
The New and Improved SQL:2016 Standard
Jan Michels

Oracle Corporation
jan.michels@oracle.com

Keith Hare
JCC Consulting
keith@jcc.com

Krishna Kulkarni
SQL Consultant

krishna7277@gmail.com

Calisto Zuzarte
IBM Corporation

calisto@ca.ibm.com

Zhen Hua Liu
Oracle Corporation
zhen.liu@oracle.com

Beda Hammerschmidt
Oracle Corporation

beda.Hammerschmidt@oracle.com

Fred Zemke
Oracle Corporation

fred.zemke@oracle.com

ABSTRACT
SQL:2016 (officially called ISO/IEC 9075:2016,
Information technology — Database languages —
SQL) was published in December of 2016, replacing
SQL:2011 as the most recent revision of the SQL
standard. This paper gives an overview of the most
important new features in SQL:2016.

1. INTRODUCTION
The database query language SQL has been around for
more than 30 years. SQL was first standardized in
1986 by ANSI as a US standard and a year later by
ISO as an international standard, with the first
implementations of SQL preceding the standard by a
few years. Ever since first published, the SQL standard
has been a tremendous success. This is evidenced not
only by the many relational database systems
(RDBMSs) that implement SQL as their primary
query1 language but also by the so-called “NoSQL”
databases that more and more see the requirement (and
value) to add an SQL interface to their systems. One of
the success factors of SQL and the standard is that it
evolves as new requirements and technologies emerge.
Be it the procedural [23], active database, or object-
relational extensions that were added in the 1990s [22],
the XML capabilities in the 2000s [19], temporal tables
in the early 2010s [17], or the many other features
described in previous papers [18], [20], [21], and not
the least the features described in this paper, the SQL
standard has always kept up with the latest trends in
the database world.
SQL:2016 consists of nine parts [1]-[9], all of which
were published together. However, with the exception
of Part 2, “Foundation” [2], the other parts did not
significantly change from their previous versions,
containing mostly bug fixes and changes required to
align with the new functionality in Part 2. As with the
previous revisions, SQL:2016 is available for purchase
from the ANSI2 and ISO3 web stores.

1 “Query” in this context is not restricted to retrieval-only
operations but also includes, among others, DML and DDL
statements.

2 http://webstore.ansi.org/

A high-level theme in SQL:2016 is expanding the SQL
language to support new data storage and retrieval
paradigms that are emerging from the NoSQL and Big
Data worlds. The major new features in SQL:2016 are:
• Support for Java Script Object Notation (JSON)

data
• Polymorphic Table Functions
• Row Pattern Recognition
SQL:2016 also includes a number of smaller features,
such as additional built-in functions.
In addition to the formal SQL standard, the SQL
committee has developed a series of Technical Reports
(TRs). TRs, while non-normative, contain information
that is useful for understanding how the SQL standard
works. The SQL Technical Report series contains
seven TRs [10] – [16] that are available at no charge
from the ISO/IEC JTC1 “Freely available standards”
web page4.
The remainder of this paper is structured as follows:
section 2 discusses the support for JSON data, section
3 discusses polymorphic table functions, section 4
discusses the row pattern recognition functionality, and
section 5 showcases a select few of the smaller
enhancements.

2. SUPPORT FOR JSON DATA
JSON [24] is a simple, semi-structured data format that
is popular in developer communities because it is well
suited as a data serialization format for data
interchange. JSON data is annotated and the format
allows nesting making it easy-to-read by both humans
and machines. Many database applications that would
benefit from JSON also need to access “traditional”
tabular data. Thus, there is great value in storing,
querying, and manipulating of JSON data inside an
RDBMS as well as providing bi-directional conversion
between relational data and JSON data.
To minimize the overhead of a new SQL data type,
SQL:2016 uses the existing SQL string types (i.e.,
either character strings like VARCHAR and CLOB, or

3 https://www.iso.org/store.html
4 http://standards.iso.org/ittf/PubliclyAvailableStandards/

SIGMOD Record, June 2018 (Vol. 47, No. 2) 51

binary strings like BLOB) to carry JSON values. Since
there is no standard JSON query language yet, the SQL
standard defines a path language for navigation within
JSON data and a set of SQL built-in functions and
predicates for querying within a JSON document.
We will illustrate the SQL/JSON5 path language and
SQL/JSON operators in the following sections. Due to
space restrictions, we cannot cover all SQL/JSON
features. For a detailed description of the SQL/JSON
functionality the interested reader is referred to [15].

2.1 Querying JSON in SQL
2.1.1 Sample data
Our examples will use the table T shown below:
ID JCOL
111 { "Name" : "John Smith",

"address" : {
"streetAddress": "21 2nd Street",
"city": "New York",
"state" : "NY",
"postalCode" : 10021 },

"phoneNumber" : [
{ "type" : "home",
"number" : "212 555-1234" },

{ "type" : "fax",
"number" : "646 555-4567" }] }

222 { "Name" : "Peter Walker",
"address" : {

"streetAddress": "111 Main Street",
"city": "San Jose",
"state" : "CA",
"postalCode" : 95111 },

"phoneNumber" : [
{ "type" : "home",
"number" : "408 555-9876" },

{ "type" : "office",
"number" : "650 555-2468" }] }

333 { "Name" : "James Lee" }
In T, the column JCOL contains JSON data stored in a
character string.
Curly braces { } enclose JSON objects. A JSON
object has zero or more comma-separated key/value
pairs, called members. The key is a character string
before a colon; the value is a JSON value placed after a
colon. For example, in each row, the outermost JSON
object has a key called "Name" with varying values in
each row.

5 The support for JSON is specified in Foundation [2] and
not in a separate part (as is done, e.g., for SQL/XML [9]).
Still, the moniker SQL/JSON is associated with the JSON-
specific functionality in SQL.

Square brackets [] enclose JSON arrays. A JSON
array is an ordered, comma-separated list of JSON
values. In the first and second rows, the key called
"phoneNumber" has a value which is a JSON array.
This illustrates how JSON objects and arrays can be
nested arbitrarily.
Scalar JSON values are character strings, numbers, and
the literals true, false and null.
The sample data is fairly homogeneous, but this is not
a requirement of JSON. For example, the elements of
an array do not need to be of the same type, and
objects in different rows do not have to have the same
keys.

2.1.2 IS JSON predicate
The IS JSON predicate is used to verify that an SQL
value contains a syntactically correct JSON value. For
example, this predicate can be used in a column check
constraint, like this:
CREATE TABLE T (

Id INTEGER PRIMARY KEY,
Jcol CHARACTER VARYING (5000)

CHECK (Jcol IS JSON))

The preceding might have been used to create the table
T, insuring that the value of Jcol is valid JSON in all
rows of T.
In the absence of such a constraint, one could use IS
JSON as a filter to locate valid JSON data, like this:
SELECT * FROM T WHERE Jcol IS JSON

2.1.3 SQL/JSON path expressions
The remaining SQL/JSON operators to query JSON
use the SQL/JSON path language. It is used to
navigate within a JSON value to its components. It is
similar to XPath for XML and also somewhat similar
to object/array navigation in the JavaScript language.
A path expression is composed of a sequence of path
steps; each step can be associated with a set of
predicates.

2.1.4 JSON_EXISTS predicate
JSON_EXISTS is used to determine if an SQL/JSON
path expression has any matches in a JSON document.
For example, this query finds the IDs of the rows with
a key called “address”:
SELECT Id
FROM T
WHERE JSON_EXISTS (Jcol,

'strict $.address')

The example works as follows. The first argument to
JSON_EXISTS, Jcol, specifies the context item
(JSON value) on which JSON_EXISTS operates. The
keyword strict selects the strict mode; the

52 SIGMOD Record, June 2018 (Vol. 47, No. 2)

alternative is lax. As its name implies, strict mode
expects that the JSON document conforms strictly to
the path expression, whereas lax mode relaxes some of
these expectations, as will be seen in later examples.
$.address is the path expression that is applied to
the context item. In the path expression, $ is a variable
referencing the context item, the period is an operator
used to navigate to a key/value pair within a JSON
object, and address is the name of the desired key.
The JSON_EXISTS predicate will be true if this path
expression successfully finds one or more such
key/value pairs. With the sample data, the query will
find the IDs 111 and 222 but not 333.

2.1.5 JSON_VALUE function
The JSON_VALUE function is used to extract a scalar
value from a given JSON value. For example, to find
the value of the "Name" key/value pair in each row,
one could use this query:
SELECT JSON_VALUE (Jcol,

'lax $.Name') AS Name
FROM T

This example uses lax mode, which is more forgiving
than strict mode. For example, it is common to use a
singleton JSON value interchangeably with an array of
length one. To accommodate that convention, in lax
mode, if a path step requires an array but does not find
one, the data is implicitly wrapped in a JSON array.
Conversely, if a path step expects a non-array but
encounters an array, the array is unwrapped into a
sequence of items, and the path step operates on each
item in the sequence.
The following query might be used to find the first
phone number in each row.
SELECT Id, JSON_VALUE (Jcol,

'lax $.phoneNumber[0].number')
AS Firstphone

FROM T

JSON arrays are 0-relative, so the first element is
addressed [0]. The last row of sample data has no
such data; in that case, lax mode produces an empty
sequence (instead of an error) and JSON_VALUE will
return a null value. The result of the query is:
ID FIRSTPHONE
111 212 555-1234
222 408 555-9876
333
In the last row above, the FIRSTPHONE cell is blank,
indicating an SQL null value, a convention we will use
throughout this paper.

Or suppose the task is to find all fax phone numbers.
The query to solve this is
SELECT Id, JSON_VALUE (Jcol,

'lax $.phoneNumber
? (@.type == "fax").number')

AS Fax
FROM T

This query illustrates a filter, introduced by a question
mark and enclosed within parentheses. The filter is
processed as follows: since the query is in lax mode,
the array $.phoneNumber is unwrapped into a
sequence of items. Each item is tested against the
predicate within the parentheses. In this predicate, the
at-sign @ is a variable bound to the item being tested.
The predicate @.type == "fax" is true if the value
of the "type" member equals "fax". The result of
the filter is the sequence of just those items that
satisfied the predicate. Finally, the member accessor
.number is applied, to obtain the value of the
member whose key is "number". The result of the
query is:
ID FAX
111 646 555-4567
222
333
All of these examples returned character string data,
the default return type of JSON_VALUE. Optional
syntax can be used to specify other return types, as
well as various options to handle empty or error
results.

2.1.6 JSON_QUERY function
JSON_VALUE can only extract scalars from a JSON
value. The JSON_QUERY function, on the other hand,
is used to extract a fragment (i.e., an SQL/JSON
object, array, or scalar, possibly wrapped in an
SQL/JSON array, if the user specifies this) from a
given JSON value. For example, to obtain the
complete value of the "address" key, this query might
be used:
SELECT Id, JSON_QUERY (Jcol,

'lax $.address') AS Address
FROM T

With the following results6:

6 The result shows some insignificant pretty-printing
whitespace. The SQL standard does not prescribe this. A
conforming implementation is allowed to either add or
omit insignificant whitespace. Here it is only shown for
readability.

SIGMOD Record, June 2018 (Vol. 47, No. 2) 53

ID ADDRESS
111 { "streetAddress": "21 2nd Street",

"city": "New York",
"state" : "NY",
"postalCode" : 10021 }

222 { "streetAddress": "111 Main Street",
"city": "San Jose",
"state" : "CA",
"postalCode" : 95111 }

333
In the last row, ADDRESS is null because the data does
not match the path expression. There are options to
obtain other behaviors for empty and error conditions.

2.1.7 JSON_TABLE function
JSON_TABLE is a table function that is invoked in the
FROM clause of a query to generate a relational table
from a JSON value. As a simple example, to extract
the scalar values of name and ZIP code from each
JSON document, the following query can be used:
SELECT T.Id, Jt.Name, Jt.Zip
FROM T,

JSON_TABLE (T.Jcol, 'lax $'
COLUMNS (

Name VARCHAR (30)
PATH 'lax $.Name'

Zip VARCHAR (5) PATH
'lax $.address.postalCode'

)
) AS Jt

In this example, the first path expression 'lax $' is
the “row pattern” used to locate rows. The path
expression here is the simplest possible, just $,
meaning that there is no navigation within a JSON
document; however, if the row data were deeply nested
within a JSON document, then the row pattern would
be more complicated.
The example defines two output columns, NAME and
ZIP. Each output column has its own PATH clause,
specifying the “column pattern” that is used to
navigate within a row to locate the data for a column.
The example has the following results on the sample
data:
ID NAME ZIP
111 John Smith 10021
222 Peter Walker 95111
333 James Lee
JSON_TABLE also allows unnesting of (even deeply)
nested JSON objects/arrays in one invocation by using
a nested COLUMNS clause, as the next example
illustrates. This query will return the name and phone
number and type for each person:

SELECT T.Id, Jt.Name, Jt.Type,
Jt.Number

FROM T,
JSON_TABLE (T.Jcol, 'lax $'

COLUMNS
(Name VARCHAR (30)

PATH 'lax $.Name',
NESTED PATH

'lax $.phoneNumber[*]'
COLUMNS

(Type VARCHAR (10)
PATH 'lax $.type',

Number VARCHAR (12)
PATH 'lax $.number')

)
) AS Jt

The preceding example has an outer row pattern 'lax
$' and within that, a nested row pattern 'lax
$.phoneNumber[*]'. The nested row pattern uses
the wildcard array element accessor [*] to iterate over
all elements of the phoneNumber array. Thus it is
possible to flatten hierarchical data. The first column
Name is found at the outer level of the hierarchy,
whereas the nested columns Type and Number are
found in the inner level of the hierarchy. The result on
the sample data is:
ID NAME TYPE NUMBER
111 John Smith home 212 555-1234
111 John Smith fax 646 555-4567
222 Peter Walker home 408 555-9876
222 Peter Walker office 650 555-2468
333 James Lee
The last row has no phone number. If one wanted to
include only those JSON documents that have a
phoneNumber member, the following WHERE clause
could be appended to the previous query:
WHERE JSON_EXISTS (T.Jcol,

'lax $.phoneNumber')

In the sample data, this WHERE clause would filter out
the row whose ID is 333.

2.1.8 Structural-inspection methods
Because the structure of JSON data may not be known
a priori and/or vary from one JSON value to the next,
the SQL/JSON path language provides methods that
allow for the inspection of the structural aspects of a
JSON value. These methods are:
— keyvalue, which returns an SQL/JSON object
containing three members for the key, the bound value,
and an ID uniquely identifying the containing input
object for each member of the input SQL/JSON object.

54 SIGMOD Record, June 2018 (Vol. 47, No. 2)

— type, which returns “object”, “array”, “string”,
“number”, etc. corresponding to the actual type of the
SQL/JSON item.
— size, which returns the number of elements, if
the input SQL/JSON item is an array; otherwise it
returns 1.
For example, to retain only arrays of size 2 or more,
one might use:
strict $.* ? (@.type() == "array"

&& @.size() > 1)

2.2 SQL/JSON constructor functions
SQL/JSON constructor functions use values of SQL
types and produce JSON (either JSON objects or
JSON arrays) represented in SQL character or binary
string types.
The functions are: JSON_OBJECT, JSON_ARRAY,
JSON_OBJECTAGG, and JSON_ARRAYAGG. The
first two are scalar functions, whereas the latter two are
aggregate functions. As with other SQL
functions/expressions, these can be arbitrarily nested.
This supports the construction of JSON data of
arbitrary complexity.
For example, given the well-known Employees and
Departments tables, one can construct a JSON
object for each department that contains all employees
and their salary, sorted by increasing salary using this
query:
SELECT JSON_OBJECT
(KEY 'department' VALUE D.Name,

KEY 'employees'
VALUE JSON_ARRAYAGG

(JSON_OBJECT
(KEY 'employee'

VALUE E.Name,
KEY 'salary'
VALUE E.Salary)

ORDER BY E.Salary ASC)
) AS Department

FROM Departments D, Employees E
WHERE D.Dept_id = E.Dept_id
GROUP BY D.Name
with results that might look like this:
DEPARTMENT
{ "department" : "Sales",
"employees" : [{ "employee" : "James",

"salary" : 7000 },
{ "employee" : "Rachel",
"salary" : 9000 },

{ "employee" : "Logan",
"salary" : 10000 }] }

…

3. POLYMORPHIC TABLE
FUNCTIONS
The SQL standard prior to the 2016 release had only
support for monomorphic table functions, i.e., the
definition of both the output table and the set of input
parameters were fixed at function creation time. With
the specification of polymorphic table functions
(PTFs), SQL:2016 includes a very powerful
enhancement to table functions. With this feature, the
RDBMS is able to evaluate custom functionality closer
to the data. For example, the MapReduce paradigm
could be implemented using PTFs.
A polymorphic table function is a function that may
have generic table input parameter(s) whose row
type(s) may be unknown at creation time. The PTF
may return a table whose row type also may be
unknown when the function is created. The row type of
the result may depend on the function arguments or on
the row type(s) of the input table(s) in the invocation
of the PTF. When a PTF is invoked in a query, the
RDBMS and the PTF interact through a family of one
to four SQL-invoked procedures. These procedures are
called the PTF component procedures7.
In the next sections, we describe these four component
procedures and give two examples of user-defined
PTFs. Due to space restrictions, we cannot cover all
PTF features. For a detailed description of all aspects
of PTFs (including the different perspectives of query
author, PTF author, and RDBMS developer) the
interested reader is referred to [16].

3.1 PTF Component Procedures
There are one to four PTF component procedures:
1. “describe”: The PTF describe component procedure
is called once during compilation of the query that
invokes the PTF. The primary task of the PTF describe
component procedure is to determine the row type of
the output table. This component procedure receives a
description of the input tables and their ordering (if
any) as well as any scalar input arguments that are
compile-time constants. This component procedure is
optional if all result columns are defined statically in
the CREATE FUNCTION statement or if the PTF has
only result columns that are passed through unchanged
from the input table(s); otherwise it is mandatory.
2. “start”: The PTF start component procedure is
called at the start of the execution of the PTF to
allocate any resources that the RDBMS does not
provide. This procedure is optional.

7 SQL:2016 uses the four PTF component procedures as a
specification vehicle. A conforming implementation may
substitute this interface with an implementation-defined
API.

SIGMOD Record, June 2018 (Vol. 47, No. 2) 55

3. “fulfill”: The PTF fulfill component procedure is
called during the execution to deliver the output table
by “piping” rows to the RDBMS. This is the
component procedure that reads the contents of the
input table(s) and generates the output table. This
procedure is mandatory.
4. “finish”: The PTF finish component procedure is
called at the end of the execution to deallocate any
resources allocated by the PTF start component
procedure. This procedure is optional.

3.2 Execution model
The SQL standard defines the run-time execution of a
PTF using an abstraction called a virtual processor,
defined as a processing unit capable of executing a
sequential algorithm. Using techniques such as
multiprocessing, a single physical processor might host
several virtual processors. Virtual processors may
execute independently and concurrently, either on a
single physical processor or distributed across multiple
physical processors. There is no communication
between virtual processors. The RDBMS is responsible
for collecting the output on each virtual processor; the
union of the output from all virtual processors is the
result of the PTF. The virtual processor abstraction is
the standard’s way of permitting but not requiring
parallelization of PTF execution.

3.3 Examples
This section illustrates the value of PTFs using a
couple of examples. The first one is a simple example
introducing the polymorphic nature of a PTF. The
second one illustrates a variety of options including
multiple input tables with different input semantics.

3.3.1 CSV reader table function
Consider a file with a comma-separated list of values
(CSV file). The first line of the file contains a list of
column names, and subsequent lines of the file contain
the actual data. A PTF called CSVreader was created
to read a CSV file and provide its data as a table in the
FROM clause of a query. The effective signature of the
PTF is:
FUNCTION CSVreader (

File VARCHAR (1000),
Floats DESCRIPTOR DEFAULT NULL,
Dates DESCRIPTOR DEFAULT NULL)

RETURNS TABLE
NOT DETERMINISTIC
CONTAINS SQL

This signature has two parameter types that are
distinctive to PTFs. (a) DESCRIPTOR is a type that is
capable of describing a list of column names, and
optionally for each column name, a data type. (b)
TABLE denotes the generic table type, a type whose

value is a table. The row type of the table is not
specified, and may vary depending on the invocation
of the PTF. Here, the TABLE specification specifies a
generic table output of CSVreader. The row type is
unknown at creation time and this is characteristic of a
PTF.
A user reference guide accompanying a PTF will need
to describe the semantics of the input parameters and
what the output will be. For example, here File is the
name of a file that contains the comma-separated
values which are to be converted to a table. The first
line of the file contains the names of the resulting
columns. Succeeding lines contain the data. Each line
after the first will result in one row of output, with
column names as determined by the first line of the
input. In the example above, Floats and Dates are
PTF descriptor areas, which provide a list of the
column names that are to be interpreted numerically
and as dates, respectively; the data types of all other
columns will be VARCHAR. With that information a
query such as the following can be written:
SELECT *
FROM TABLE

(CSVreader (
File => 'abc.csv',
Floats => DESCRIPTOR
("principal", "interest")

Dates => DESCRIPTOR
("due_date"))) AS S

In the FROM clause, the TABLE operator introduces the
invocation of a table function. A table function might
be either a conventional (monomorphic) table function
or a PTF. In this case, because CSVreader is
declared with return type TABLE, this is a PTF
invocation. This invocation says that CSVreader
should open the file called abc.csv. The list of output
column names is found in the first line of the file.
Among these column names, there must be columns
named principal and interest, which should be
interpreted as numeric values, and a column named
due_date which should be interpreted as a date.
During the compilation of this query, the RDBMS will
call the PTF describe component procedure and
provide this information to the component procedure.
In return, the component procedure will provide the
RDBMS with the row type of the result table.
The component procedures are SQL procedures that
are specified as a part of the definition of a PTF. For
example:
CREATE FUNCTION CSVreader (

File VARCHAR(1000),
Floats DESCRIPTOR DEFAULT NULL,
Dates DESCRIPTOR DEFAULT NULL)

RETURNS TABLE

56 SIGMOD Record, June 2018 (Vol. 47, No. 2)

NOT DETERMINISTIC CONTAINS SQL
PRIVATE DATA (FileHandle INTEGER)
DESCRIBE WITH PROCEDURE

CSVreader_describe
START WITH PROCEDURE

CSVreader_start
FULFILL WITH PROCEDURE

CSVreader_fulfill
FINISH WITH PROCEDURE

CSVreader_finish

The procedures CSVreader_describe,
CSVreader_start, CSVreader_fulfill, and
CSVreader_finish are SQL stored procedures
and can take advantage of the existing procedural
language, dynamic SQL, and other existing SQL
capabilities.

3.3.2 User Defined Join table function
The following example demonstrates a variety of
options that can be specified in a PTF. It is a function
that has input tables and also introduces options related
to input table semantics (row or set semantics, keep or
prune when empty) and the use of pass-through
columns to flow data unaltered to the result table.
The PTF UDJoin performs a custom user-defined
join. It takes two input tables, T1 and T2, and matches
rows according to some user defined join criterion that
may not be built into the database system. The PTF has
the following signature:
CREATE FUNCTION UDJoin
(T1 TABLE PASS THROUGH

WITH SET SEMANTICS
PRUNE WHEN EMPTY,

T2 TABLE PASS THROUGH
WITH SET SEMANTICS
KEEP WHEN EMPTY

) RETURNS ONLY PASS THROUGH

The RETURNS ONLY PASS THROUGH syntax
declares that the PTF does not generate any columns of
its own; instead the only output columns are passed
through from input columns.
WITH SET SEMANTICS is specified when the
outcome of the function depends on how the data is
partitioned. A table should be given set semantics if all
rows of a partition should be processed on the same
virtual processor. In this example, the entire table T2 is
sent to the virtual processors.
WITH ROW SEMANTICS specified on an input table
means that the result of the PTF is decided on a row-
by-row basis for this input table. This is specified if the
PTF does not care how rows are assigned to virtual
processors. Only tables with set semantics may be
partitioned and/or ordered.

The KEEP WHEN EMPTY option implies that the PTF
could generate result rows even if the input table (in
this example, T2), is empty. The result rows are based
on rows from the other input table T1. T1 is specified
with PRUNE WHEN EMPTY, meaning that there is no
output when the input table is empty. This example is
analogous to a left outer join.
The UDJoin PTF can be invoked in a query like this:
SELECT E.*, D.*
FROM TABLE

(UDJoin (
T1 => TABLE (Emp) AS E

PARTITION BY Deptno,
T2 => TABLE (Dept) AS D

PARTITION BY Deptno
ORDER BY Tstamp))

In this example, both input tables have set semantics,
which permits the use of PARTITION BY and
ORDER BY clauses. PARTITION BY says that the
input table is partitioned on a list of columns; each
partition must be processed on a separate virtual
processor. In this example, since there are two
partitioned tables, the RDBMS must in fact create the
cross product of the partitions of the two tables, with a
virtual processor for each combination of partitions.
(In the absence of PARTITION BY, a table with set
semantics constitutes a single partition.) The second
input table is also ordered; the RDBMS must sort the
rows of each partition prior to passing them to the
fulfill component procedure executing on any virtual
processor.
Consider the following variation of the same query:
SELECT E.*, D.*
FROM TABLE

(UDJoin
(T1 => TABLE (Emp) AS E

PARTITION BY Deptno,
T2 => TABLE (Dept) AS D

PARTITION BY Deptno
ORDER BY Tstamp
COPARTITION (Emp,Dept)))

Here, the COPARTITION clause allows each virtual
processor to avoid the cross product as in the earlier
example and collocates the corresponding values in the
Deptno columns from the two tables in the same
virtual processor.

4. ROW PATTERN RECOGNITION
Row Pattern Recognition (RPR) can be used to search
an ordered partition of rows for matches to a regular
expression. RPR can be supported in either the FROM
clause or the WINDOW clause. This article will discuss

SIGMOD Record, June 2018 (Vol. 47, No. 2) 57

RPR in the FROM clause; RPR in the WINDOW clause
uses much the same syntax and semantics.
RPR in the FROM clause uses the keyword
MATCH_RECOGNIZE as a postfix operator on a table,
called the row pattern input table.
MATCH_RECOGNIZE operates on the row pattern
input table and produces the row pattern output table
describing the matches to the pattern that are
discovered in the row pattern input table. There are
two principal variants of MATCH_RECOGNIZE:
— ONE ROW PER MATCH, which returns a single
summary row for each match of the pattern (the
default).
— ALL ROWS PER MATCH, which returns one row
for each row of each match.
The following example illustrates
MATCH_RECOGNIZE with the ONE ROW PER
MATCH option. Let Ticker (Symbol, Tradeday,
Price) be a table with three columns representing
historical stock prices. Symbol is a character column,
Tradeday is a date column and Price is a numeric
column. It is desired to partition the data by Symbol,
sort it into increasing Tradeday order, and then
detect maximal “V” patterns in Price: a strictly
falling price, followed by a strictly increasing price.
For each match to a V pattern, it is desired to report the
starting price, the price at the bottom of the V, the
ending price, and the average price across the entire
pattern. The following query may be used to perform
this pattern matching problem:
SELECT

M.Symbol, /* ticker symbol */
M.Matchno, /* match number */
M.Startp, /* starting price */
M.Bottomp, /* bottom price */
M.Endp, /* ending price */
M.Avgp /* average price */

FROM Ticker
MATCH_RECOGNIZE (

PARTITION BY Symbol
ORDER BY Tradeday
MEASURES

MATCH_NUMBER() AS Matchno,
A.Price AS Startp,
LAST (B.Price) AS Bottomp,
LAST (C.Price) AS Endp,
AVG (U.Price) AS Avgp

ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE
/* A defaults to True,

matches any row */
B AS B.Price < PREV (B.Price),
C AS C.Price > PREV (C.Price)

) AS M

In this example:
— Ticker is the row pattern input table.
— MATCH_RECOGNIZE introduces the syntax for
row pattern recognition.
— PARTITION BY specifies how to partition the row
pattern input table. If omitted, the entire row pattern
input table constitutes a single partition.
— ORDER BY specifies how to order the rows within
partitions.
— MEASURES specifies measure columns, whose
values are calculated by evaluating expressions related
to the match. The first measure column uses the
nullary function MATCH_NUMBER(), whose value is
the sequential number of a match within a partition.
The third and fourth measure columns use the LAST
operation, which obtains the value of an expression in
the last row that is mapped by a row pattern match to a
row pattern variable. LAST is one of many row pattern
navigation operations, which may be used to navigate
to specific rows of interest within a match.
— ONE ROW PER MATCH specifies that the result,
the row pattern output table, will have a single row for
each match that is found in the row pattern input table;
each output row has one column for each partitioning
column and one column for each measure column.
— AFTER MATCH SKIP specifies where to resume
looking for the next row pattern match after
successfully finding a match. In this example, PAST
LAST ROW specifies that pattern matching will
resume after the last row of a successful match.
— PATTERN specifies the row pattern that is sought in
the row pattern input table. A row pattern is a regular
expression using primary row pattern variables. In this
example, the row pattern has three primary row pattern
variables (A, B, and C). The pattern is specified as (A
B+ C+) which will match a single A followed by one
or more Bs followed by one or more Cs. An extensive
set of regular expression specifications are supported.
— SUBSET defines the union row pattern variable U
as the union of A, B, and C.
— DEFINE specifies the Boolean condition that
defines a primary row pattern variable; a row must
satisfy the Boolean condition in order to be mapped to
a particular primary row pattern variable. This example
uses PREV, a row pattern navigation operation that
evaluates an expression in the previous row. In this

58 SIGMOD Record, June 2018 (Vol. 47, No. 2)

example, the row pattern variable A is undefined, in
which case any row can be mapped to A.
— AS M defines the range variable M to associate with
the row pattern output table.
Here is some sample data for Ticker, having one
match to the pattern in the example (the mapping of
rows to primary row pattern variables is shown in the
last column):
Symbol Tradeday Price Mapped to

XYZ 2009-06-08 50

XYZ 2009-06-09 60 A

XYZ 2009-06-10 49 B

XYZ 2009-06-11 40 B

XYZ 2009-06-12 35 B

XYZ 2009-06-13 45 C

XYZ 2009-06-14 45

Here is the row of the row pattern output table
generated by the match shown above:
Symbol Matchno Startp Bottomp Endp Avgp

XYZ 1 60 35 45 45.8

Due to space restrictions, we cannot cover all RPR
features. For a detailed description of the RPR
functionality the interested reader is referred to [14].

5. ADDITIONAL FUNCTIONALITY
5.1 Default values and named arguments
for SQL-invoked functions
SQL:2011 allowed for a parameter of an SQL-invoked
procedure to have a default value and thus be optional
when invoking the procedure. A companion
enhancement is invoking a procedure using named
arguments [18]. SQL:2016 extends this functionality to
cover SQL-invoked functions as well. For example, a
function that computes the total compensation as the
sum of the base salary and the bonus (where the bonus
by default is 1000) can be defined like this:
CREATE FUNCTION Total_comp (

Base_sal DECIMAL(7,2),
Bonus DECIMAL(7,2) DEFAULT 1000.00
) RETURNS DECIMAL(8,2)

LANGUAGE SQL
RETURN Base_sal + Bonus;

This function can now be invoked in different ways:
— Passing all arguments by position:

Total_comp(9000.00, 1000.00)

— Passing all non-defaulted arguments by position:

Total_comp(9000.00)

— Passing all arguments by name (in this case the
order of the arguments does not need to match the
order of the parameters in the function signature):

Total_comp(Bonus=>1000.00,
Base_sal=>9000.00)

— Passing all non-defaulted arguments by name:
Total_comp(Base_sal=>9000.00)

All of these invocations return the same result
(10000.00). It should be clear that the greatest benefit
of named and defaulted arguments can be realized
when the parameter list is long and many parameters
have useful defaults. Specifying some argument values
by position and other arguments by name within the
same invocation is not supported.

5.2 Additional built-in functions
SQL:2016 adds support for additional scalar
mathematical built-in functions including
trigonometric and logarithm functions. The
trigonometric functions are sine, cosine, tangent, and
their hyperbolic and inverse counterparts. Besides the
existing natural logarithm function, SQL:2016 now
supports a general logarithm function (where the user
can specify an arbitrary value for the base) and a
common logarithm function (with the base fixed at 10).
LISTAGG is a new aggregate function that allows
concatenating character strings over a group of rows.

6. FUTURES
The SQL standards committee is currently working on
additional expansions in three areas, support for multi-
dimensional arrays, support for streaming data, and
support for property graphs.
The work on multi-dimensional arrays (aka
SQL/MDA) is well under way and will be completed
by the end of 2018. This new incremental part adds a
multi-dimensional array type so that instances of a
multi-dimensional array can be stored in a column of a
table and operations can be executed close to the data
in the RDBMS.
The SQL committee has begun investigating
requirements for streaming data and property graphs in
the context of SQL.

7. ACKNOWLEDGMENTS
The authors would like to acknowledge the following
people, who at one point or another in one form or
another have contributed to the standardization of the
functionality presented in this paper: Jim Melton,
Fatma Ozcan, Hamid Pirahesh, Doug McMahon,
Shashaanka Agrawal, Ivan Bowman, Karl Schendel,
Janhavi Rajagopal, Kathy McKnight, Hans Zeller, Dan

SIGMOD Record, June 2018 (Vol. 47, No. 2) 59

Pasco, Andy Witkowski, Chun-chieh Lin, Lei Sheng,
and Taoufik Abdellatif.
The authors would like to thank the following people
for reviewing earlier drafts of this paper and providing
valuable feedback: Jim Melton, Hermann Baer, Mark
Anderson, Andy Witkowski, and Claire McFeely.

8. REFERENCES
[1] ISO/IEC 9075-1:2016, Information technology —

Database languages — SQL — Part 1: Framework
(SQL/Framework)

[2] ISO/IEC 9075-2:2016, Information technology —
Database languages — SQL — Part 2: Foundation
(SQL/Foundation)

[3] ISO/IEC 9075-3:2016, Information technology —
Database languages — SQL — Part 3: Call-Level
Interface (SQL/CLI)

[4] ISO/IEC 9075-4:2016, Information technology —
Database languages — SQL — Part 4: Persistent stored
modules (SQL/PSM)

[5] ISO/IEC 9075-9:2016, Information technology —
Database languages — SQL — Part 9: Management of
External Data (SQL/MED)

[6] ISO/IEC 9075-10:2016, Information technology —
Database languages — SQL — Part 10: Object language
bindings (SQL/OLB)

[7] ISO/IEC 9075-11:2016, Information technology —
Database languages — SQL — Part 11: Information and
definition schemas (SQL/Schemata)

[8] ISO/IEC 9075-13:2016, Information technology —
Database languages — SQL — Part 13: SQL Routines
and types using the Java programming language
(SQL/JRT)

[9] ISO/IEC 9075-14:2016, Information technology —
Database languages — SQL — Part 14: XML-Related
Specifications (SQL/XML)

[10] ISO/IEC TR 19075-1:2011, Information technology —
Database languages — SQL Technical Reports — Part
1: XQuery Regular Expression Support in SQL,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[11] ISO/IEC TR 19075-2:2015, Information technology —
Database languages — SQL Technical Reports — Part
2: SQL Support for Time-Related Information,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[12] ISO/IEC TR 19075-3:2015, Information technology —
Database languages — SQL Technical Reports — Part
3: SQL Embedded in Programs using the JavaTM
programming language,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[13] ISO/IEC TR 19075-4:2015, Information technology —
Database languages — SQL Technical Reports — Part

4: SQL with Routines and types using the JavaTM
programming language,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[14] ISO/IEC TR 19075-5:2016, Information technology —
Database languages — SQL Technical Reports — Part
5: Row Pattern Recognition in SQL,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[15] ISO/IEC TR 19075-6:2017, Information technology —
Database languages — SQL Technical Reports — Part
6: SQL support for JavaScript Object Notation (JSON),
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[16] ISO/IEC TR 19075-7:2017, Information technology —
Database languages — SQL Technical Reports — Part
7: Polymorphic table functions in SQL,
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[17] Krishna Kulkarni and Jan-Eike Michels, “Temporal
features in SQL:2011”, SIGMOD Record Vol. 41 No. 3,
September 2012,
https://sigmodrecord.org/publications/sigmodRecord/12
09/pdfs/07.industry.kulkarni.pdf

[18] Fred Zemke, “What’s new in SQL:2011”, SIGMOD
Record, Vol. 41, No. 1, March 2012,
https://sigmodrecord.org/publications/sigmodRecord/12
03/pdfs/10.industry.zemke.pdf

[19] Andrew Eisenberg and Jim Melton, “Advancements in
SQL/XML”, SIGMOD Record Vol. 33 No. 3,
September 2004,
https://sigmodrecord.org/publications/sigmodRecord/04
09/11.JimMelton.pdf

[20] Andrew Eisenberg, Jim Melton, Krishna Kulkarni, Jan-
Eike Michels, and Fred Zemke, “SQL:2003 has been
published”, SIGMOD Record Vol. 33 No. 1, March
2004,
https://sigmodrecord.org/publications/sigmodRecord/04
03/E.JimAndrew-standard.pdf

[21] Jim Melton, Jan-Eike Michels, Vanja Josifovski,
Krishna Kulkarni, Peter Schwarz, Kathy Zeidenstein,
“SQL and Management of External Data”, SIGMOD
Record Vol. 30 No. 1, March 2001,
https://sigmodrecord.org/publications/sigmodRecord/01
03/JM-Sta.pdf

[22] Andrew Eisenberg and Jim Melton, “SQL:1999,
formerly known as SQL3”, SIGMOD Record Vol. 28
No. 1, March 1999,
https://sigmodrecord.org/publications/sigmodRecord/99
03/standards.pdf.gz

[23] Andrew Eisenberg, “New Standard for Stored
Procedures in SQL”, SIGMOD Record Vol 25 No. 4,
Dec.1996, https://sigmodrecord.org/issues/96-
12/sqlpsm.ps

[24] Internet Engineering Task Force, RFC 7159, The
JavaScript Object Notation (JSON) Data Interchange
Format, March 2014, https://tools.ietf.org/html/rfc7159

60 SIGMOD Record, June 2018 (Vol. 47, No. 2)

