
Uninterruptible Migration of Continuous Queries
without Operator State Migration

Thao N. Pham, Nikos R. Katsipoulakis, Panos K. Chrysanthis, Alexandros Labrinidis

Department of Computer Science, University of Pittsburgh, USA

{thao, katsip, panos, labrinid}@cs.pitt.edu

ABSTRACT
The elasticity brought by cloud infrastructure provides
a promising solution for a data stream management sys-
tem to handle its incoming workload, which can be
highly variable: the system can scale out when heav-
ily loaded, and scale in otherwise. In such a solution,
the efficiency of the mechanism used to migrate a query
from one node to another is very important. Generally, a
stream application requires real-time outputs for its con-
tinuous queries, and downtime is not acceptable. More-
over, the migration should not add considerable process-
ing cost to a node that could have been already over-
loaded. In this paper, we present our migration pro-
tocol, named UniMiCo, which satisfies those require-
ments. We implemented UniMiCo in a DSMS prototype
and experimentally show that the protocol preserves cor-
rectness, while introducing no noticeable changes in the
response time of the continuous query being migrated.

1. INTRODUCTION
Today, the ubiquity of sensing devices as well as mo-

bile and web applications leads to the generation of huge
amounts of data, which take the form of streams. Those
data streams are typically high-volume, high-velocity
(fast) and have high-variability (bursty). Data stream
management systems (DSMSs) have become the popu-
lar solution to handle data streams, by efficiently sup-
porting continuous queries (CQs), which process data
as they arrive on the fly.

The bursty incoming workload can overload the
DSMS during its peaks. As a result, output is delayed
and fails to meet the real-time requirements of moni-
toring applications and of emerging “Big Data” appli-
cations [8]. Most modern cloud infrastructures provide
elasticity, which can be used to handle overloading sit-
uations [9]. Flux [12] was one of the early attempts to
introduce a monitoring and load detection operator in a
query network, and provided a state migration protocol
to move CQs across different machines. Another solu-
tion uses backup Virtual Machines (VMs) for periodi-
cally storing state [3]. In the event of load imbalance,

the migrated CQs restore the state from the backup VMs
and apply incremental changes before resuming execu-
tion. Similarly, the operation migration mechanism in
[10] follows the state migration paradigm. The effi-
ciency of the migration mechanism is crucial, and no
system downtime is acceptable since it translates to loss
of data (hence the term “live” in previous work).

As part of the effort to scale-up/-down AQSIOS [4],
our DSMS prototype, we implemented our own query
migration protocol, named UniMiCo (Uninterruptible
Migration of Continuous Queries). UniMiCo has the
ability to (i) migrate stateful CQs without the need to
transfer any state, and (ii) do the migration in a “live”
fashion (i.e., no downtime).

Our approach on CQ migration generalizes the idea
of the Window Recreation Protocol (WRP) presented in
[7] in two functional ways: First, while WRP was pro-
posed to handle the migration of a sub-query with only
one stateful operator, the UniMiCo protocol allows mi-
grating a query with multiple stateful operators, each
of which could have a different window specification.
Second, in contrast to WRP that considers only time-
based windows, UniMiCo’s protocol has been designed
in a general way to handle both time-based and tuple-
based windows. A minor difference between WRP and
UniMiCo is that UniMiCo does not involve the upstream
data source in synchronizing the migration point, oth-
erwise the two protocols share the same performance
advantages and limitations. Both migration protocols
are equally effective in migrating operators without state
migration and query downtime, yet they might not be
suitable when the window is too large (e.g., 24 hours
[7]) since they may prolong an overloaded situation at
the originating node.

We make the following contributions in this paper:

• We present the complete UniMiCo protocol that
migrates a CQ with multiple stateful operators
from one node to another.

• We experimentally show that UniMiCo migrates
a CQ correctly without incurring any noticeable
“hiccups” in its response time.

SIGMOD Record, September 2017 (Vol. 46, No. 3) 17

2. SYSTEM MODEL
We assume a system consisting of multiple shared-

nothing nodes, connected by a reliable, high-speed net-
work. One node serves the role of the coordinator, while
the others are peers and each one of them runs one in-
stance of AQSIOS. AQSIOS is our experimental DSMS,
extended from the STREAM source code [2]. Our ex-
tensions include new operator implementation [6], op-
timization schemes [5], new scheduling policies [13],
load shedders [11], and UniMiCo, our protocol to trans-
fer a CQ from one node to another.

Based on the workload of each node reported by AQ-
SIOS’s load manager, the coordinator initializes a CQ
migration when necessary. For a specific CQ migration
between two nodes, we refer to the node which is run-
ning the CQ as originating node, and the node which
is going to receive the CQ as target node. The migra-
tion can be materialized either through direct commu-
nication between the originating and target nodes, or
through indirect communication via the coordinator. In
this paper we assume the former, but UniMiCo can work
equally well with the latter.

AQSIOS supports a CQ execution model similar to
Borealis and Apache Flink. Each AQSIOS node keeps a
copy of the whole query network, but, only a subset of it
is active on the node. A node only connects to the stream
sources that are necessary for the active queries in the
node. Data streams, coming from (possibly) different
sources, are received by the source operators, which are
the most upstream operators in a CQ. Figure 1 is an ex-
ample of our system model with two AQSIOS nodes.
The CQs comprised of dark operators are those active at
the node. The dashed lines represent network connec-
tions among the nodes.

In this paper we consider the whole query as the mi-
gration unit. However, the protocol can also be used to
migrate only a segment of a CQ: the operator(s) right be-
fore the migrated segment becomes the stream source(s)
for that segment. and their downstream operators act as
source(s) in the corresponding CQs.

Window-based operators
There are two types of operators in a CQ: stateless and
stateful operators. A stateless operator, such as selection
(�), produces an output tuple based solely on the current
input tuple. Conversely, a stateful operator, such as join
or aggregation, needs to refer to values from previous
input tuples. Due to the fact that input streams are infi-
nite, DSMSs use either tumbling or sliding windows, to
limit the state of operators. Sliding windows allow the
output to be continuously computed based on the most
recent “portion” of the stream data. In addition, a sliding
window is specified through a length (or range) l, and a
slide s, which can be either time interval or tuple count.

Figure 1: System model

These two types of windows are called time-based and
tuple-based windows, respectively [2].

While most DSMSs embed the window definition into
the stateful operator, some systems treat it as a separated
operator (e.g., [2]). In this paper, when the semantics of
the stateful operator are not important, we refer only to
the window aspect of it as if the window is a separate op-
erator. UniMiCo works the same way no matter whether
the window operator is physically merged to the corre-
sponding aggregate/join operator or not.

3. UNIMICO
The key goal of UniMiCo is to avoid transferring state

during the migration of a CQ containing stateful opera-
tors. To achieve this, UniMiCo migrates a CQ at a win-
dow boundary, meaning that the originating node con-
tinues processing until it completes the last in-progress
window, while the target node starts processing from the
first tuple of the next window. Given that two consecu-
tive sliding windows overlap, the tuples belonging to the
overlap of the two windows are processed by both the
originating and the target nodes. This way, the state of
the operator is reconstructed at the target node so there
is no need to migrate it.

We illustrate this strategy in Figure 2. In this exam-
ple, the sliding window of a stateful operator (e.g., ag-
gregate) has a size of 4 seconds and a slide of 2 sec-
onds, with input rate 1 tuple/second. The number in

Figure 2: UniMiCo’s migration strategy

18 SIGMOD Record, September 2017 (Vol. 46, No. 3)

each stream tuple is its timestamp, which is assumed
to monotonically increase over time (i.e. in-order pro-
cessing of tuples). By the time the migration process
starts, the most recent window produced is w1, whose
start timestamp is 1. In addition, the first tuple received
by the target node after it connects to the stream has a
timestamp of 4. UniMiCo determines that (1) the orig-
inating node will continue processing until w2 expires,
which happens to be the last window with start times-
tamp less than 4, and (2) the corresponding CQ at the
target node will start processing tuples with timestamp
greater or equal to 5 (w3).

3.1 Migration timestamp
The migration timestamp marks a CQ hand-off from

the originating to the target node. That timestamp is
used to synchronize the stop of the last window at the
originating node and the start of the next window at the
target node.

Definition The migration timestamp is the start times-
tamp of the last window to be processed at the originat-
ing node.

In the example in Figure 2, the start timestamp of w2,
which is 3, is the migration timestamp.

3.1.1 Calculating the migration timestamp
The exact calculation of the migration timestamp de-

pends on the implementation details of the window op-
eration. In this section we present how to calculate
the migration timestamp on both time-based and tuple-
based cases. In all the equations below, s denotes the
slide of the window.

Time-based, single-input window: Assuming a time-
based window of length l and slide s, let tsstart denote
the timestamp of the first input tuple the stream source
at target node was able to read after connecting to the
stream. Furthermore, tslast w is the timestamp of the
most recent window processed. The migration times-
tamp, denoted tsmi is calculated as follows (note that
now s is in number of tuples):

tsmi =

⇢
tslast w if tsstart  tslast w

tsstart � � otherwise

where � =

⇢
s if (tsstart � tslast w)%s = 0
(tsstart � tslast w)%s otherwise

(1)

Tuple-based, single-input window: For tuple-based
windows, the calculation is the same in the case when
tsstart  tslast w. When tsstart > tslast w, UniMiCo
needs to wait until a tuple t comes to the window opera-
tor, whose timestamp is equal to or greater than tsstart.
This way, UniMiCo is aware of the number of tuples
with timestamps between tslast w and tsstart (let that

number be N). The migration timestamp can be calcu-
lated by the following equation:

tsmi = timestamp(�th tuple preceding t)

where � =

⇢
s if (N + 1)%s = 0
(N + 1)%s otherwise

(2)

Multiple-input window: The most common example
of window-based operator with multiple inputs is a bi-
nary join. For time-based windows, Equation 1 can be
used, with tsstart = max(tsstarti), where tsstarti is
the timestamp of the first input tuple the stream source
i at target node was able to read. For tuple-based win-
dow, the number of tuples Ni coming between tsstarti

and tslast w is calculated separately for each input i. Af-
terwards, Equation 2 is applied with N = max(Ni).

Multiple window operators: A CQ can have multiple
window-based operators with different window specifi-
cations (i.e., length and slide), such as a query with an
aggregation on top of a join. For these cases, we intro-
duce the concept of the controlling window operator.

Definition The controlling window operator is the last
window operator of the CQ. The controlling window op-
erator handles the calculation of the migration times-
tamp, as well as controlling the start and stop of the mi-
grated query at the target and originating nodes.

For simplicity, we assume that the timestamp of an
output tuple of a window-based operator is the earliest
timestamp of input tuples involved in the calculation of
that output tuple (we discuss later how this assumption
is relaxed). When the aforementioned condition holds,
we know that all the original input tuples, contributing
to the result produced by the farthest window of start
timestamp ts, have timestamps greater than or equal to
ts. Therefore, only the farthest window operator (i.e.,
the controlling window operator) in the CQ needs to be
involved, and the calculation is the same as in the case
of single window. Note that the previous assumption is
not required for the controlling window operator.

Figure 3 shows an example of a CQ consisting of two
window-based operators: a binary join, whose window
has length of 4 seconds and slide 2 seconds, followed
by an aggregation, whose window has length of 3 tu-
ples and size of 2 tuples. For each tuple its timestamp
is shown on the upper and its join key on the bottom
part. For the controlling window, the most recent win-
dow being produced is w21, whose start timestamp is 1
(i.e., tslast w = 1). In addition, assume that out of the
two first tuples read from S and T by the target node,
the latest timestamp tsstart equals 5. In this case, the
migration timestamp is calculated as if there is only the
controlling window operator (i.e, the aggregation) with
two inputs S and T. Because the controlling window op-
erator is tuple-based, UniMiCo has to wait until tuple

SIGMOD Record, September 2017 (Vol. 46, No. 3) 19

Figure 3: Calculating migration timestamp with two consecutive windows

t of timestamp 7 arrives to know that there are 3 tuples
whose timestamps are between 1 and 5, i.e., N = 3.
Applying the calculation from Equation 2 for the case
of tuple-based window, UniMiCo decides that the mi-
gration timestamp is that of the tuple preceding t, which
is 4. That is, the last window produced at target is w21.

When the previous condition on output tuples’ times-
tamps of preceding window operators does not hold,
tsstart is measured as the timestamp of the first tuple ar-
riving at the controlling window operator on the target
node. Note than when this condition holds, tsstart is the
timestamp of the first tuple coming to the source opera-
tor, i.e., it can be captured earlier. With the new tsstart,
all of the above calculations of the migration timestamp
are still applicable. Note that in this case if tsstart is
smaller than tslast w, there will be some wasted process-
ing at the target to process tuples from source up to the
controlling window between tsstart and tslast w. Since
migration happens when the target is lightly loaded, it
is expected that processing at the target node will be at
least as fast as that at the originating node, hence the
wasted processing, if any, would be small.

3.2 Stoping and resuming CQs

3.2.1 Stopping the query at the originating node
Once the migration timestamp is determined, stop-

ping the query at the originating node is relatively
straightforward: all operators in the CQ continue to
process normally until they receive the signal from the
controlling window operator to deactivate themselves,
unless they are shared with other CQs. This happens
when the controlling window operator has consumed
its last window, i.e., the window started with the migra-
tion timestamp. Shared operators are not deactivated at
the originating node and continue to process normally to
serve the remaining queries. Upon stopping, an operator
cleans up all its queues.

When the controlling window operator is associated
with a join, a minor adjustment is needed in order to
avoid duplicate outputs between the originating and tar-
get nodes. Normally, when there is a match between a
tuple t of one input and t

0 of the other, the join tuple
tt

0 is produced only once, even if both t and t

0 fall in
the overlap of two (or more) consecutive windows. If

we start migrating from one of the windows, the join
tuple tt

0 will be produced once at the originating node,
and again at the target node. In the latter case, the pro-
duction of a duplicate tuple is avoided by suppressing
the production of the join result at the originating node.
Note that when two matching tuples have their times-
tamps in the window overlap, the previous adjustment
is needed only if the join is the last window-based op-
erator in the query. In the event that a join is followed
by another window operator, the duplicated intermediate
output tt0 is needed, as it is an input for the subsequent
window at the target node.

3.2.2 Starting the query at target node
The operators of a migrated CQ can be activated at

the target node, as soon as the migration is initialized.
However, full activation is attained by controlling the
flow of tuples based on the migration timestamp. That
process is different for time- and tuple-based windows,
as we describe below.

Time-based controlling window operator: If the CQ
has a time-based controlling window operator, the
stream source operator(s) calculate(s) the activation
timestamp as migration timestamp increased with the
slide of the window. Then, the stream source operator
discards any input tuples, which carry timestamps less
than the activation timestamp. In addition, it starts pro-
ducing tuples with timestamp equal to or greater than
the activation timestamp. With tuples being outputted
from the stream source(s), the query is fully activated.

Tuple-based controlling window operator: In this case,
the stream source operator(s) start(s) producing results
from tuples with timestamps greater than the migration
timestamp. But, the controlling window operator will
discard all first (s � �) tuples, where s is the slide of
the window and � is calculated from Equation 2 by the
originating node.

For both types of windows, if the output timestamp
of the preceding window-based operator is not the win-
dow’s start timestamp, the controlling window operator
has the only authority to decide when to output tuples.
Thus, the source operator cannot do any early filtering.

Algorithms 1 and 2 outline the UniMiCo protocol ex-
ecuted at target and originating node, respectively.

20 SIGMOD Record, September 2017 (Vol. 46, No. 3)

Algorithm 1 UniMiCo protocol at target node
1: BEGIN
2: Receive(originating node, migrate(Q))
3: for i = 0; i < Q.num streams; i++ do
4: connect(Q.streams[i])
5: tsstart[i] = read(Q.streams[i])
6: end for
7: Send(originating node, tsstart)
8: Receive(originating node,tsmi)
9: Resume Q based on tsmi

10: END

Algorithm 2 UniMiCo protocol at originating node
1: INPUT: Query Q to be migrated
2: BEGIN
3: Send(target node, migrate(Q)
4: Receive(target node, tsstart)
5: tsmi = calculate migration timestamp
6: Send(target node, tsmi)
7: Finish processing(Q, tsmi)
8: END

4. EXPERIMENTAL EVALUATION
While UniMiCo enhances WRP’s functionality, at the

same time it inherits from WRP both its performance
advantages and its limitations as stated in Introduction.
Since these were experimentally shown in [7], our ex-
perimental evaluation focused on showing that UniM-
iCo migrates CQs with single and multiple stateful op-
erators correctly without impacting their response time.

We implemented and evaluated UniMiCo in a dis-
tributed setup of AQSIOS. As mentioned earlier, the
window operator in AQSIOS is a separate operator,
which receives stream tuples as input, and injects mi-
nus tuples to the stream to mark the boundary of a win-
dow [1]. Windows can have either time-based or tuple-
based length, but the window slide is always 1 tuple.
Therefore, window-based operators, such as join or ag-
gregation, will rely on those minus tuples to perform
their window-based processing. With the separation of
the window operator, each input to a join operator can
have a window of different length and type. In this pa-
per, we assume that join inputs have windows of the
same length and the same type, however, our design can
be extended to heterogeneous window environments.

We ran two types of experiments: (1) simple CQs
with a single window operator and (2) a complex CQ
consisting of two window operators. Given our focus
on correctness and not performance, window size is not
an important parameter in our experiments. We ran each
CQ twice, under the same settings, and changed only if a
migration took place. Then, we compared CQs’ outputs
and response times around the migration point.

4.1 Simple CQ migration (Figures 4 & 5)
We used UniMiCo to migrate a CQ with a join oper-

ator (Q1), and another one with an aggregate operator

Output with migration

Output without migration

 0

 5

 10

 15

 20

 8 8.5 9 9.5 10 10.5 11 11.5 12

re
sp

on
se

 ti
m

e
(m

s)
time(s)

With migration Without migration

Figure 4: Results and response time of Q1 around
the migration point at 10th sec. The response time
lines corresponding to “with migration” and “with-
out migration” are indistinguishable as the migra-
tion adds no noticeable delay

(Q2). These two queries written in CQL [2] are:
Q1 Q2
SELECT *
FROM S [Range 10 seconds],

T [Range 10 seconds]
WHERE S.l = T.l;

SELECT sum(m)
FROM S [Rows 5];

where S and T are input streams. Q1 is associated
with time-based windows with size 10 seconds (i.e.,
[Range 10 seconds]) whereas Q2 is associated with a
tuple-based window of size 5 (i.e., [ROWS 5]).

Figures 4 and 5 show the results of Q1 and Q2 around
the migration point, respectively. In Figure 4, the top
plot is the result under migration, in which the rows
above the dashed line are the last output tuples at the
originating node, and those below are the first output
tuples at the target node. The middle plot shows the re-
sult without migration, which is exactly the same as the
concatenation of the two parts of the top plot. Similar
observations can be made in Figure 5 for Q2. As one
can see, the correctness of the output is maintained by
using UniMiCo, and its protocol succeeds in performing
the hand-off without losing any data.

The bottom plots in Figures 4 and 5 show the response
time of queries Q1 and Q2 two seconds before and af-
ter the migration point of about the 10th second. As
can be seen in both figures, there are no noticeable “hic-
cups” in the response time of the queries throughout the

SIGMOD Record, September 2017 (Vol. 46, No. 3) 21

Output with migration Output without migration

 0

 5

 10

 15

 20

 8 8.5 9 9.5 10 10.5 11 11.5 12

re
sp

on
se

 ti
m

e
(m

s)

time(s)

With migration Without migration

Figure 5: Results and esponse time of Q2 around the
migration point at 10th second. The response time
lines corresponding to “with migration” and “with-
out migration” are indistinguishable as the migra-
tion adds no noticeable delay

migration. For Q1, the average and standard deviation
of the response time in this period without migration is
3.751 ms and 3.99 ms, respectively, while under migra-
tion they are 3.750 ms and 3.97 ms. For Q2, the corre-
sponding numbers are 3.155 ms and 3.923 ms without
migration, and 3.101 ms and 3.836 ms with migration.
In both cases, the difference is negligible.

4.2 Complex CQ migration (Figure 6)
In this experiment we migrated a more complex query

Q3, consisting of a join and an aggregate operator, each
using a different window definition as below:

Q3: SELECT sum(S.m)
FROM ISTREAM (SELECT *

FROM S [Range 10 seconds],
T [Range 10 secon

WHERE S.l = T.l) [ROWS 5];

In this case, the last window, which is the tuple-based
window of size 5 (i.e., [ROWS 5]) associated with the
aggregation, plays the role of the controlling window.

Figure 6 shows the output tuples and the response
time of the query Q3 around the migration point, com-
pared with the run when there is no migration. Sim-
ilar to the cases of the simple queries, the query out-
put is preserved and the cost of migration is not notice-
able. The average and standard deviation of the response
time without migration are 6.568 ms and 6.133 ms re-
spectively, while those with migration are 6.658 ms and
6.217 ms.

5. CONCLUSIONS
We presented UniMiCo, a general migration protocol

for CQs, used in distributed DSMSs. UniMiCo achieves

Output with migration Output without migration

 0

 10

 20

 30

 40

 50

 8 8.5 9 9.5 10 10.5 11 11.5 12

re
sp

on
se

 ti
m

e
(m

s)

time(s)

With migration Without migration

Figure 6: Results and response time of the complex
query Q3 around the migration point at 10th second.
The response time lines corresponding to “with mi-
gration” and “without migration” are indistinguish-
able as the migration adds no noticeable delay

migration without the need to transfer state or stop pro-
cessing input tuples during CQ hand-off. UniMiCo is
more general than previous work by being applicable
to CQs with different window semantics and with mul-
tiple stateful operations. Our experimental evaluation
demonstrated UniMiCo’s feasibility, by implementing it
in a full-fledged prototype DSMS (AQSIOS). Our exper-
iments showed its correctness and that it does not incur
any noticeable delays in the CQ’s response time.

6. REFERENCES
[1] A. Arasu et al. Stream: The stanford data stream management

system. Technical report, Stanford InfoLab, 2004.
[2] B. Babcock, S. Babu, et al. Models and issues in data stream

systems. In PODS ’02.
[3] R. Castro Fernandez et al. Integrating scale out and fault

tolerance in stream processing using operator state
management. In SIGMOD ’13.

[4] P. K. Chrysanthis. AQSIOS - Next Generation Data Stream
Management System. CONET Newsletter, 2010.

[5] S. Guirguis et al. Optimized processing of multiple aggregate
continuous queries. In CIKM ’11.

[6] S. Guirguis et al. Three-level processing of multiple aggregate
continuous queries. In ICDE’12.

[7] V. Gulisano et al. Streamcloud: An elastic and scalable data
streaming system. IEEE TPDS, 2012.

[8] H. V. Jagadish et al. Big data and its technical challenges.
CACM, Jul 2014.

[9] N. R. Katsipoulakis et al. Ce-storm: Confidential elastic
processing of data streams. In SIGMOD, 2015.

[10] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed
stream join processing. In SIGMOD ’15.

[11] T. N. Pham, P. K. Chrysanthis, and A. Labrinidis. Avoiding
class warfare: Managing continuous queries with
differentiated classes of service. VLDBJ, 2016.

[12] M. A. Shah et al. Flux: an adaptive partitioning operator for
continuous query systems. In ICDE’03.

[13] M. Sharaf et al. Algorithms and metrics for processing
multiple heterogeneous continuous queries. ACM TODS, 2008.

22 SIGMOD Record, September 2017 (Vol. 46, No. 3)

