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ABSTRACT

Various indexing methods of spatial data have come out af-
ter rigorous efforts put by many researchers for fast process-
ing of spatial queries. Parallelizing spatial index building
and query processing have become very popular for improv-
ing efficiency. The MapReduce framework provides a mod-
ern way of parallel processing. A MapReduce-based works
for spatial queries consider the existing traditional spatial
indexing for building spatial indexes in parallel. The ma-
jority of the spatial indexes implemented in MapReduce use
R-Tree and its variants. Therefore, R-Tree and its variant-
based traditional spatial indexes are thoroughly surveyed in
the paper. The objective is to search for still less explored
spatial indexing approaches, having the potential for par-
allelism in MapReduce. The review work also provides a
detailed survey of MapReduce-based spatial query process-
ing approaches - hierarchical indexed and packed key-value
storage based spatial dataset. Both approaches use differ-
ent data partitioning strategies for distributing data among
cluster nodes and managing the partitioned dataset through
different indexing. Finally, a number of parameters are se-
lected for comparison and analysis of all the existing ap-
proaches in the literature.
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1. INTRODUCTION AND MOTIVATION

Support of high performance queries on spatial data has
become important due to the large volume, high compu-
tational complexity of spatial data, and considerable time
taken by complex spatial queries [70]. The representation
of semi-structured spatial data in Well-Known-Text (WKT)
and Well-Known-Binary (WKB) spatial data storage for-
mat, specified by the Open Geospatial Consortium (OGC)
[4], makes it interoperable. Distributed spatial database sys-
tems offer a variety of spatial query functions and indexes
for fast data retrieval but lacks in scalability [28]. Limita-
tion of spatial databases for fixed schema and strict database
norms does not make these suitable for handling big spatial
data [63].

The distributed computing technology has witnessed high
scalability and an excellent performance through its com-
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putational power. It has encouraged the evolution of mod-
ern parallel processing frameworks, such as the MapReduce-
based Hadoop [1], HBase [2, 71], Cassandra [43] and BigTable
[19]. The pros and cons of these frameworks are discussed
in [9, 32, 37, 45]. These frameworks provide an excellent
scope for scalability and high performance computational
power over traditional stand-alone systems for processing a
large amount of data [3, 30, 31, 56]. Recently, MapReduce
parallel frameworks have been extensively used for dealing
with semi-structured spatial data and related queries effi-
ciently [8, 66, 72]. CG_Hadoop contains a suite of MapRe-
duce algorithms for various computational geometry prob-
lems for dealing with large scale spatial data [21]. However,
the key-value storage based techniques do not process spa-
tial queries efficiently, as these require exhaustive searching.
These techniques are able to scale, but cannot handle multi-
dimensional spatial data [68]. Due to limitations of spatial
databases and the key-value storage based distributed sys-
tems, integration of well known spatial indexing methods on
MapReduce has evolved for improving the data access.

The research in the field of spatial index construction and
spatial query has always been inspired by minimizing in-
dex construction and query execution time. Top-down or
bottom-up approaches for well-known datasets, also known
as batch-oriented methods [12, 39, 40, 44, 46, 59], over the
slow and incremental methods [11, 14, 15, 29, 35, 41, 62] are
the result of such motivation. Parallel processing techniques
for the bulk loading spatial index and spatial query execu-
tion has continued this research trend. A single processor-
multiple disk system [35], multiple processors-multiple disk
system [55] and, now, a MapReduce-based systems [7, 8, 17,
18, 27, 47, 49, 65, 66, 68, 69, 70, 72| are the results of such
researches.

Recently, a lot of work has been done for indexing spatial
data and implementing spatial queries for fast data retrieval.
Many algorithms, discussed in Section 2, are available for
the same. The MapReduce framework for parallel process-
ing is proven handy for operations requiring intense com-
puting and improved execution time to a considerable ex-
tent. Through this survey, it has been found that in the
last few years the MapReduce framework has been exploited
in the field of spatial data. The Section 3 discusses re-
search works, for parallelizing existing traditional spatial
indexes, for speeding up spatial query execution. Proba-
bly, the most relevant review of the present survey work
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is the survey of a large-scale analytical query processing in
MapReduce [20]. It has provided a very good classifica-
tion of existing approaches for optimizing the performance
of MapReduce and analyzed join queries in MapReduce.
However, in the present paper, spatial data-oriented data
access methods have been surveyed to 1) analyze the ex-
isting non-disjoint decomposition methods for bulk-loading
spatial indexes, which forms an integral part for processing
spatial queries based on spatial index methodology, and 2)
analyze the work done so far in the domain of spatial query
processing on MapReduce.

The rest of the survey is organized as follows. Section 2 re-
views the existing traditional indexing approaches for spa-
tial data. Section 3 presents classification and details of re-
cent spatial query processing approaches, implemented in
MapReduce, into two categories. The first category dis-
cusses a hierarchical indexed approaches on spatial dataset
and the second category discusses key-value storage based
indexed approaches. The two categories differ in the way
spatial index is implemented on the partitioned dataset.
The approaches in both categories mainly differ in the spa-
tial data partitioning strategies on cluster nodes. Section 4
presents summary of the paper.

2. TRADITIONAL SPATIAL INDEXING
APPROACHES

In this section, existing spatial indexes, for non-disjoint de-
composition, in the serial programming environment, are
discussed. These are categorized according to the approach
used for building an R-Tree and its variants, as shown in Fig.
1. The intent is to identify a good spatial index, having the
potential for parallelization. Various dynamic and static
indexing techniques, in a serial programmed environment
are discussed in Section 2.1 and 2.2, respectively. The R-
Tree and its variant indexes have been explored thoroughly
with regard to parameters, such as space utilization, inser-
tion cost, spatial query performance for uniformly and non-
uniformly distributed data, number of nodes to be searched
for spatial query, applicability in high dimensions and worst-
case performance. A summary of traditional spatial indexes
describing support for various functionalities is presented in
Table 1.

2.1 Dynamic Indexes

The dynamic index is built at run-time for dynamic data.
The techniques mentioned in this section for spatial index
structures, mainly work on one or a combination of more
factors, such as coverage, margin and overlap, for creating
index structure. Firstly, we discuss the basic R-Tree [5,
29], R*-Tree [11], and R+-Tree[62] and secondly, various
improvements over these basic tree structures for optimizing
the parameters and its effect on query execution [12, 14, 41].

2.1.1 The Basic R-Tree Variants

The index of a dynamic R-Tree provides a high load time,
sub-optimal space utilization, and a poor R-Tree structure
[5, 29]. The index takes a large search time due to high
overlapping of rectangles. The R-Tree optimization metrics
require enclosing rectangle to be of larger size and contains
the maximum number of data rectangles as per the node ca-
pacity. This causes assignment of a large number of entries
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Figure 1: Traditional Spatial Indexing Approaches

to a node, and consequently, a high overlap among nodes.
The query performance of R-Tree deteriorates with skewed
data, as it causes increased overlapping. The directory rect-
angles from the early-inserted data rectangles may not ef-
ficiently represent the current data. Various node splitting
and re-insertion methods provide solutions to the problem
that distinguishes dynamic variants of the R-Tree.

R*-Tree optimizes coverage, margin and overlap of enclos-
ing rectangles in internal nodes for data insertion and node
splitting [11]. It is due to the split and forced reinsert algo-
rithms of the R*-Tree that preserves the proximity of smaller
rectangles in a node. The R*-Tree has a better retrieval per-
formance due to a better tree structure. A better structure
of R*-Tree than the R-Tree causes the insertion cost of R*-
Tree comparable to R-Tree for uniformly distributed data,
but much better for skewed data. The execution time of
the spatial-join queries improves for R*-Tree on processor
time and Input/Output (I/O) [16]. The R+-Tree provides
a zero overlap among intermediate nodes through a disjoint
decomposition [62]. The search performance of R+-Tree, in
terms of disk accesses, is more than 50% than R-Tree for
point queries, but space consumption of R+-Tree structure
is more than the R*-Tree due to disjoint search space.

2.1.2  The Improved R-Tree Variants

The improved R-Tree variants work towards a better node-
split for minimizing overlap among partitioned MBRs. Node
splitting algorithm in RR*-Tree considers, a degree of the
balance of a split and the perimeter based strategy, apart
from the criteria, coverage, margin and overlap considered
in R*-Tree [12]. The RR*-Tree shows a better performance
than R-Tree variants due to its overlap optimization at all di-
rectory levels. It becomes better for high dimensional space
due to a good balance maintaining splitting algorithm and
perimeter based optimization. However, the overlap and
perimeter based optimization is more compute-intensive for
insertions. The WeR-Tree achieves better space utilization
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Table 1: A Summary of Traditional Spatial Indexes in Serial Programming Environment

Approach| Types Index C1| C2| C3| C4| C5
Dynamic | Basic R-Tree variants R-Tree [5, 29] VIIVviIiviiv[X
indexes
R*-Tree [11]
R+-Tree [62]
Improved R-Tree variants Revised R*-Tree [12]
WeR-Tree [14]
X-Tree [41]
Static Data clustering approach cR-Tree using k-means
indexes clustering [15]

R-Tree through iterative
optimization [26]

Sorting MBRs approach

Hilbert R-Tree [39, 40]

STR R-Tree [46]

Lowx R-Tree [59]

Hilbert-curve on a tree

structure [44]

MR-Tree [67]

Top-down approach

TGS R-Tree [25]

Priority R-Tree [10]

Cache-conscious approach CR-Tree [42]

CR-Tree variant [34]
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v'- Support for functionality exists and X - Support for functionality does not exist

A-Efficient storage utilization, B-Reducing insertion cost, Spatial query performance for uniformly distributed data: C1-
Query Rectangle/ Enclosure query, C2-Point query, C3-Intersection query, C4-Spatial-join query, C5-Nearest-neighbor query,
D-Effect of data skewness-a kind of non-uniform data distribution, E-Number of nodes to be searched for spatial query,
F-Applicability in high dimension, and G-Worst-case performance

and search performance than the R*-Tree [14]. It uses a
packing technique to organize its structure better than R*-
Tree, however, it takes a significant amount of time to bulk-
load and reconstructing a sub-tree of unbalanced node.

The packing causes data points to be stored uniformly in
leaf nodes that lead to fewer activated paths for queries. The
insertion strategy searches for an unbalanced node location
to insert a new entry in the existing R-Tree and partially
builds a sub-tree there by keeping nodes in balance. The
R*-Tree splits nodes for minimizing the volume of the result-
ing MBRs and thus causes more overlap in high dimensions
and reduces the efficiency of an index structure. The X-Tree
introduced overlap-free split policy and high page capacity
nodes, named Super-nodes [41]. The overlap-free node split
along a particular axis uses split history for data insertion.
The Super-nodes handle unbalancing of node-fill caused due
to overlap-free split and store more entries as compared to
simple nodes to provide more storage utilization.

2.2 Static Indexes

Index building with dynamic insertion algorithms provide
a significant dead space in nodes and results in bad perfor-
mance. R-Tree variants do not exploit known dataset during
insertion. However, if R-Tree is built statically, then, space
utilization improves, as heuristic pack the input data space.
This section categorizes different static indexes for spatial
data on the basis of heuristic packing used for building in-
dex and discusses the effect of packing spatial datasets for
constructing R-Tree and variants [10, 15, 25, 26, 39, 40, 44,
46, 59, 67], as well as spatial query performance.
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2.2.1 Data Clustering Approach

The clustering technique splits spatial objects in the nodes
on the basis of spatial proximity according to some param-
eter to minimize data access time. The K-means clustering
technique is used for constructing the cR-Tree [15]. The
k-means algorithm is order independent, unlike linear split
heuristic of R-Tree and, time and space complexity of K-
means is analogous to linear split algorithm of R-Tree. It
uses multi-way split procedure than the traditional two-way
split procedure for realizing an efficient R-Tree. The low in-
dex building time of cR-Tree is due to significant time saving
on following a simple insertion algorithm as compared to the
one used in R*-Tree. In another D-dimensional and batch
oriented packing, the dimensional sort curve builds R-Tree
by partitioning the D-dimensional data space into K par-
titions such that the volume of all the enclosing rectangles
is minimized [26]. Though the linear packing methods are
fast, but the D-dimensional approach better packs the data.
It takes into account positions and spatial extents of objects
in all dimensions that are achieved by a linear method. The
batch oriented methods follow a bottom-up approach level
by level, and consequently, achieves a high degree of paral-
lelism. The method is poor, as it uses a large number of
disk accesses and the efficiency deteriorates with data skew
and dimensionality. The clustering method for constructing
R-Tree in high dimensions is compute intensive as compared
to R*-Tree and Hilbert R-Tree, but it performs better than
the two on query execution time. It is because the latter two
assign rectangles from different clusters to the same R-Tree
node [15, 26].
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2.2.2 Sorting MBRs Approach

One class of R-Tree indexes is bulk-loaded by sorting the
MBRs either along one dimension or both dimensions in a
two dimensional space. The tree leaves are filled-up first
and, then, the rest of the index is built step-by-step in a
bottom-up manner [39, 40, 44, 46, 59, 67]. In one such ap-
proach, the correspondence between points on space-filling
curve, Hilbert-curve, and their sequence numbers are ex-
pressed as a tree structure [44]. It provides an overlap free
tree node structure for the Hilbert-curve of a particular or-
der. However, it is impractical to store the mapping of
space filling curves to a tree representation explicitly and
the traversal from the root to a leaf takes excessive node
accesses.

In another approach, the Lowx R-Tree, a packed R-Tree
for static environment, provides a simple method of pack-
ing spatial data using a dimension sort curve [59]. It sorts
the rectangles with their x or y coordinates of one of the
corners of the rectangle. It provides thin, long bounding
rectangles along one dimension that results in nodes hav-
ing less area but large perimeter. It performs well for point
queries, but not so well for larger queries, such as region
queries. The performance of queries decreases for skewed
data. The solution to the problem was obtained by apply-
ing sorting and partitioning step for each of the dimensions
[46]. The authors presented a Sort-Tile-Recursive (STR)
packing algorithm to improve load time, space utilization
and data retrieval efficiency of R-Tree. In another two-tier
index MR-Tree, a combination of grid index and STR R-
Tree index, two disk accesses take the search to a local STR
R-Tree [67]. It reduces the search space and the number of
node accesses in the MR index. However, the MR index is
inferior to STR index in terms of spatial efficiency of the in-
dex. It is due to the low spatial efficiency of the grid index.
The I/O cost of MR-Tree is lower as compared to STR-Tree
for similar reason.

The Hilbert-curve based packing shows higher performance
for uniformly and skewed data by minimizing area and
perimeter of R-Tree leaf nodes [39, 40]. A slight variation of
it sort MBRs on the basis of the Hilbert value of the center
of rectangles for constructing R-Tree [40]. The nodes of the
tree, put similar MBRs together and minimize the area and
perimeter of MBRs under one node and achieve high space
utilization. This approach brings proximity to the data ob-
jects in R-Tree nodes, and consequently, provides more space
utilization by reducing the perimeter and area of the nodes.
The Hilbert R-Tree performs better for all types of data
than R*-Tree in terms of the number of node accesses. It
achieves a high space utilization but the insertion time is
comparable to R*-Tree due to ordering of data according
to Hilbert-curve. The STR and Lowx R-Tree are better
than Hilbert-curve based R-Tree for uniformly distributed
points and region data [46, 59]. It is because the index-
ing methods based on space-filling curves (SFC) for R-Tree
construction do not preserve spatial locality well and pro-
duce approximate results. For the same reason, STR-based
R-Tree is much better than Hilbert-curve based R-Tree for
skewed data for point and region queries. However, Lowx-
based R-Tree performs poorly because of poor packing of
data.
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2.2.3  Top-Down Approach

One class of R-Tree indexes is bulk-loaded in a top-down
manner. The R-Tree index is constructed in two steps:
firstly, a good partition of the data is generated recursively,
and secondly, the index is built from root to leaf. A Top-
down Greedy Split (TGS) algorithm divides input dataset
into two subsets through a recursive split procedure and con-
structs R-Tree in a top-down manner [25]. The split applies
heuristic, such that the cost of some objective function on
MBRs of each split subset is minimized and each subset has
sufficient number of rectangles, so that resulting sub-trees
are packed. The bulk-loading in TGS R-Tree requires more
I/Os as compared to other R-Tree variants, since it scans all
the rectangles to make the partition decision. However, TGS
R-Tree performs comparable to Hilbert R-Tree and STR R-
Tree on uniformly distributed data, and outperforms the
latter two for large rectangles and skewed data, for point
and range query. In another top-down approach, a Priority
R-Tree is built from the priority leaves, that contain ex-
treme rectangles along each dimension of the dataset, and
the rest of the rectangle is further divided into two subsets
of approximately equal size, and pseudo PR-Tree is con-
structed recursively [10]. The PR-Tree bulk-loading algo-
rithm executes a window query in the optimal number of
O((N/B)'~44T/B) 1/Os in the worst case as compared
to other R-Tree bulk loading methods, where N is the total
number of dataset rectangles in the R-Tree, B is the block
size of the disk, and T is the output size. The PR-Tree out-
performs all the others for window query on highly skewed
data. The bulk-loading time of PR-Tree is more than the
TGS R-Tree. However, the window query performance of
PR-Tree is slightly better than the TGS R-Tree.

2.2.4 Cache-Conscious Approach

One class of R-Tree index has focused on cache-conscious
indexes, similar to the cache-conscious B+-Tree [58], to op-
timize R-Trees [34, 42]. A cache-conscious version of R-
Tree, CR-Tree, uses compressed MBR keys as indexed keys
to obtain a wider and smaller R-Tree [42]. The compres-
sion is done with a Quantized Relative Minimum Bounding
Rectangle (QRMBR) technique and the output is quantized.
The QRMBR compresses the MBR keys by representing a
child MBR relatively to its parent MBR. The compression
and quantization technique used has the drawback that the
false hits increase. However, selecting a proper quantiza-
tion level, false hits are reduced. The authors found that in
two, three and four dimensions, the number of node accesses
for CR-Tree is smaller than R-Tree and the performance of
CR-Tree improves with increasing node size. The number
of cache misses is also smaller for CR-Tree in comparison
to R-Tree in all dimensions. However, the cache miss graph
initially decreases for a rise in node size in certain node size,
and thereafter, the graph declines with a rise in node size.
The cause of such a shape is the increased overhead due to a
large node size that costs more than the gain obtained due to
wider and smaller R-Tree. The solution to the problem was
proposed by reducing the amount of L2 cache misses in the
cache-conscious QRMBR R-Tree variants for better mem-
ory utilization and improved query performance [34]. The
authors introduced Optimistic Latch Free Index Traversal
(OLFIT) technique to overcome the cache miss problem of
conventional index concurrency control by using a version
and a latch in each node.
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3. SPATIAL QUERY PROCESSING
APPROACHES IN MAPREDUCE

In the past, parallelization of bulk-loading spatial indexes
and spatial querying is achieved through one processor in
communication with multiple disk architecture [35] and a
shared-nothing architecture [55]. The MapReduce program-
ming model offers a new distributed environment for parallel
processing that provides high efficiency for executing tasks
[8, 66, 72]. However, the MapReduce framework incurs high
data transfer overhead, which need to be dealt carefully [8,
47,49, 53]. A lot of work is found in literature that considers
different methods of spatial query processing from the serial
programming model and revising these in distributed envi-
ronments, especially in MapReduce environment, for paral-
lelization. The performance of spatial queries is found better
over the indexed dataset as compared to the default hashing-
based key-value storage in the Hadoop [2, 16, 50, 60]. In this
section, spatial query processing approaches in MapReduce,
based on a hierarchically indexed (Section 3.1) and packed
key-value storage based (Section 3.2) approaches, have been
surveyed. Both approaches use different spatial data parti-
tioning methods, as shown in Figure 2, and then organizing
spatial index on the partitioned dataset. The hierarchically
indexed dataset uses uniform data partitioning [6, 22, 23,
24], random-sampling-based data partitioning [6, 22, 23, 24],
clustering-based data partitioning [17], space-filling-curve
based data partitioning such as Hilbert-curve based [47, 49,
66, 68], STR packing based [47], Z-curve based [17, 18] and
X-mean algorithm based [17], Quadtree-based spatial data
partitioning, such as Quadtree-based recursive tile partition-
ing for R*-Tree indexing (7, 8], a quadtree partitioning and
Hilbert-curve based local indexing [72], quadtree-based data
partitioning for implementing the PR-Quadtree based local
index in MapReduce[38]. The key-value storage basde ap-
proaches are based on uniform data partitioning [27], SFC-
based space partitioning [65, 69, 70] and spatio-temporal
partitioning [52].

A survey of the two approaches for various functionalities
is presented in Table 2. It describes whether the research
works under the approaches provides support for function-
alities. The functionalities considered under the survey
are spatial proximity of distributed spatial data on cluster
nodes, index build-time, efficiency of query execution, load
balancing, data transmission overhead through network, ap-
plicability in high dimensions, latency for random access for
large number of concurrent reads, latency for sequential ac-
cess for large number of concurrent reads, effect of cluster
scaling on query execution, effect of index-node size, effect
of packet-data size and performance for non-uniformly dis-
tributes dataset.

3.1 Spatial Query Processing on Hierarchi-

cally Indexed Spatial Dataset

MapReduce speeds-up bulk-loading of spatial index and
query execution. The benefits of building spatial index,
such as R-Tree in MapReduce framework is that MapReduce
abstracts data load-balancing, process scheduling and fault
tolerance from the application logic, and manages transpar-
ently [18]. Otherwise, a lot of difficulty was involved in
managing these distributed computing aspects earlier [55,
61].
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Figure 2: Spatial Query Processing Approaches in
MapReduce

The MapReduce framework is also enhanced due to use of
spatial indexes on MapReduce, as these improve latency for
random reads [72].

This section discusses spatial query processing on the basis
of various hierarchical indexes on spatial dataset. The hier-
archical indexes mainly differ in data partitioning strategies
and building spatial indexes on the partitioned dataset.

3.1.1 Uniform Data Partitioning

The method divides input spatial space into equal sized rect-
angles depending on number of mappers in MapReduce.
The spatial data is partitioned into n rectangles, and the
data that overlap in rectangles is redundantly assigned to
overlapping rectangles. The number and size of rectangles
are decided by the number of partitions required for input
data. Each partitioned data are taken by a cluster node
and processed there. For a grid index, the input space is
partitioned in /n x \/n rectangles of uniform size and the
number of partitions (n) is calculated by dividing the input
data size with HDF'S block size [22, 23, 24].

Then, each slave node builds a local index in memory and
writes it to disk. Lastly, a global index is built by mas-
ter node. The index building time is very small due to
the simple process and computations involved. The uniform
or rectilinear space partitioning approach is easy to imple-
ment, but it causes non-uniform data distribution among
cluster nodes for processing in MapReduce, especially for
non-uniformly distributed and skewed dataset. This affects
load balancing and hence efficiency of queries. Some of the
nodes complete their task early and sit idle, waiting for other
heavily loaded nodes to complete their tasks. The efficiency
of spatial queries is not very good, as the data are unorga-
nized and it takes a lot of time to search query data. The
method works fine for uniformly distributed data, but per-
forms poorly for non-uniformly distributed and skewed data.

SIGMOD Record, June 2017 (Vol. 46, No. 2)



Table 2: A Summary of Hierarchically Indexed and Packed Key-Value Storage Based Spatial Dataset in

MapReduce
Approach Data partitioning Index re- | AlB|C1 C2/C3|C4 D E/F G HTI|J KL
alized on
MapReduce
Hierarchically| Uniform and Random- | Grid index XXX | X | v | X |X]V] XX X V| X XX
indexed sampling-based [22, 23,
24]
Clustering-based (x- | R-Tree VIVIX X X[ X | X]X]X] X X[ X] X] X[V
mean) [17]
SFC-based (Z-curve) [17] | R-Tree VIVIX X VX XXX XXX XXX
SFC-based (Z-curve) [18] | R-Tree XV X | X | X | X | X]X]X]|X]X]| v] X] X] X
SEFC-based (Hilbert- | R-Tree on | V| X|v | X |V [ X | X V|V V]V X VXX
curve) [47] STR packing
SEFC-based (Hilbert- | R-Tree VX [ XXX |V VXX XXX XX
curve) [49]
SEFC-based (Hilbert- | R-Tree ViV XXX | XXX X X] X XXX
curve) [66]
SFC-based (Hilbert- | R-Tree VIiVIX X X XXX XX XXX X)X
curve) [68]
Quadtree-based recur- | R*-Tree XIViv | v | v | X[ V] VX V] XV XXX
sive tile partitioning [7,
8]
Quadtree-based [72 R-Tree ViVIiVviiviv X | XXV V]V VXXX
Quadtree-based [38 PR-Quadtree | X| v| v | X | X | X | V| V| X] V| X] V] V| X| V
Based on Uniform  [27]  (uses | Default key- | X| X X | v | X | V] V] X V] XX XXX
packed Controlled-Replicate value pair
key-value approach)
storage
Uniform [69] (uses | Default key- | X[ X[ X [ X [ v [ X [ X| V] X] v] X[ v| X[ X| X
H-BRJ and H-BNLJ) | value pair
and SFC-based (uses
H-zkNNJ)
SFC-based [65] (uses | Default key- | V[ X| X [ X [ v [ X [ V] V] X] V] X| v] X| X| X
PBSM) value pair
SFC-based [70] (SJMR) | Default key- | X| X| X | X | v | X | V| X| X| V| X| V| X[ X| X
value pair
Hybrid: spatio-temporal | PMI- and | V| V|V |V | v | v | V| X] X] X] X| V| X] X] X
[52] OMI-based
key-value pair

v'- Support for functionality exists and X - Support for functionality does not exist

A-Evaluating spatial proximity of distributed spatial data on cluster nodes, B-Index build-time, Efficiency of query execution:
C1-Spatial Selection(Point, Line, Window and Range search query), C2-Spatial Aggregation, C3-Spatial-join, C4-Spatio-
temporal, D-Load balancing: data distribution among cluster nodes, E-Data transmission overhead through network, F-
Applicability in high dimensions, G-Latency of random access for large number of concurrent reads, H-Latency of sequential
access for large number of concurrent reads, I-Effect of cluster scaling on query execution, J-Effect of index-node size, K-
Effect of packet-data size, and L-Performance for non-uniformly distributed dataset

3.1.2  Clustering-Based Data Partitioning

The method partitions spatial objects into groups according
to their spatial clustering. A comparison between the Z-
curve based data partitioning and the X-means clustering-
based data partitioning has been done for parallel R-Tree
construction [17]. It is observed that the Z-curve has a lin-
ear complexity of the mappers input and generates almost
equal sized partitions, but the spatial locality is not always
well preserved. The X-means based iterative clustering al-
gorithm uses Bayesian Information Criteria (BIC) score to
rank clusters according to the Gaussian distribution. In this
scheme, though the number of partitions is estimated but
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the size of partition varies considerably and iterations cause
expensive computations. For nearest-neighbor queries, the
X-means better approximates spatial data distribution and
reduces overlapping as compared to the Z-curve which di-
rectly relates to data retrieval efficiency. But, the X-means
takes almost double time for R-Tree index creation than
the Z-order and significant time is elapsed in the clustering
phase.

3.1.3 Random-Sampling-Based Data Partitioning
In this approach, random sampling of spatial data is dis-
tributed among clustered nodes. The SpatialHadoop frame-
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work uses it for implementing R-Tree and R-+-Tree [23, 24].
The bulk-loading of indexes is done using an STR packing
technique. Partitioning the data of input file is guided by
the boundaries of the leaf node. The index building time
of R-Tree and R+-Tree is more as compared to the grid
index due to the complexity of index building process and
computations involved [22]. However, the efficiency of spa-
tial query is very good, as data is indexed and query data
search time is low. The method works fine for uniformly dis-
tributed data, but does not work that well for non-uniformly
distributed and skewed data.

3.1.4 SFC-Based Data Partitioning

The space-filling curve is used to transform multi-
dimensional location information into one-dimensional
space. A Z-curve based uniform data partitioning is used
for data partitioning during the map-phase [17, 18, 49].
In MD-HBase, a scalable multi-dimensional data store on
HBase, a similar approach is used to distribute the data on
cluster nodes. Multidimensional index structures, K-d Tree
and Quadtree, are implemented on the partitioned dataset
for demonstrating the scalability and efficiency of range and
kNN queries [54].

A similar SFC-based approach for bulk-loading R-Tree on
MapReduce uses the Hilbert-curve [66, 68]. The partition-
ing function puts objects in same partition to keep spatial
proximity by using the sorted MBR values of object nodes
from the Hilbert-curve and transforms to a standard and
proven multi-dimensional index structure, R-Tree, through
parallelizarion in MapReduce. In another SFC-based ap-
proach, parallel-gopt (p-gopt), a parallel R-Tree is built on
the SFC and gopt-partitioned dataset [6]. The leaf nodes
of R-Tree are filled-up in order to minimize a cost function
named gopt-loading, rather than filling-up nodes to the max-
imum. Initially, the input dataset is sorted, in parallel, ac-
cording to a space-filling curve. The sorted sequence is par-
titioned into sub-sequences according to gopt-partitioning
method. The method makes sub-sequences of sizes between
b (lower limit) and B (upper limit) according to a cost func-
tion, where each sub-sequence corresponds to a leaf node.
The bulk-loading time of R-Tree using the p-gopt partition-
ing is more than the other parallel R-Tree construction ap-
proaches in MapReduce. However, the method outperforms
other parallel R-Trees for average spatial queries in terms of
node accesses.

The packing algorithms, such as STR and Hilbert packing
guarantee the proximity of spatial data in R-Tree leaf nodes
to reduce query response time and data transfer overhead,
through network [47]. The buffer management and R-Tree
node size further improves query efficiency. The buffer man-
agement speeds-up data access by keeping less space occupy-
ing internal nodes in the buffer to 1) minimize the disk access
2) avoid the bottleneck caused in case of concurrent access.
A limited number of leaf nodes are permitted in the buffer,
depending on space availability to further reduce the disk
access time. A large index node size reduces data transfer
overhead for two reasons. 1) High I/O costs of loading data
from HDFS than local storage device 2) High cost of ran-
dom reads than sequential reads in HDFS. The cost paid for
low data transfer overhead and improved I/O is increased
CPU effort for filtering more data objects. However, the
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space-filling curve based data partitioning approaches lose
on preserving spatial locality due to a mapping from the
higher dimensions to one-dimensional space, but it works
better in high dimensions.

3.1.5 Quadtree-Based Data Partitioning
Quadtree-based data partitioning preserves spatial locality
of objects and provides a uniform recursive decomposition
of space into partitions until the number of objects in a
partition are not more than a defined limit. The approach
is highly suitable for parallel processing, but it is difficult
to apply in high dimensions. Though, the performance of
Quadtree-based indexes for index building and query pro-
cessing is well established [13, 33, 36, 48]. It is due to the
regular disjoint decomposition approach of Quadtree-based
indexes which takes less index building and query process-
ing time, as compared to non-disjoint and irregular disjoint
decomposition approach, in R-Tree and variants. However,
Quadtree-based approaches incur high data transfer and I/O
costs [64].

One class of MapReduce-based approaches, for construct-
ing R-Tree, uses a Quadtree-based space partitioning (7, 8,
72]. The VegaGiStore consists of a Quadtree-based global
index and Hilbert-curve local index [72]. The former index
finds data blocks and the latter locates spatial objects for
efficient data retrieval with low latency access. It was ob-
served that Quadtree-based regular disjoint decomposition
technique, for spatial data partitioning, gives a stable per-
formance for increasing k in kNN queries as compared to the
other key-value storage systems, such as Hadoop, Cassan-
dra, HBase, and the traditional spatial databases such as
PostGIS, Oracle Spatial, etc. In another two-tier indexed
approach, a global partition indexing for regions and lo-
cal spatial indexing for objects in tiles, is used [7, 8]. The
bulk-loading of spatial index is performed on each dataset
by using the R*-Tree. It uses a recursive partitioning ap-
proach and multiple-assignment approach for load-balancing
and boundary object problems, respectively. The indexing
improves latency time of random read queries. The perfor-
mance of spatial queries improve with the scalability of clus-
ter, but it causes a high intermediate data transfer overhead.
However, the proposed approaches have not considered the
effect of index-node size and data-packet size.

A different technique, HQ-Tree, uses a recursive regular
quadtree partitioning for handling point data [38]. It is
a MapReduce implementation of PR-Quadtree index. It
is free from order of data insertion and space overlap due
to disjoint decomposition spatial occupancy approach. The
efficiency of index creation in MapReduce environment is
found better for both uniform and non-uniform data than
over the standalone machine. It is good at dealing with
skewed data of point objects for search queries. However,
the storage of index is high due to disjoint storage of objects.
The HQ-Tree approach has not been compared with other
MapReduce-based non-disjoint decomposition approaches,
such as R-Tree and variants. The approach is limited to
spatial point objects and can be extended to other spatial
data, such as lines, rectangles, and polygons in spatial data.
The authors found an increase in read-time with increasing
index-node size due to the rise of communication overhead
with increasing node size. The read-time increases drasti-
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cally when the size of index node becomes greater than the
size of HDFS data packet i.e. 64 KB.

3.2 Spatial Query Processing on Packed Key-
Value Storage Based Spatial Dataset

Packed key-value storage based indexes in MapReduce do
not build a hierarchical index on partitioned dataset. These
uses key-value pair on a partitioned dataset in the MapRe-
duce framework as an index for spatial query processing.
The hierarchical tree structures, such as R-Tree and its vari-
ants, are good for queries that access only a particular part
of the dataset, such as range and region search. However,
for complex spatial queries that require reading the dataset
in a linear fashion, the packed key-value storage data per-
forms better under conditions, such as the characteristic of
data distribution. Various approaches that deal with com-
plex spatial queries use different clustering methods, such
as uniform data partitioning [27, 69], space-filling curve [65,
69, 70] and spatio-temporal [52], for packing input spatial
objects.

3.2.1 Uniform Data Partitioning

Similar to the uniform data partitioning approach of hier-
archical indexed spatial dataset, there are many techniques
in the domain of packed key-value storage index which are
based on uniform data partitioning. The Hadoop-Block R-
Tree Join (H-BRJ) builds a parallel R-Tree index on one
of the dataset for executing kNN query. It uses a uniform
sized partitioning for distributing input data over the clus-
ter nodes and builds an R-Tree index there. Similarly, a
Hadoop-Block Nested Loop Join (H-BNLJ) approach does
not use indexing on any dataset and use a nested loop for
kNN join. Here also, the uniform data partitioning shows
similar characteristics, such as ease of implementation and
non-uniform distribution among cluster nodes that subse-
quently leads to poor load balancing and efficiency of queries
[69].

In an advancement over the uniform data partitioning, the
efficiency of spatial-join query is observed to improve dras-
tically when undesired data, duplicate data and data that
does not form a part of the query space, are eliminated
[27]. It uses a Controlled-Replicate framework for running
multi-way spatial-join, that controls the replication of rect-
angles and, avoids unnecessary replication and processing,
and hence, reduces both communication I/O costs.

3.2.2 SFC-Based Data Partitioning

The space-filling curve based data partitioning approach in
MapReduce arranges original input spatial dataset accord-
ing to a SFC and partitions input spatial dataset into blocks
of uniform size. A key-value storage index is applied to the
packed partitioned dataset for spatial queries. A Z-value
based SFC is used in MapReduce for handling kNN query
(H-zkNNJ) [69]. The method reduces excessive communica-
tion and computation cost incurred by H-BNLJ and H-BRJ.
The Z-curve based partitioning approximates the solution
and requires only linear number of reducers. The advantage
of this method is a linear communication and computation
cost as compared to quadratic costs involved with baseline
methods H-BNLJ and H-BRJ that use a quadratic number
of reducers for kNN-join. The cost paid for lower computa-

SIGMOD Record, June 2017 (Vol. 46, No. 2)

tion and communication in H-zkNNJ is in terms of accuracy
of query results, as Z-order based SFCs do not well pre-
serve the spatial locality. The Z-order based H-zkNNJ per-
forms better than R-Tree based H-BRJ for index building
and querying with increasing number of reducers. It is be-
cause the size of data blocks decreases and a large number
of smaller R-Trees are constructed in parallel that conse-
quently increase building costs.

A double-transformation technique, PBSM [56], is imple-
mented in a parallel programming environment in MapRe-
duce [65, 70]. A pending file structure and redundant parti-
tion method are used to reduce communication overhead and
to deal with the boundary objects problem, in MapReduce
[65]. The authors observed that the quantity of buckets and
tiles, tile coding method, and tile-to-bucket mapping strat-
egy affect performance. Therefore, two SFCs, Z-curve and
Hilbert-curve were used. The Z-curve used for tile coding
provides weak position consistency, but the convenience of
implementation. The Hilbert-curve provides a better posi-
tion consistency, but needed intense computation. The two-
dimensional plane sweeping technique lowers computation
cost in the absence of an index, to accelerate computations.
The approach performs better for the ANN query for par-
allel spatial databases, such as Oracle Spatial, and query
performance improves with scalability.

The SIMR technique partitions dataset with disjoint par-
titions evenly at map function with a Z-curve tile coding
method and a round-robin tile to partition mapping method
[70]. The SJMR approach uses a duplication avoidance
strategy, named reference tile method, to avoid replication
overhead increased by spatial objects. It is present in tiles
from multiple partitions by replicating these in all parti-
tions. The Z-curve tile coding method in combination with
a round-robin mapping scheme works as a spatial partition-
ing function. The reference tile method returns result pair
for common smallest tile falling inside current partition and
strip of two records. A strip-based plane sweeping method
produces a superset of spatial-join result through overlapped
MBRs. The performance of SJMR increases with an increase
in the number of strips in the plane sweeping algorithm and
with a number of nodes in the cluster. The SJMR performs
better than the Parallel PBSM [65]. The SJMR carries out
partitioning of the dataset and, then, elimination of dupli-
cates in the map phase before a spatial-join is performed by
a reduce task. A single MapReduce task carries out spatial-
join, while the Parallel-PBSM uses two MapReduce tasks
for executing spatial-join. Firstly, a map task performs data
partitioning and a reduce task computes spatial-join. Sec-
ondly, the next MapReduce task eliminates duplication. The
performance of both increases with increase in reduce task
number up to a level, however, beyond it, the performance
of both methods deteriorates as reduce task is not able to
complete in one cycle.

3.2.3  Spatio-Temporal Data Partitioning

The spatio-temporal data represent spatial objects with re-
spect to time, such as the trajectory of a moving object. It
is represented as (x,y,t), where x and y are coordinates of
an object and t represents a timestamp of an object at a
specified position. A framework is described for query pro-
cessing in sequential trajectory data of moving objects based
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on MapReduce [52]. The MapReduce framework is not suit-
able for handling continuously changing trajectory data as
frequent updates are inefficient and costs too much in a clus-
ter. A data partitioning strategy is also not applicable for
maintaining continuity of trajectories.

The main problems are management of frequent updates to
a trajectory data due to mobility of objects, data partition-
ing of skewed data and online query processing. The first
problem is solved by maintaining new updated data in main
memory at each node and writing to disk in batches when a
particular size of the data is accumulated. The second prob-
lem of data partitioning is solved with a hybrid partitioning
method. Some static and dynamic spatio-temporal space
partitioning strategies are suitable for uniformly distributed
and skewed data respectively, generated by a small number
of moving objects. However, for massive moving objects,
a highly skewed trajectory data consists of historic- static
data and the new updated data. A hybrid method provides
a solution by using individual static partitioning strategy for
each time period. The key-value store in MapReduce is re-
arranged over partitioned dataset on cluster nodes to opti-
mize query processing of range queries and trajectory based
queries through Partition based Multilevel Index (PMI) and
Object Inverted Index (OII). A good load balance, scalabil-
ity of data importing, an index creation and query process-
ing are achieved with a partitioning strategy with increasing
number of computing nodes. However, the hierarchical tree
structures avoid the exhaustive search over a provided input
dataset for point query, range query and nearest-neighbor

query.

4. SUMMARY

After comparing the surveyed approaches by means of clas-
sification criteria, some peculiar issues have been revealed
which are thought to be relevant with respect to efficient
spatial query processing. In the paper, these issues have
been discussed with an intention to reflect its potential for
further research. Many R-Tree variant spatial indexes for
efficient spatial data handling exist, but not all have been
used in the MapReduce framework. Basic R-Tree and its
variant spatial indexes have been implemented extensively
in MapReduce, as can be seen from the Table 2. However,
many other existing spatial indexing techniques in a sequen-
tial programming environment, surveyed in Section 2 and
summarized in Table 1 which perform better than the basic
R-Tree variants, have not been implemented in MapReduce.
It is learnt from Section 2 that approaches such as improved
R-Tree variants, data clustering, sorting MBRs, top-down
and cache-conscious approaches are superior to basic R-Tree
variants. However, a lot of research work in implementing
spatial indexes in MapReduce, presented in Section 3, has
implemented basic R-Tree variants. Spatial indexes from
other approaches have been rarely implemented. Present-
ing all spatial indexing approaches in detail in Section 2,
motivates for their implementation in MapReduce.

The improved R-Tree variants are better than basic R-Tree
variants [12, 14, 41]. The storage utilization, insertion cost
and window query time of Revised R*-Tree is better than
R*-Tree [12]. The applicability of Revised R*-Tree in high
dimensions is more than the basic R-Tree variants [12]. Sim-
ilarly, the storage utilization, insertion cost, performance
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of spatial queries such as window query, point query and
nearest-neighbor query, of WeR-Tree is better than R*-Tree
[14]. The applicability in high dimensions and spatial query
performance for skewed data is also better than R*-Tree [14].
In a similar way, the X-Tree has proven better than R*-Tree
for storage utilization, spatial queries such as window query
and point query, and applicability in high dimensions [41].

The data clustering approach are better than basic R-Tree
variants [15, 26]. The storage utilization, insertion cost,
spatial query performance of queries, such as window query,
point query and nearest-neighbor query of the cR-Tree, and
performance of spatial queries for skewed data are better
than R*-Tree [15]. However, the applicability of the index
is low and comparable to the basic R-Tree variants [15].
The insertion cost and window query efficiency of another
clustering approach, R-Tree using iterative optimization, is
higher than R*-Tree [26]. However, the performance of
the R-Tree using iterative optimization for window query
is low and comparable to basic R-Tree variants when spatial
dataset is skewed or is in high dimensions [26].

The sorting MBRs approach is better than basic R-Tree
variants [39, 40, 44, 46, 59, 67]. The insertion cost, point
query efficiency and applicability of expressing Hilbert-curve
and their sequence numbers in a tree structure is better as
compared to the R-Tree [44]. The storage utilization and,
efficiency of the window and point query of uniformly dis-
tributed and skewed data, of Hilbert R-Tree is significantly
higher as compared to R*-Tree. However, the insertion cost
is comparable to R*-Tree and the applicability in high di-
mensions is low as compared to R*-Tree [39, 40]. The stor-
age utilization, query efficiency and applicability in high di-
mensions, of Lowx R-Tree is better than R*-Tree but low
as compared to Hilbert R-Tree [59]. The storage utilization
and, performance of window and point query, of STR R-Tree
is even better than Hilbert R-Tree. However, the query per-
formance of skewed data and high dimensional data is com-
parable and lower than Hilbert R-Tree, respectively [46].
The storage utilization and insertion cost of MR-Tree is bet-
ter than Hilbert R-Tree, but lower than STR R-Tree. The
window and point query efficiency of MR R-Tree is better
than STR R-Tree, however, the query performance of MR
R-Tree for skewed data remains comparable to Hilbert R-
Tree and the applicability in high dimensions is even lower
than Hilbert R-Tree [67].

The performance of top-down approach, TGS R-Tree and
Priority R-Tree, is better than all other approaches for all
parameters [10, 25]. The insertion cost of the TGS R-Tree
is even better than Priority R-Tree, however, the query per-
formance of Priority R-Tree becomes better for skewed data.
Both approaches have very good applicability in high dimen-
sions and best worst-case performance. The cache-conscious
approach shows better performance for all parameters as
compared to basic R-Tree variants, comparable performance
as compared to improved R-Tree variants, data clustering
approach and sorting MBRs approach, and lower perfor-
mance than top-down approaches [34, 42].

A significantly better bulk-loading and query execution time

for all MapReduce-based spatial indexing approaches than
traditional serial programming environment is strongly ev-
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ident from the survey work carried out in Section 3. A
comparison of the existing hierarchical indexed and packed
key-value storage spatial index implementations in MapRe-
duce, as presented in Table 2, for parameters, spatial prox-
imity of distributed data on cluster nodes, index-build time,
efficiency of query execution, load balancing, data trans-
mission overhead through the network, and applicability
in high dimensions, latency for random and sequential ac-
cess for a large number of concurrent reads, effect of cluster
scaling on query execution, effect of index-node size, effect
of packet-data size and performance for non-uniformly dis-
tributed spatial dataset have been done. The former ap-
proach is better for random access spatial queries, such as
search queries, while the latter approach is better for se-
quential access spatial queries, such as spatial-join queries.
The spatio-temporal, spatial index is useful for queries, such
as tracking mobile objects with respect to time. Among the
hierarchical indexed dataset, the uniform data partitioning
based grid index shows poor performance on all parameters,
however, it is quite strong towards applicability in high di-
mensions.

In-depth analysis of spatial indexes in MapReduce, pre-
sented in Section 3, is not available as compared to the
traditional serial programming environment, presented in
Section 2. The comparison of spatial index implemented in
MapReduce has been done with parallel spatial databases
only, however, comparison with other spatial indexes imple-
mented in MapReduce is rarely available. The performance
of disjoint decomposition based indexes, Quadtree-based in-
dexes, for index building and query processing is well es-
tablished [13, 33, 36, 48]. The Quadtree-based approaches
provide better spatial proximity and data distribution, effi-
ciency for search queries and low network transfer overhead
as compared to other data partitioning approaches, however,
their storage requirement is more which is evident from their
high index building time [7, 8, 72]. It has been analyzed from
the survey that not much work has been done on implement-
ing Quadtree indexes and Quadtree-based data partitioning
in MapReduce. The quadtree partitioning based spatial in-
dexes are the best, but these are very poor for the index
building time and applicability in high dimensions [7, 8, 72].

In the survey, it has been seen that query processing is highly
dependent on the size and nature of the dataset, and indexes
show varying performance with different type of dataset. Be-
sides it, the explored indexes in MapReduce have not been
deeply analyzed for uniformly distributed, non-uniformly
distributed and skewed data of varying sizes [6, 7, 8, 17,
18, 47, 49, 54, 66, 68, 72]. It has been observed that some of
the existing implementations on MapReduce have not con-
sidered the effect of index-node size (7, 8, 17, 18, 22, 23, 24,
47, 49, 54, 66, 68, 72] and communication overhead [6, 17,
18, 22, 23, 24, 49, 54, 66, 68, 72]. The high communication
overhead in MapReduce is due to its run-time scheduling
scheme and the pull model that interfere the efficiency for
queries [37, 57]. One method to reduce the communication
overhead for the intermediate data generated during query
processing in the Hadoop system is implemented in [51]. The
authors used an independent distributed file system Parallel
Secondo File System (PSFS) that avoids the transform and
transfer of intermediate data through HDFS, and transfers
data among database engines directly.
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