy_-_may_2014.pdf,
May 2014.

[23] S. Rizvi, A. Mendelzon, S. Sudarshan, and
P. Roy. Extending query rewriting techniques
for fine-grained access control. In SIGMOD
International Conference on Management of
data, 2004.

[24] R. S. Sandhu, E. J. Coyne, H. L. Feinstein,
and C. E. Youman. Role-based access control
models. Computer, 29(2):38–47, 1996.

[25] R. S. Sandhu and P. Samarati. Access control:
principle and practice. IEEE
Communications, 1994.

[26] A. P. Sheth and J. A. Larson. Federated
database systems for managing distributed,
heterogeneous, and autonomous databases.
ACM Computing Surveys (CSUR), 1990.

[27] J. H. Soltren. Query-based database policy
assurance using semantic web technologies.
Master’s thesis, MIT, September 2009.

[28] C. Spensky, J. Stewart, A. Yerukhimovich,
R. Shay, A. Trachtenberg, R. Housley, and
R. K. Cunningham. SoK: Privacy on mobile
devices – it’s complicated. In Proceedings on
Privacy Enhancing Technologies, 2016.

[29] M. Stonebraker and U. Cetintemel. One size
fits all: An idea whose time has come and
gone. In ICDE, 2005.

[30] M. Stonebraker and L. A. Rowe. The design
of Postgres, volume 15. ACM, 1986.

[31] R. Tan, R. Chirkova, V. Gadepally, and T. G.
Mattson. Enabling query processing across
heterogeneous data models: A survey. In 2017
IEEE International Conference on Big Data,
2017.

[32] P. Upadhyaya, N. R. Anderson,
M. Balazinska, B. Howe, R. Kaushik,
R. Ramamurthy, and D. Suciu. Stop that
query! The need for managing data use. In
CIDR, 2013.

22 SIGMOD Record, September 2018 (Vol. 47, No. 3)


