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ABSTRACT
Variance is a popular and often necessary component of
aggregation queries. It is typically used as a secondary
measure to ascertain statistical properties of the result
such as its error. Yet, it is more expensive to compute
than primary measures such as SUM, MEAN, and COUNT.

There exist numerous techniques to compute variance.
While the definition of variance implies two passes over
the data, other mathematical formulations lead to a single-
pass computation. Some single-pass formulations, how-
ever, can suffer from severe precision loss, especially for
large datasets.

In this paper, we study variance implementations in
various real-world systems and find that major database
systems such as PostgreSQL and most likely System X,
a major commercial closed-source database, use a repre-
sentation that is efficient, but suffers from floating point
precision loss resulting from catastrophic cancellation.
We review literature over the past five decades on vari-
ance calculation in both the statistics and database com-
munities, and summarize recommendations on imple-
menting variance functions in various settings, such as
approximate query processing and large-scale distributed
aggregation. Interestingly, we recommend using the math-
ematical formula for computing variance if two passes
over the data are acceptable due to its precision, paral-
lelizability, and surprisingly computation speed.

1. INTRODUCTION
New large-scale distributed data management and

analytics systems are being developed at a rapid
pace, with the scalability aspect of computation be-
ing their predominant development focus (except-
ing [10]). Comparatively lesser e↵orts have been ex-
pended on ensuring numerical correctness and sta-
bility of algorithms. While such an approach can
result in the queries being answered more quickly,
it can also cause the computation to have a higher
level of numerical imprecision.

The concern of achieving numerical stability and
precision is pertinent in numerous computational

Copied from above
Mean 1 2 3 4 5 6 7 8
Postgres 10.48359 100.4836 1000.484 10000.48 100000.5 1000000 10000000 1E+08
SQL Server 10.52669 100.5267 1000.527 10000.53 100000.5 1000001 10000001 1E+08
Oracle 10.534 100.534 1000.534 10000.53 100000.5 1000001 10000001 1E+08

StdDev*1.96/sqrt(n)
Postgres 0.055101 0.055101 0.055101 0.055101 0.055098 0.054875 0.031357 0
SQL Server 0.054414 0.054414 0.054414 0.054414 0.054409 0.054779 0.048006 0.586639
System Y 0.060335 0.060335 0.060335 0.060335 0.060335 0.060335 0.060335 0.060335

Log
Mean 1 2 3 4 5 6 7 8
PostgreSQL 9.3 1.02051019 2.00209516 3.00020997 4.000021 5.0000021 6.00000021 7.00000002 8
System X 1.02229176 2.00228138 3.00022868 4.00002287 5.00000229 6.00000023 7.00000002 8
System Y 1.02259317 2.00231295 3.00023185 4.00002319 5.00000232 6.00000023 7.00000002 8

StdDev*1.96/sqrt(n)
Postgres -1.2588378 -1.2588378 -1.2588378 -1.2588378 -1.2588621 -1.260625 -1.503663 #NUM!
SQL Server -1.264292 -1.264292 -1.264292 -1.2642919 -1.2643257 -1.261388 -1.3187074 -0.231629
System Y -1.2194275 -1.2194275 -1.2194275 -1.2194275 -1.2194275 -1.2194275 -1.2194275 -1.2194275

The previous figure had gaussian distribution this has uniform
Random 1 2 3 4 5 6 7 8
Common 14.9 15.02 14.76 13.79 12.98 12.07 10.84 9.87
Textbook1pass 11.46 9.57 7.58 5.39 3.49 1.69 0.15 0.07
Updating 14.88 14.31 13.46 12.23 11.37 10.49 9.31 8.26
Updating pair 14.88 14.98 14.42 13.1 12.41 11.43 10.39 9.34
Two pass 15.05 14.94 14.85 14.81 14.99 14.8 14.46 12.54
Shifted 2 pass 12.72 11.97 10.95 9.91 9.02 7.97 6.81 5.93
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Figure 1: E↵ect of Variance Error on T-Test Con-
fidence Intervals: As the magnitude of values in-
creases (x-axis, true margin of error is kept con-
sistent for each dataset), mean is expected to in-
crease, and size of error bars is expected to stay the
same. However, PostgreSQL and System X error
bars (↵ “ 0.05) vary widely, while System Y has
correct error bars (details in Section 1.1).

scenarios; it is especially important in variance cal-
culation, which has an ubiquitous presence in large-
scale analytics and is known to su↵er from precision
issues [4]. Variance is an important aggregate func-
tion and an essential tool in sampling-based aggre-
gation queries. Typically used as a secondary mea-
sure, it augments measures such as AVERAGE and
provides an insight into data distribution beyond
the primary measure. Computation of variance,
however, is susceptible to precision loss when the
variance is much smaller than the mean [1].

There exist several techniques to compute vari-
ance. The standard formula uses two passes and
provides an accurate estimate (Two Pass). Due to
its perception of being more expensive, other tech-
niques have been developed that require a single
pass over the data. One such formula, while fast, is
known to su↵er from precision loss (Textbook One
Pass) due to catastrophic cancellation [4], an un-
desirable e↵ect of a floating point operation that
causes relative error to far exceed absolute error.
Figure 1 demonstrates this problem. As a side note,
this problem a↵ects calculators as well [4].
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Another formula (Updating), as recommended by
Knuth [8], has found a strong foothold in the database
community, with numerous implementations citing
him. However, this formula is constrained by the
fact that it can only incorporate a single value into
the current running estimates. It is unable to com-
bine the estimates from di↵erent subsets of data.

Given the rise of large-scale data processing, mas-
sive multi-core support and availability of GPUs, it
is prudent to consider representations such as Pair-
wise Updating, that can combine partial results at
a larger scale instead of incrementally incorporat-
ing a single data point. Further, Pairwise Updating
is also known to provide better precision for both
single ( [1]) and double precision input (Section 4).

Contributions & Outline:
‚ We catalog usage of di↵erent variance formulas
in various open source database systems (Table 2).
‚ We experiment with di↵erent closed source and
open source databases to investigate precision loss
issues. We find that precision of PostgreSQL and
System X deteriorates the most. After looking at
the PostgreSQL source code, we can verify that it
uses Textbook One Pass, and hypothesize that Sys-
tem X does so as well.
‚ We empirically study the accuracy of the dif-
ferent representations under varying additive shifts
and dataset sizes including a hitherto unstudied one,
which we call Total Variance.
‚ We recommend using Two Pass if performing
two passes over the data is acceptable (Section 5),
which seems counter-intuitive, but works due to its
computational simplicity.

In the next subsection, we look at the adverse
e↵ects of imprecise variance calculation. Section 2
presents di↵erent variance representations and their
properties. We then note the representations used
by modern databases in Section 3. Section 4 lists
our analysis of the behavior of the di↵erent formu-
las (using double precision input compared with sin-
gle precision in Chan et al. [1]). We conclude with
our recommendations for choosing an appropriate
variance representation in current environments.

1.1 Impact of Variance Calculations
Due to the pervasive use of variance, a loss of pre-

cision can have an impact in a variety of di↵erent
domains. In the following paragraphs, we look at
some use cases where the lack of precision in vari-
ance calculation can have adverse consequences.

Incorrect Output: It is possible to experimen-
tally observe the loss of precision as incorrect out-
put. To illustrate the pitfalls in using Textbook One
Pass, 100 values were generated from a Uniformp0, 1q

distribution and shifted by 10Shift Exponent for Shift
Exponent varying from 1 to 15. The variance as
a result of data being shifted should be similar to
the one without any shift. We verify this by adding
and subtracting the shift exponent and note that
the variance of the resultant dataset was close to
the true sample variance. However, Figure 1, which
depicts the sample mean and confidence interval,
shows that PostgreSQL and System X su↵er from
variance calculations being susceptible to precision
loss due to the shift. We know that PostgreSQL
uses Textbook One Pass and the pattern of the erro-
neous calculations displayed by both hints towards
System X using it as well. In contrast, other database
systems su↵ered minor precision loss as expected
(these results are not shown since they do not add
any additional information to the figure). It should
be noted that System Y was found to be highly im-
mune to precision loss.

Visualization: Erroneous variance calculation can
have a notable impact on visualizations as shown by
Figure 1. While error bars should be similar, they
instead vary widely and inaccurately for higher shift
values for PostgreSQL and System X. We also found
Datavore, which powers the Profiler visualization
system [7], to use Two Pass.

Negative Variance: It is possible for variance
to be negative while using Textbook One Pass –
a theoretically impossible result. We observed in
the PostgreSQL source code that variance is set to
zero, if negative. Figure 1 shows numerous values
of 0 (missing error bars) for PostgreSQL (shift ex-
ponent 8, 9, and 12) and System X (shift exponents
10 and 11), providing evidence of System X employ-
ing a similar strategy for handling negative variance
values and using Textbook One Pass.

Decision Support Systems: As a building block
in popular algorithms, flaws in variance implemen-
tations can have far-reaching impacts, e.g., in hy-
pothesis testing, which is an integral part of deci-
sion support systems. Having imprecise or incorrect
variance estimates can greatly change the result of
hypothesis testing.

Data Mining: Variance is an important tool in
statistical analysis and machine learning algorithms
such as Gaussian Naive Bayes, or Mixture of Gaus-
sians based algorithms such as background model-
ing, clustering, or topic modeling. For example, we
found usage of Textbook One Pass within a graph-
ics library of the R language. Similarly, MADlib [3]
was also found to have a call to the PostgreSQL
variance function: thus, an erroneous calculation of
variance can extend from the underlying databases
to the systems built on top of them.
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Name Formula Accuracy Passes Storage Parallel

Two Pass S “ ∞
N

i“1px
i

´ x̄q2, x̄ “
∞

N

x“1 x

i

N

3 2 O(1) 3

Textbook 1 Pass S “ ∞
N

i“1 x
2
i

- 1
N

p∞
N

i“1 xi

q2 7 1 O(1) 3

Shifted 1 Pass S “ ∞
N

i“1px
i

´ x̄q2 ´ p∞
N

i“1px
i

´ x̄qq2{N Varies 1 O(1) 3
Pairwise T1,m`n

“ T1,m ` T
m`1,m`n

, S1,m`n

“ S1,m 3 1 O(ln(N)) 3
Updating `S

m`1,m`n

` m

npm`nq p n

m

T1,m ´ T
m`1,m`n

q2

Updating-YC
T1,j “ T1,j´1 ` x

j 3 1 O(1) 7
S1,j “ S1,j´1 ` 1

jpj´1q pjx
j

´ T1,jq2
Updating-WWH M1,j “ M1,j´1 ` x

j

´M1,j´1

j

, S1,j “ S1,j´1 3 1 O(1) 7
(Updating) `pj ´ 1q ˆ px

j

´ M1,j´1q ˆ px

j

´M1,j´1

j

q
Total Variance S “ ∞

groups

i“1

`
n
i

pm
i

´ x̄q2 ` pn
i

´ 1qv
i

˘
3 3 Varies Varies

Table 1: Commonly used Formulas for Variance.

2. VARIOUS VARIANCE FORMULATIONS
Table 1 presents the common variance represen-

tations [1]. We use a similar naming convention to
that used by Chan et al. [1]. S represents the sum of
squares. The sample variance can be given by S

N´1 ,

where N is the sample size. x
i

is the ith data point.
x̄ is the sample mean. M

m,n

is the mean of the
data points from indexes m to n (both inclusive).
T
m,n

is the total of the data points from indexes m
to n (both inclusive). We have also provided To-
tal Variance (derivation in the technical report [6]).
In its formula, n

i

, m
i

, and v
i

represent the count,
mean, and variance respectively, of the ith group.

Textbook One Pass can be computationally dan-
gerous as the quantities

∞
N

i“1 x
2
i

and 1
N

p∞
N

i“1 xi

q2
can nearly cancel each other out. The Pairwise Up-
dating formula hierarchically combines pairs of vari-
ance values and uses OplogpNqq storage while reduc-
ing the relative errors from OpNq to OplogpNqq [1].
Updating-YC represents Youngs and Cramer for-
mula [13] and is essentially identical to Updating
Pairwise when m “ 1 or n “ 1. The Updating-
WWH formula refers to the nearly identical for-
mulas used by Welford et al. [11], West et al. [12],
and Hanson et al. [2] and has similar precision as
Updating-YC. We have used the Updating-WWH
representation for updates using a single data point,
and denote it by Updating. Shifting the data by an
exact or approximate value of x̄ (Shifted One Pass)
can also result in substantial accuracy gains [1].

2.1 Total Variance
Since this is the first paper to introduce the To-

tal Variance representation, we explain its steps in
more details below. In the first pass, which is over
the tuples, the variance (using one of the other for-
mulas), mean, and count, of individual groups are
computed. The second pass, over the groups thus
formed, finds the overall mean of the data. In the

third pass, over the groups, the overall variance is
then found. Since the second and third passes are
over the groups obtained as a result of the first pass,
and di↵erent formulas can be used to compute vari-
ance of individual groups in the first pass, complex-
ity of the overall algorithm can vary widely. While
second and third passes are highly parallelizable, its
overall parallelizability is dependent upon the for-
mula used to find variance of the groups. It is de-
signed for combining variances of di↵erent groups
and is agnostic to the representation used in the
first pass – our implementation uses Updating.

Computing mean of individual groups is a well-
researched subject with Tian et al. [10] providing a
good overview. We use a single pass algorithm to
compute mean of individual groups and to combine
means of groups as well. To handle a large num-
ber of groups, one can look into using an aggrega-
tion tree to combine means. The usual technique of
mean estimation can be used in case the number of
groups is large, at the cost of decreased precision.

There does not appear to be a theoretically ideal
group size for Total Variance, and we could not
determine one experimentally either [6]. In dis-
tributed execution, one natural way is to consider
data across di↵erent nodes as groups. Further, data
within a node can be equally partitioned, so that
each core works on a single subgroup.

2.2 Properties of Different Representations
While Chan et al. [1] provide an overview of the

accuracy, passes, and storage required for most of
the formulas given in Table 1 (other than Total
Variance), their classification as being distributive,
and thus the ability to be parallelized, has not been
explicitly listed before, which we do. In Table 1,
the Storage column depicts the extra space needed
for computing variance, which is above and beyond
that needed to store the data itself.
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The accuracy of Shifted One Pass depends on
that of the mean estimate. Pairwise Updating is the
only representation providing accurate results while
being highly parallelizable and requiring a single
pass. Additionally, as we will see in Section 4, the
precision of Total Variance is slightly better than
that of Updating Pairwise, which has the best pre-
cision amongst all single pass algorithms. As a side
note, Two Pass, Total Variance and Textbook One
Pass are the only representations that can be repre-
sented using a standard SQL query. Note that Ta-
ble 2.1 of [1] succinctly enumerates the error bounds
of di↵erent formulations. Further, Kahan summa-
tion [5, 10] can help improve their precision.

2.3 Data Conditioning
Data shifting and scaling are immensely useful in

improving accuracy of algorithms [4]. For exam-
ple, shifting the data by its mean is the basis for
Shifted One Pass. Indeed, Chan et al. [1] demon-
strate the usefulness of shifting by an approximate
mean computed using a sample of the data by prov-
ing that it reduces the bounds of the condition num-
ber. Further, techniques such as dividing by the
mean or using the log function [4] can be helpful
in improving the accuracy. However, along with
requiring additional computational resources these
techniques can also worsen the accuracy under mali-
cious datasets [1], and need careful user supervision.

2.4 Hybrid Formulae
It is clear that di↵erent implementations can be

used to find variance of di↵erent groups, and com-
bine partial results. Indeed, it has been brought
to our attention that a commercial system uses the
Updating-YC formula to compute variance at in-
dividual nodes, and combines them using Pairwise
Updating formula. Total Variance is a hybrid for-
mula as well. This provokes an interesting piece of
future work – choosing di↵erent representations at
di↵erent computation steps, based on factors such
as numerical precision, data partitioning, time for
first result, number of passes permissible (Section 5).
This idea is elaborated upon in Section 5.

2.5 Current Recommendation Guidelines
Chan et al. [1] provide detailed recommendation

guidelines for di↵erent variance formulas. They rec-
ommend usage of Pairwise Updating for combining
variances across multiple processors since it reduces
the errors and is massively parallelizable if extra
OplogpNqq space is available. Further, it is also the
safest (least precision loss) algorithm to use within
each processor, under the constraint of a single pass.

2.6 Extensibility to Other Measures
Standard deviation, standard error, and coe�-

cient of variation are important statistical measures,
and perform variance computation. Thereby, they
are also a↵ected by the properties of the underlying
representation. Similarly, the properties will also
extend to any user-defined measure whose variance
can be expressed in a closed form as a function of
the variance of one of the measure dimensions. For
example, for a user-defined measure given by a ˚
AVGpaggq ` b, where a and b are constants and agg
is a measure dimension, the variance of the measure
can be given in closed form as a2˚VARIANCEpaggq.

3. VARIANCE IMPLEMENTATIONS
IN MODERN DATABASE SYSTEMS

We looked at the code of multiple open source
databases to find their variance representations. We
also conjecture about two closed source ones through
our experiments.

Database Formula
PostgreSQL

9.4.4
Textbook One Pass

MySQL 5.7 Updating
Impala 2.1.5 Updating Pairwise
Hive 1.2.1 Updating Pairwise
Spark 1.4.1 Updating Pairwise
SQLite No Variance Support

System X Textbook One-pass (Conjecture)
System Y Cannot Conjecture

Table 2: Variance Implementations in Databases.

PostgreSQL uses Textbook One Pass and is thus
susceptible to precision loss. MySQL uses Knuth’s
modification [8] of Welford’s updating formula. There-
fore, it can only process a single additional data
point, and cannot avail of the possible paralleliza-
tion. Spark 1.4.1 and Impala 2.1.5, on the other
hand, use a modified version of Updating Pairwise.

Although the source code for System X is not
available, we conjecture that it uses Textbook One
Pass as its precision behavior was similar to that
of PostgreSQL. System Y was found to have the
best precision. We hypothesize that it uses higher
precision variables, but cannot make any conjecture
about the exact representation.

4. EXPERIMENTAL ANALYSIS
Chan et al. [1] have looked at the precision of dif-

ferent algorithms using single precision input. We
present the precision results using double precision
input. We also evaluate the precision of Total Vari-
ance. We look at the precision in the variance cal-

SIGMOD Record, December 2016 (Vol. 45, No. 4) 31



Gaussian 1 2 3 4 5 6 7 8
Common 13.94 13.94 13.85 13.21 12.25 11.47 10.29 9.45
Textbook1pass 11.54 9.64 7.63 5.61 3.63 1.42 0.07 0.16
Updating 13.82 13.65 12.92 11.81 11.01 9.97 8.76 7.95
Updating pair 13.95 13.97 13.65 12.71 11.79 10.98 9.84 8.81
Two pass 14.21 13.91 13.72 13.7 13.8 13.78 13.84 12.6
Shifted 2 pass 12.75 12.04 11 9.9 9.02 7.92 6.96 6

yes

HALF CONFIDENCE INTERVAL EXPT
Mean 0 1 2 3 4 5 6 7
Postgres 0.483594 10.48359 100.4836 1000.484 10000.48 100000.5 1000000 10000000
SQL Server 0.526688 10.52669 100.5267 1000.527 10000.53 100000.5 1000001 10000001

StdDev*1.96/sqrt(n)
Postgres 0.055101 0.055101 0.055101 0.055101 0.055101 0.055098 0.054875 0.031357
SQL Server 0.054414 0.054414 0.054414 0.054414 0.054414 0.054409 0.054779 0.048006

0.001 0.01 0.1 1 10 100 1000 10000

DECIMAL PLACES POSTGRES SQL SERVER
Shift 1 2 3 4 5 6 7 8
Postgres 14 11 8 8 4 3 0 0
SQL Server 12 10 9 7 5 2 1 0
Oracle 17 17 17 17 17 17 17 17
MySQL 5.6 17 15 14 12 12 10 9 9
impala 15 14 12 12 12 11 9 9

Average Decimal Places 1 2 3 4 5 6 7 8
Postgres 12.8 10.7 9 6.9 4.9 2.5 0.7 0
SQL Server 12.5 10.7 8 6.7 4.4 2.2 0.6 0
Oracle 17 17 17 17 17 17 17 17
MySQL 5.6 15.3 14.4 13.5 11.9 11.4 10.8 9 8.5
Impala 14.9 13.8 12.9 11.8 11.3 10.1 9.1 8
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(a) With increasing shift exponent, all

representations experience precision loss,

though some more severely than others.

This figure deals with changing data size
Shift 10^5 1 2 3 4 5 6 7 8
Common 16.91 11.99 12.59 12.98 13.5 13.75 13.46 13.03
Textbook 1 pass 5.06 4.36 4.12 3.49 3.12 2.59 2.2 1.41
Updating 11.4 11.46 11.57 11.37 11.33 11.36 11.47 11.32
Updating pair 11.33 11.51 11.93 12.41 12.89 13.26 13.34 13.1
Two pass 16.69 16.09 14.44 14.99 14.4 13.84 13.33 12.9
Shifted 2 pass 10.68 9.89 9.43 9.02 8.35 7.96 7.56 6.9
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(b) Precision generally decreases with in-

creasing dataset size.
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(c) Two Pass provides results faster than

others, excepting Textbook One Pass,
which has the least numerical precision.

Figure 2: Two Pass not only has the highest precision, but also requires second lowest execution time.

culation o↵ered by the di↵erent databases. We also
present the execution times of di↵erent algorithms
on data sizes up to 100 million tuples. The results
are the average over 100 runs. Experiments were
performed using Ubuntu 14.04.05 LTS with a 4 core,
2.4 GHz Intel CPU, with 16 GB RAM, and 256 GB
SSD storage, using a single execution thread.
Dataset: Although numerous benchmarks exist to
evaluate the accuracy of numerical algorithms, they
are constrained by their dataset size. For example,
the biggest dataset in the NIST StRD [9] bench-
mark consists of 5000 points. Furthermore, for this
dataset, the mean is not significantly larger than
the standard deviation (µ “ 4.5348, � “ 2.8673).
Therefore, in a similar vein as Tian et al. [10], we
created synthetic datasets of di↵erent sizes using
Uniformp0, 1q (variance being 1

12 ). They were shifted
by adding values ranging from 101 to 1015.

4.1 Impact of Shift
Numerical precision was evaluated using varying

additive shifts, over a dataset of size 10000. Group
size was set at 10 for Total Variance. We present
our findings in Figure 2a, where Y-axis represents
the number of correct decimal digits (non-fractional
part of the result was 0). The results were as ex-
pected [1], with Two Pass having the best precision,
and Textbook One Pass the worst.

4.2 Impact of Data Size
Since precision errors typically accumulate, we

tried datasets of sizes from 10 to 100 million. The
shift was set at 105. Figure 2b shows that precision
generally worsens with increasing data size. Two
Pass again outperforms other algorithms. Textbook
One Pass consistently exhibits the worst precision.

Counter-intuitively, the precision of Total Vari-
ance and Updating Pairwise was found to increase
for the data size exponents from 2 to 6. We are un-
able to conjecture the reason behind this behavior.
The precision error for Updating Pairwise increases
as Oplogpnqq, while that for others (except Total

Variance) increases as at least Opnq [1], where n
is the data size. Therefore, while we can expect
the error in Updating Pairwise to not increase at
the same rate as others, the error decrease is unex-
pected. In the absence of theoretical error bounds
for Total Variance, we cannot hypothesize about
the possible cause. To ensure there were no irregu-
larities, the experiment was repeated multiple times
with similar results.

4.3 Single-Threaded Execution Speed
We also looked at the execution time of di↵erent

algorithms with increasing data size (Figure 2c).
Results with lower data sizes have not been pre-
sented due to the computation taking minimal time.
Surprisingly, there was no discernible di↵erence in
execution time between Two Pass and Shifted One
Pass. Only Textbook One Pass took lesser time
than Two Pass. We attribute the low execution
time of Two Pass to simplicity of its computation.

4.4 Impact of Shift on Different Databases
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Figure 3: Databases follow ex-
pected precision patterns.

We look at
variance precision
for the di↵erent
databases under
varying additive
shifts. We took
e↵orts to ensure
di↵erent systems
have similar data
types. 100 points
were chosen from a Uniformp0, 1q distribution.
Figure 3 shows that precision loss follows a simi-
lar pattern in System X and PostgreSQL. Impala
and MySQL have a similar error profile as well.

4.5 Miscellaneous Experiments
In one of the other experiments, details in [6], we

noted that changing group size in Total Variance
did not have a significant e↵ect on the precision. In
another experiment, multi-threaded execution gave
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us expected speedups for the parallelizable formula-
tions. Finally, we inspected the mantissa of the two
terms that compose Textbook One Pass to demon-
strate the cause of catastrophic cancellation.

5. CONCLUSION & RECOMMENDATIONS
Precision issues associated with Textbook One Pass

have been well documented. However, we have seen
that databases such as PostgeSQL and likely Sys-
tem X still use it. We recommend from the per-
spective of safety to discontinue its usage. Though
there might be arguments for its continued usage
after warning the users in certain scenarios, the ar-
guments against it far outweigh the speedup bene-
fit and its ease of implementation. Although error
inherently exists in approximate query processing,
numerical precision errors are easy to eliminate and
hard to apportion and therefore should be avoided
whenever possible. Hence, we recommend to the
designers of databases, and statistics and analytics
packages, to discontinue its usage. Further, it would
be wise for users to perform a sanity check using ex-
periments similar to those given in Section 4.1.

Previous work has recommended Pairwise Updat-
ing from the perspective of precision, speed, and
parallelizability [1]. However, we have seen from
our experiments of up to 100 million data points,
that the most accurate algorithm, Two Pass, takes
lesser time than Updating, Updating Pairwise, and
Total Variance. Further, it takes around the same
amount of time as Shifted One Pass, which relies
on mean estimation. Two Pass is also easy to im-
plement and parallelize. Therefore, in the case that
performing two passes over the data is ac-
ceptable, Two Pass should be the preferred
algorithm. Determining whether two passes are
acceptable, however, is a nuanced decision. When
the data fits in memory, performing two passes over
the data is clearly acceptable as all representations
will incur the identical data read I/O cost. When
the data cannot fit in memory, summing up the es-
timated I/O and computation times can help deter-
mine whether Two Pass will need the least amount
of time, in which case it should be chosen.

In other cases, i.e., whenever Two Pass is
not estimated to require the least execution
time, there does not exist a clear winner, due
to di↵erent algorithms having di↵erent strengths
and weaknesses. Updating provides faster results
at lower precision, compared with Updating Pair-
wise, without needing additional memory. Updating
Pairwise is parallelizable, whereas Updating is not.
While Shifted One Pass provides quick results, its
accuracy is dependent on correctness of the mean

estimate. Total Variance has good accuracy, al-
though it takes longer to execute, and is dependent
on the algorithm used to compute group statistics,
while also needing multiple passes. Hence, there
does not exist any algorithm that dominates every
other algorithm, resulting in there not being a clear
choice. We can see that a query planner that devises
hybrid formulas, while taking the data distribution,
estimated I/O and computation costs, and the over-
all strengths and weaknesses of di↵erent algorithms
into consideration, appears to be an important and
ideal piece of future work.
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