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1. INTRODUCTION
The data management group at the Nanyang Tech-

nological University (dante) was founded in 2009
by the first author when the School of Computer
Science and Engineering hired two young faculty
members in this area. The group currently consists
of three faculty members and more than twenty
graduate students, research assistants, and post-
docs. Our alumni include faculty members at the
Chinese University of Hong Kong, National Univer-
sity of Singapore, University of New South Wales,
and several researchers and engineers at Facebook,
Google, eBay, Huawei, and other technology com-
panies. The group’s major funding is from the Min-
istry of Education in Singapore, National Research
Foundation, and companies such as Huawei.

In dante, we subscribe to the policy of conduct-
ing research mostly in small groups. Typically, one
or two faculty members work together with their
students, sta↵s, and collaborators (if any). Our
members bring in diverse strengths, some have pen-
chant for inventing e�cient and scalable solutions
to existing data management problems whereas oth-
ers are more inclined toward inventing novel prob-
lems and e�cient solutions to address them. Our
research is often multi-disciplinary in flavour, bridg-
ing data management and analytics with social sci-
ence and biology. In particular, our research have
been nominated as one of the best papers in venues
such as SIGMOD 2015, ICDE 2015, and ICDE 2010.
We have also received best paper award in ACM
BCB 2011. The common thread running through
our research is a focus on going beyond papers to
build usable novel prototypes. Specifically, we have
successfully demonstrated more than 20 novel re-
search prototypes in top-tier data and information
management conferences, which is the highest among
all data management research groups in Australa-
sia. In this article, we present a brief overview of
⇤
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the key research themes in our group; more details
are available on our website at http://www3.ntu.
edu.sg/scse/dmal/dante/.

2. GRAPH DATA MANAGEMENT
Graphs are used to model data in a variety of do-

mains such as biology, chemistry, and social science.
Even we can model the relational data as a graph.
This prevalence of graph-structured data has led us
to pursue several research directions in this arena
as follows.

2.1 Graph Query Processing
Querying graphs has emerged as an important re-

search problem since the last decade. Our group has
invented a suite of e�cient and scalable techniques
to support a variety of graph queries such as dis-
tance queries [15], subgraph enumeration [31], su-
pergraph search [16], personalized PageRank queries
[24, 51, 52], SimRank queries [38, 48], and reacha-
bility queries [14, 70]. In particular, our solutions
for personalized PageRank and SimRank queries
provide superior practical e�ciency while provid-
ing strong theoretical guarantees in terms of accu-
racy and time complexity. In a di↵erent project,
we questioned the longstanding assumption that a
subgraph search query must be a connected graph.
Such assumption typically demands users to have
precise knowledge of the topological structure of
what they are seeking. Unfortunately, due to the
topological complexity of the underlying graph data,
it is often unrealistic to assume that an end user is
aware of the precise relationships between nodes in a
query graph. This led us to invent a novel subgraph
query processing framework called panda [59] that
can e�ciently support formulation and processing
of partial topology queries. Such queries are discon-
nected query graphs comprising of two or more dis-
joint connected query components. This framework
can also be used to address the problem of keyword
search for graphs as a keyword can be considered as
a single-node query component.
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2.2 Human Interaction with Graphs
In our hint project1, we explore pioneering tech-

niques and paradigms for visually interacting with
graphs using queries. It is well-known that visual
query interfaces (i.e., gui) enable interactive con-
struction of graph queries without demanding knowl-
edge of a graph query language from end users. In
a classical visual graph querying framework, the vi-
sual query interface is “loosely-coupled” with the
underlying query engine. Typically, a visual query
interface is designed and implemented by leverag-
ing principles from the human-computer interaction
(hci) area to enhance its usability. On the other
hand, the query engine is realized using data man-
agement principles to ensure e�cient and scalable
execution of graph queries. Seldom there is any
meaningful interactions between these two compo-
nents concurrently. Consequently, when an end user
is visually formulating a graph query, the under-
lying query engine remains idle as human interac-
tions at the gui level are rarely communicated to
the query engine. The query engine is only invoked
when the complete query has been formulated and
the Run icon is clicked to execute it. We refer to
this loose coupling of these two key components as
shallow integration.

The visual graph query formulation process demon-
strates two key characteristics. First, a query is
gradually exposed to the underlying query engine
during its construction. Second, it gives rise to gui

latency (i.e., the time spent by a human to complete
certain query formulation task such as construction
of an edge). In this research, we crystallize “tight
coupling” between visual graph query interface and
query engine components by exploiting these fea-
tures. Instead of the query engine being oblivious to
human interactions in the gui during visual query
formulation, we “track” these interactions and pro-
cess them judiciously during query formulation by
exploiting the gui latency. We refer to this tight
coupling of the visual query interface and the query
engine as deep integration.

In our group, we have explored a suite of novel
techniques to realize deep integration. Specifically,
in [63] we report a technique that leverages on par-
tially constructed query information during query
formulation to present opportune suggestions to end
users toward completion of the query. These e↵orts
realize deep integration between the visual query
interface and underlying query engine by generat-
ing data-driven suggestions while a graph query is
being visually formulated. In [26, 28, 29, 44], we

1
http://www.ntu.edu.sg/home/assourav/research/hint/index.

html

realize deep integration by blending visual graph
query formulation with its processing to prune false
results and prefetch partial query results by ex-
ploiting the gui latency, leading to superior system
response time. We investigate a variety of graph
queries (subgraph matching, subgraph similarity,
and homomorphic queries) in this paradigm. In
particular, these frameworks allow a user to exe-
cute a query fragment any time during query for-
mulation and not wait until the entire query is visu-
ally formulated. Consequently, this paradigm is ex-
ploited by picasso [25] to realize exploratory search
on graphs. Lastly, query performance study in a
deep integration-based graph querying framework
demands exhaustive user study due to tight cou-
pling between human interactions and the under-
lying query engine. However, such user study is
expensive and time-consuming. In [3], we present
a framework called visual that draws upon the
literature in hci and graph data management to
simulate visual subgraph query construction pro-
cess. This paves the way for automated perfor-
mance study without requiring users.

2.3 Graph Analytics
Lastly, we have contributed e�cient and scalable

algorithms for addressing a variety of graph analyt-
ics problems. For instance, we have invented scal-
able algorithms for finding maximal cliques [11,12],
core and truss decomposition [13, 49], triangle list-
ing [17], computation of maximum independent set
[39], attributed graph clustering [60], and discover-
ing frequent subgraph patterns using the MapRe-
duce framework [36].

In particular, some of our research in graph ana-
lytics is multi-disciplinary in nature. For instance,
we have explored the role of network analytics in
biology. It is increasingly attractive to model bio-
logical systems from a broader, “systems” perspec-
tive instead of modeling its components in an iso-
lated, reductionist manner [27]. The most well-
known method to model biological systems in this
manner is through biological networks. However,
due to the complexity of such networks, it is chal-
lenging to uncover key system-wide properties and
behaviors of a biological system from it. To this
end, we have developed scalable techniques for dis-
covering network motifs (i.e., interaction patterns
that recur throughout biological networks, much
more often than in random networks) by leveraging
modern hardware such as GPUs [37]. This work
was nominated as one of the best in ICDE 2015.
We have also developed novel techniques for sum-
marizing static and dynamic biological networks [1]
as well as predicting potential drug targets by ana-
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lyzing dynamics of signaling networks [18]. In par-
ticular, our work on functional summarization of
protein-protein interaction networks received the Best
Paper Award in ACM BCB 2011 (flagship confer-
ence of the SIGBio group) [43].

3. SOCIAL DATA MANAGEMENT
In the social data management arena, dantemem-

bers have primarily focused on two topics: social in-
fluence analysis in online social networks and social
image exploration.

3.1 Social Influence Analysis
Our group has made significant contributions in

social influence analysis especially in the context of
the influence maximization problem. Given a social
network G and a constant k, the influence maxi-
mization problem asks for k nodes in G that (di-
rectly and indirectly) influence the largest number
of nodes under a pre-defined di↵usion model. This
problem originates from viral marketing, and it has
been extensively studied in the literature since 2003.
However, before 2014, there was a long-standing
tension between the e�ciency and accuracy of influ-
ence maximization algorithms. In particular, there
exist a few methods that provide non-trivial approx-
imation guarantees, but they require days to pro-
cess even a small graph; meanwhile, methods with
reasonable practical e�ciency all rely on heuristics,
due to which they fail to o↵er any worst-case ac-
curacy assurance. We are the first to ease the ten-
sion by proposing Two-phase Influence Maximiza-
tion (tim) [46], an algorithm that runs in O((k +
l)(n + m) log n/✏2) expected time, and returns a
(1�1/e�✏)-approximate solution to influence max-
imization, with at least 11/nl probability. The time
complexity of tim is near-optimal, and it is empir-
ically shown to be up to three orders of magnitude
lower than any existing solution with non-trivial ap-
proximation guarantees. Subsequently, we develop
an improvement of tim [47] that retains its theo-
retical guarantees while improving its practical e�-
ciency by up to another order of magnitude.

We also extended our research on influence maxi-
mization to competitive networks where several groups
may simultaneously attempt to select seeds in the
same network [33]. We proposed a framework called
GetReal that finds the best solution for each group,
who are maximizing their influences, based on game
theory. This work was one of the nominees for the
best paper award in SIGMOD 2015.

In a separate project, we took the first systematic
step to discover k influential event organizers from
online social networks (e.g., Meetup (www.meetup.
com) who are essential to the overall success of social

events [20]. These event organizers comprise a small
group of people who not only have the relevant skills
or expertise that are required for an event but they
are also able to influence largest number of people
to actively contribute to it.

The aforementioned e↵orts as well as numerous
other social influence research in the data manage-
ment and data mining communities have largely
stripped o↵ social psychology of users in their solu-
tion design. For example, these e↵orts ignore con-
formity of people, which refers to a person’s incli-
nation to be influenced by others. Consequently,
despite the great progress made in terms of algorith-
mic e�ciency and scalability, existing techniques
may not necessarily produce high quality results in
practice. In our paella project2, we investigate the
interplay between psychology and social influence in
online social networks and devise novel social influ-
ence solutions that are psychology-aware. Specifi-
cally, we are the first to explore techniques that in-
corporate conformity in computing social influence
and influence maximization solutions [34, 35].

3.2 Social Image Search Results Exploration
Due to increasing popularity of social image shar-

ing platforms (e.g., Flickr), techniques to support
Tag-based Social Image Retrieval (tagIR) [32] for
finding relevant high-quality images using keyword
queries have generated tremendous research and com-
mercial interests. Many tagIR studies attempt to
improve its search accuracy or diversify its search
results so as to maximize the probability of satisfy-
ing users’ search intentions. In our sierra project,
we go beyond retrieval and ranking of social images
by facilitating deeper understanding through expla-
nation and exploration of the result images.

Why-not questions on search results. Tra-
ditional tagIR systems fail to provide a systematic
framework for end users to ask why certain images
are not in the result set of a given query and provide
an explanation for such missing results. However,
as humans, such why-not questions [7] are natural
when expected images are missing in the query re-
sults returned by a tagIR system. This may be
due to the following reasons. First, the desired im-
ages may be ranked very low in the search results
because the same keyword query (e.g., “rock”) may
express very di↵erent search intentions for di↵erent
users. Second, the set of tags associated with im-
ages may be noisy and incomplete. Consequently,
not all keywords mentioned in the search query may
appear as tags in relevant images. Third, the query
formulated by the user maybe too restrictive due

2
http://www.ntu.edu.sg/home/assourav/research/paella/index.

html
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to the user’s limited understanding of the data col-
lection. Indeed, it will be helpful to users if they
could simply pose a follow-up why-not question to
the retrieval engine to seek an explanation for de-
sired missing images and suggestions on how to re-
trieve them. Our group developed a novel system
called wine [2] to address this challenge. Specifi-
cally, it leverages on three explanation models that
exploit Wikipedia to automatically generates expla-
nation to a why-not question posed by a user and
recommends refined query, if necessary, whose re-
sult may not only includes images related to the
search query but also to the why-not question.

Search results summarization. Social image
search engines often diversify the search results to
match all possible aspects of a query in order to
minimize the risk of completely missing out a user’s
search intent. An immediate aftermath of such re-
sults diversification strategy is that often the search
results are not semantically or visually coherent.
For example, the results of a search query “fly”
may contain a medley of visually and semantically
distinct objects and scenes (i.e., concepts) such as
parachutes, aeroplanes, insects, birds, and even the
act of jumping. Consequently, a thumbnail view of
query results fails to provide a bird eye view of dif-
ferent concepts present in it. Our prism [42] system
addresses this challenge by constructing high qual-
ity summary of top-k social image search results
based on concept-preserving and visually coherent
clusters which maximally cover the result set. Each
cluster is represented by minimal tag(s) shared by
all images in it. Due to the concept-preserving na-
ture, the images in a cluster form an equivalence
class with respect to the tags. Consequently, any
image in each cluster can be selected as an exem-
plar without loss of accuracy to facilitate generation
of high quality exemplar summary of the result set.

4. GEO-TEXTUAL DATA MANAGEMENT
The proliferation of gps-equipped mobile devices

has given rise to massive volumes of geo-textual or
spatio-textual data (e.g., points of interest, tweets,
check-ins). Each geo-textual object is associated
with a geo-location and a text value. In this sec-
tion, we summarize the geo-textual data manage-
ment challenges that we have addressed in our group.

4.1 Query Processing
A variety of classical spatial database queries and

keyword queries have been revisited and rethought
in the context of querying geo-textual data. Our
research in this arena can be broadly classified into
two streams: spatial keyword queries and querying

geo-textual streams. In the former, we combine spa-
tial functionality with keyword search (e.g., find
geo-tagged objects that best match the given lo-
cation and keywords). Specifically, we have con-
tributed to a variety of spatial keyword queries such
as m-closest keywords [23], collective keyword [5],
and keyword-aware route planning [4]. These queries
typically find an aggregation of several geo-textual
objects (ranked or otherwise) that are near each
other. Some of our work have extended spatial
queries on a spatial network that need to utilize
spatial distance, which is more computationally ex-
pensive than Euclidean distance [6, 61, 62].

For the latter category, we focus on devising ef-
ficient solutions for querying streaming geo-tagged
data (e.g., microblog posts). Specifically, we have
investigated techniques to support boolean subscrip-
tion [8, 10] and similarity-based subscription [9]
queries. These techniques aim to develop e�cient
spatial-keyword subscription strategies. More re-
cently, we have looked into the problem of continu-
ous queries on a stream of geo-tagged object (e.g.,
detecting bursty region [22]).

4.2 Exploratory Search
We have also invented e�cient techniques for ex-

ploring geo-tagged data. Our work can be broadly
categorized into two streams: region search and re-
gion exploration. In the former, we aim to find a
region for exploration that satisfies a user-defined
condition (e.g., size and shape of the region) and
maximizes some aggregate score of the geo-tagged
objects inside it [21]. In the latter category, we
address the problem of exploring and discovering
properties (e.g., topics) of user-specified region [69].

5. INFORMATION PRIVACY
The era of big data has witnessed the collection,

analysis, and sharing of individual data (e.g., user
behavioral records) at large scale. These data pro-
vide invaluable insights, but their usage often raises
significant concerns about individual privacy. To
address such concerns, a common practice is to
anonymize the data by removing personal identifiers
(such as names and IDs) and retaining all other in-
formation. This approach, however, has been shown
to be vastly insu�cient for privacy protection, since
the information remained in the data may still be
exploited to re-identify an individual. This moti-
vated considerable research e↵ort on systematic ap-
proaches for data privacy protection.

Our recent work on data privacy has focused on
di↵erential privacy [19], which is a strong and rigor-
ous privacy model that has been adopted in Google
Chrome and Apple iOS. In particular, we have de-

70 SIGMOD Record, June 2018 (Vol. 47, No. 2)



veloped techniques that improve the utility of di↵er-
entially private algorithms for a number of impor-
tant analytical tasks, including range count queries
[56,57,64], model fitting [68], frequent itemset min-
ing [50], histogram construction [55], and the syn-
thesization of spatial, sequence, and high-dimensional
data [30, 66, 67]. Most recently, we have investi-
gated di↵erentially private algorithms for collecting
data from users who do not trust the data collector,
and have devised solutions for collecting heavy hit-
ters [41] and graph statistics [40]. In particular, our
work in [56] was selected as one of the best papers
in ICDE 2010.

6. FAIR PEER REVIEW MANAGEMENT
A fair peer-review process is a key ingredient for

running a successful academic event. Fairness is
a↵ected by many factors, such as the expertise of
reviewers, the quality of review comments, the de-
sign of the review form, etc. However, the most im-
portant factor is the relationships between authors
and reviewers. In this research, we explore design
and implementation of a novel reviewer suggestion
system that focuses on declaration and detection of
conflicts of interest (cois) in the peer-review [53,
54], an issue that has received scant attention de-
spite its significance in upholding quality and fair-
ness of an academic event. This work is in collabo-
ration with University of Macau and the Northeast-
ern University, USA. Specifically, we extract rele-
vant information related to authors by exploiting
sources such as dblp, ResearchGate, and Arnet-
Miner. Next, we mine relationships between the
authors based on various strategies such as meta-
path information [45]. Finally, we rank the cois
and display a recommended coi list of a given set
of authors by utilizing a supervised ranking model
that can be iteratively refined from the data col-
lected from past coi declarations. A prototype of
our system called pistis

3 will be demonstrated in
SIGMOD 2018 [54].
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