
Processing Over Encrypted Data:
Between Theory and Practice

Eyad Saleh
Hasso Plattner Institute

Potsdam, Germany
eyad.saleh@hpi.de

Ahmad Alsa’deh
Birzeit University

West Bank, Palestine
asadeh@birzeit.edu

Ahmad Kayed
Middle East University

Amman, Jordan
akayed@meu.edu.jo

Christoph Meinel
Hasso Plattner Institute

Potsdam, Germany
christoph.meinel@hpi.de

ABSTRACT
Data encryption is a common approach to protect the
confidentiality of users’ data. However, when computa-
tion is required, the data must be decrypted before pro-
cessing. The decryption-for-processing approach causes
critical threats. For instance, a compromised server may
lead to the leakage of data or cryptographic keys. On
the other hand, data owners are concerned since the data
is beyond their control. Thus, they look for mecha-
nisms to achieve strong data protection. Accordingly,
alternatives for protecting data become essential. Con-
sequently, the trend of processing over encrypted data
starts to arise along with a rapidly growing literature.
This paper surveys applications, tools, building blocks,
and approaches that can be used to directly process en-
crypted data (i.e., without decrypting it). The purpose of
this survey is to provide an overview of existing systems
and approaches that can be used to process encrypted
data, discuss commercial usage of such systems, and to
analyze the current developments in this area.

1. INTRODUCTION
Encryption was previously used to encrypt data

during transmission to prevent eavesdroppers from
intercepting the communication and revealing the
data. In addition, it prevents unauthorized disclo-
sure of confidential data in storage. However, the
standard encryption schemes do not allow compu-
tations over encrypted data without access to the
decryption key. Furthermore, disclosing the decryp-
tion key to the server has drawbacks, mainly, the
leakage of the key if the server is compromised [46].
Thus,the security challenges for cloud cannot be
addressed e↵ectively by classical encryption algo-
rithms. Those challenges can be classified into three
groups: Privacy of data (i.e. How to secure shared
data), privacy of programs (i.e. How to preserve

programs’ functionality without leaking their se-
crets), and integrity of computations (i.e. How to
outsource computations over encrypted database for
authorized users). Therefore, in the modern era,
and motivated by the increasing adoption of the
cloud model, the need and possibility of processing
over encrypted data is highly desirable.

Developing new constructions that allow opera-
tions directly on encrypted data was firstly intro-
duced by Rivest et al. in 1978 [77]. The main hy-
pothesis was that useful privacy homomorphisms
(i.e., encryption schemes) may exist to support pro-
cessing data while being encrypted. They discussed
some examples of basic operations that could be
applicable, such as addition on integers. In 1985,
Blakley and Meadows followed Rivest approach and
proposed an encryption scheme that supports some
statistical operations such as sum and average [7].
Despite the previous initiation e↵orts, Feigenbaum
in 1986 and Abadi et al. in 1987 can be considered
as the first proposals to discuss the concept of pro-
cessing over encrypted data in its general form, and
the first to use formal definitions and strict security
requirements [1, 31].

However, the hype of processing over encrypted
data did not receive a considerable attention by the
database community until 2002, when Hacigümüs
et al. discussed the idea in the context of database
applications [51]. A restricted version that focuses
only on search over encrypted documents has been
previously published by Song et al. in 2000 [81].
Since then, a rapidly growing literature evolved,
and yielded to several approaches and solutions,
such as Fully Homomorphic Encryption (FHE) [37],
CryptDB [71], CloudProtect [28], Silverline [72], Ci-
pherbase [5], TrustedDB [6], and Blind Seer [69].
However, literature is still evolving and the status

SIGMOD Record, September 2016 (Vol. 45, No. 3) 5



of this new paradigm is yet to be well established.
Therefore, we believe that there is a strong need for
such a survey that provides a comprehensive view
on the developments and advances in this area.

An earlier survey of search over encrypted data
has been introduced by Hacigümüs et al. in 2007
[49]. Another survey of homomorphic cryptosys-
tems was also presented by Fontaine and Galand in
2007 [32]. Additionally, In 2013, Ravan et al. wrote
a survey paper that introduced some methods for
searching on encrypted data and compared between
these methods in terms of performance and security
level [73]. Although these surveys are helpful, still
they focus only on partial issues of the topic. There-
fore, our survey provides more in-depth coverage of
the topic and presents the current advances in this
topic.

Since the objective of this survey is to be a self-
contained reference, we include a background sec-
tion that briefly overview the main encryption cat-
egories. In Section 3, we discuss the importance
of cryptography, present a detailed description of
the homomorphic schemes that are used today, and
highlight why they are critical in the cloud environ-
ment. Then, the recent advances of processing on
encrypted data is presented in Section 4. Section 5
discusses the commercial use of cryptography and
processing over encrypted data. Finally, we discuss
the limitations and open issues, and conclude the
survey in Section 6 and 7 respectively.

2. BACKGROUND
Encryption techniques are used for ensuring the

information secrecy. The encryption algorithms can
be classified into two categories: (1) symmetric en-
cryption and (2) asymmetric encryption. With sym-
metric or single-key encryption, the sender and re-
cipient share a single secret key; and they can en-
crypt and decrypt all messages with this secret key.
The symmetric encryption algorithm takes as an
input the message (plaintext) and performs various
substitutions and transformations on the plaintext
based on the secret key value to produce the scram-
bled message (ciphertext). The two most impor-
tant symmetric cryptographic algorithms are Data
Encryption Standard (DES) and Advanced Encryp-
tion Standard (AES). The main challenge with the
symmetric encryption is the problem with secret
keys exchanging over the Internet. If the secret key
falls in an adversary hands, encrypted messages by
this secret key can be revealed. One solution to the
secret keys exchange problem is the use of asym-
metric encryption.

Asymmetric encryption, also known as two-key

or public-key encryption uses two related keys for
encryption and decryption, a public key and a pri-
vate key. A private-key known only to one party
and a public-key is made freely available to other
parties. If Alice encrypts a message by using the
Bob’s public-key, only Bob can decrypt it using
his matching private-key. This means that pub-
lishing the public-key on the Internet is safe. If
Alice prepares a message to Bob and encrypts it
using her private-key, Bob can decrypt the mes-
sage using Alice’s public-key. Because only Alice
poses her private-key, the encrypted message with
her private-key serves as digital signature. There-
fore, the public-key cryptosystems have profound
consequences on confidentiality, key exchange, and
authentication (digital signature). The most widely
used general purpose public-key algorithm is RSA
scheme. Public-key algorithms are based on math-
ematical functions, therefore they are computation-
ally heavy.

The computational overhead of current public-
key encryption schemes keeps the need for symmet-
ric encryptions because it is faster than the asym-
metric encryptions. Di�e state that “the restric-
tion of public-key cryptography to key management
and signature applications is almost universally ac-
cepted” [29]. In practice, asymmetric encryption
used to encrypt small blocks of data, such as en-
cryption keys, while symmetric encryption used to
encrypt the contents of blocks or streams of data of
any size.

To use asymmetric encryption, there must be a
way for the communicating parties to discover other
public keys. Therefore, the digital certificates are in
use. A certificate is a package that provides infor-
mation to identify a server or a user. It contains in-
formation, such as the certificate holder name, the
organization that issued the certificate, the holder’s
e-mail address and country, and the holder’s public
key. The digital certificate is forgery resistant and
can be verified because it was issued by a trusted
certificate authority (CA). When a client want to se-
curely communicate with a server, it sends a query
over the network to the sever asking for its certifi-
cate. The server responds with a copy of its cer-
tificate to the client. The client can extract the
server’s public-key from the certificate and verify if
it is genuine and valid by using CA’s public-key.

3. CRYPTOGRAPHY IN THE CLOUD
Recent surveys showed that security and privacy

concerns are among the major barriers for cloud
adoption [74,76]. Utilization of cryptography in the
cloud can be seen as a potential candidate to the

6 SIGMOD Record, September 2016 (Vol. 45, No. 3)



data confidentiality problem. Here, we discuss the
recent advances of cryptography in this context.

3.1 Functional Encryption
Originally, the authorized entity who has the de-

cryption key can decrypt and read the encrypted
data. Thus, conventional encryption schemes are
all-or-nothing, where the encrypted data is useless
without knowing the decryption key. However, in
many contemporary scenarios, such as complex net-
works and cloud computing, more fine-grained en-
cryption approach is needed to o↵er more function-
ality. In some cases, the data owner needs the abil-
ity to control not only who should access the en-
crypted data but also what should they see. To ad-
dress this problem, the cryptographic community
develop what is known as functional encryption.

Functional encryption (FE) is a novel public-key
encryption scheme that allows both access control
flexibility and selective processing on the encrypted
data. FE supports having multiple restricted se-
cret keys of the encrypted data, and allows the se-
cret key holder to learn a specific function of the
encrypted data but nothing else about the data.
For example, consider a financial data for a com-
pany uses the cloud encrypted in away that only
employees of the finance department working in the
headquarter are allowed to decrypt. In the past
decade, cumulative e↵orts have been made to en-
able fine-grain access control, which resulted in of-
fering some derivatives of FE, such as Attribute-
Based Encryption (ABE) and Identity-Based En-
cryption (IBE) [10, 16, 23, 48, 56, 67, 78]. More gen-
eral notion and framework for functional encryption
system that o↵ers selective computation have been
published in [15,65].

In a functional encryption system, the data is en-
crypted once and the appropriate secret keys with
di↵erent decryption capabilities are distributed to
di↵erent users according to arbitrary functions that
control what each user should learn from the ci-
phertext. If a user has a key Sk

f1 associated to
some function f1, then he can apply the key Sk

f1

to decrypt data and learn the output of applying f1

but nothing else about the plaintext. On the other
hand, another user with a di↵erent key can learn
entirely di↵erent things about the encrypted data.

The enhanced flexibility provided by the func-
tional encryption systems that provides partial ac-
cess and selective computation on encrypted data
is very attractive for many applications, such as
searching on encrypted data, partial access control,
and selective computation on the encrypted data.
Accordingly, much progress has been done to realize

secure and e�cient ABE schemes, such as [13, 47].
Moreover, Garg et al. constructed functional en-
cryption for general circuits that depends on “multi-
linear maps” [35]. An example of the e↵orts toward
standardization is publishing RFC5091 [18].

An extensive research has recently been pursued
to study the functional encryption (FE) schemes
in terms of security, implementations, and applica-
tions. In particular, multi-input FE [43], functional
signatures [19], Fully Key-Homomorphic Encryp-
tion [13], secure FE construction [85] and function-
private FE [21]. Nevertheless, the main goal of
functional encryption is to build secure and e�cient
schemes that support a wide class of functions and
policies.

3.2 Searchable Encryption
Another interesting approach developed by the

community is the Searchable Encryption (SE). SE
allows the user to encrypt his data using a private-
key and store it in the cloud; then, selectively re-
trieve segments of his encrypted data using keyword
search. One approach of SE is the so-called secure
index. Informally, the user creates an Index I over a
databaseDB = (m1,m2, ...,mn

) by using some key-
words KW = (kw1, kw2, ..., kwm

) extracted from
DB and encrypted using a private-key K. Next,
the user stores the encrypted database and the se-
cure index in the cloud. Later, the user generates
a trapdoor T over KW using K, and requests the
server to use T to search the secure index and re-
turn the segments of data that match the keyword.
A pioneered approach to search directly over the ci-
phertext was introduced by Song et al. [81]. They
introduce several schemes that support both search
by sequential scan over an encrypted database (to
avoid the overhead of keep updating the encrypted
index), and the more sophisticated search using an
encrypted index without sacrificing security. For
more details on SE, we refer the reader to a recent
survey which was published during the time of re-
viewing this article [17].

3.3 Secure Multi-party Computation
Yao introduced the Multi-party Computation in

1982 [86]. Yao asked: How can two millionaires
know who is richer without disclosing their indi-
vidual wealth to each other. Sheikh et al. formal-
ized the problem in the so-called Secure Multi-party
Computation (SMC) [79]. SMC provides private
computation over data while reveal only the indi-
vidual item to the respective owner. Given mul-
tiple parties P1, P2, ..., Pn

involved in a computa-
tion of some public function of their private inputs

SIGMOD Record, September 2016 (Vol. 45, No. 3) 7



D1, D2, ..., Dn

, respectively. Each party Pi wants to
know the common function f(D1, D2, ..., Dn

) with-
out disclosing value of its data D

i

to other par-
ties. Ideal and Real models are the two well-known
paradigms for SMC. In the ideal model, there is
some trusted third party (TTP) among the partici-
pants while there is no such assumption in the real
model. Worth to mention that in the Data-as-a-
Service (DaaS) environment and in large volumes
of online transactions, the concept of data privacy
and SMC has become a matter of great concern [79].

A survey of the main techniques to secure joint
computation over private data while preserving the
privacy of their individual items has been intro-
duced by Sheikh et al. [79]. They classified the tech-
niques that solve SMC problems into three main
groups: randomization, anonymization and crypto-
graphic. In the randomization method, parties use
random numbers for hiding their data. Cliftonet
et al. proposed a secure sum protocol that com-
putes the sum of several parties while preserving
the privacy of their data [26]. In the anonymization
method, TTP is required to hide the identities of
the parties. Mishra and Chandwani proposed and
extend anonymous protocols to hide the TTP iden-
tities [62]. Their main protocol unanimously selects
one TTP among all TTPs in the SMC architecture
to ensure that no single TTP controls the system
and no TTP knows where the computation is taking
place. In the cryptographic technique, blocks are
built to secure computation [64]. Well-known tech-
niques that use cryptographic blocks are: Yao’s mil-
lionaires problem, homomorphic encryption, obliv-
ious transfer, and private matching.

Lepinksi et al. stated that cryptographic proto-
col can undo all of the carefully planned measures
designed by the auctioneer to prevent collaborative
bidding [58]. They define and construct collusion-
free protocols in a model in which players can ex-
change physical envelopes to guarantee that no new
method for players to collude are introduced by the
protocol itself.

Finally, Alwen et al. addressed the problem of
building collusion-free protocols without using phys-
ical channels [4]. They suggested a mediated model
where all communication passes through a media-
tor. The goal is to design protocols where collusion-
freeness is guaranteed. Recently, Miers et al. pro-
posed Zero-coin, a cryptographic extension to Bit-
coin where their protocol allows fully anonymous
currency transactions [61]. Their system uses stan-
dard cryptographic assumptions and does not intro-
duce new trusted parties.

Current major problems and solutions for SMC

can be classified as follows: Private Information Re-
trieval, Selective Private Function Evaluation, Pri-
vacy Preserving Data Mining, Cooperative, Data-
base Query, Geometric Computation, Intrusion De-
tection, and Statistical Analysis [79].

3.4 Homomorphic Cryptosystems
Existing encryption schemes can be classified into

two main categories in terms of homomorphic prop-
erties. Namely, Fully Homomorphic Encryption and
Partially Homomorphic Encryption. Homomorphic
is an adjective that describes a special property of
an encryption scheme. That property, at an ab-
stract level, can be defined as the ability to perform
computations on the ciphertext without decrypting
it or even knowing the keys.

3.4.1 Fully Homomorphic Encryption (FHE)
In the cryptography communit’s Conviction, FHE

was impossible to achieve until 2009, when Gentry
announced his new approach [38, 39]. It is consid-
ered one of the recent breakthrough of cryptogra-
phy. FHE supports arbitrary computation over en-
crypted data and remains secure (achieve semantic
security) as well. In his PhD thesis, he discussed
how his schemes can be constructed [37]. Before
Gentry’s achievement, all encryption schemes that
preserve a homomorphic property were able to sup-
port only a single operation over encrypted data.
The main contribution of Gentry’s work is the sup-
porting of two homomorphic operations at the same
time. Namely multiplication and addition. Corre-
spond to AND (^) and XOR (�) in boolean alge-
bra. The remarkable value of supporting these two
boolean functions is that any computation can be
converted into a function that contains only (^) and
(�) as we explained below. Finally, an open-source
implementation of FHE is available [53, 54].

In algebraic terms, any computation can be ex-
pressed as a boolean circuit. For example, to search
for a string in a text file, we can convert both the
string and the text file into two sequences of bi-
nary digits, then we do a bitwise XOR for every
bit of the string, when the result of all bits is 1,
then there is no match for the current position of
the file; Therefore, we shift one bit to the right and
compare again. We repeat this process until the re-
sult of comparison is 0, which means that we found
a match, or the file ends without a match. Usu-
ally, several techniques can be used to convert a
function (i.e., computation) into a more simple or
e�cient one. Furthermore, they can also be used
to transform a function to use specific boolean op-
erations. For instance, ¬A can be expressed as A

8 SIGMOD Record, September 2016 (Vol. 45, No. 3)



� 1, another example would be A _ B, this can be
transformed into ¬(¬A ^ ¬B) which is equivalent
to ((A � 1) ^ (B � 1)) � 1. By utilizing such tech-
niques, all functions can be converted into a series
of (^) and (�) operations. This is the basis behind
the remarkable achievement of Gentry’s work.

Clearly, converting even a simple application into
a series of boolean circuits requires enormous num-
ber of operations. Moreover, both the complexity
of encryption and decryption and the size of the
ciphertext hugely grow. Despite that Gentry is try-
ing with the support of his colleagues at IBM to
optimize the first version of his work [20,40,84], his
approach remains very expensive and hence imprac-
tical.

3.4.2 Partially Homomorphic Encryption (PHE)
Several PHE systems have been discussed in the

literature. Rivest et al. in 1978 was the first to in-
troduce the concept of privacy homomorphism [77].
Then, several researchers follow such as ElGamal
and paillier [34, 68]. Here is a discussion of the
most well-known partially homomorphic cryptosys-
tems and a summary is shown in Table 1 as well.

ElGamal Cryptosystem: T. ElGamal in 1984
proposed what is known as ElGamal cryptosystem
[34]. His scheme is based on problem of solving
discrete logarithms. The homomorphic operation
that ElGamal supports is the multiplication over
encrypted messages. Given two ciphertexts c1 and
c2 that are encryption of m1 and m2, ↵ is a genera-
tor of a cyclic group G of order p, where p is a large
prime number. y = ↵

x where x is the secret key, k1
and k2 are randoms such that k1, k2 2 {0, ..., p�1},
then

c1c2 = (↵k1
↵

k2
mod p, ((m1 · yk1)(m2 · yk2)) mod p)

= (↵k1+k2
,m1m2 · yk1+k2) mod p

is a valid encryption of m1 . m2. One notable draw-
back of ElGamal scheme is that the size of cipher-
text is double the size of the plaintext message. In-
terestingly, several variants of ElGamal have been
proposed, such as Cramer et al. that is homomor-
phic on the additive operation [27].

Paillier Cryptosystem: This scheme is based
on the problem of composite residuosity class. i.e.,
given a composite n and an integer z , it is hard
to decide whether there exists y such that z ⌘
y

n

mod n

2 [68]. The di↵erence of paillier from RSA
is the usage of square number as modulus, where
n

2 = pq is the product of two large primes. As
for homomorphic property, the scheme supports two
main operations, addition and multiplication by a

constant. Next we describe the addition. Let c1 =
g

m1
r

n

1 mod n

2 and c2 = g

m2
r

n

2 mod n

2, then

c1c2 mod n

2 = g

m1
r

n

1 g
m2

r

n

2 mod n

2

= g

m1+m2
r

n

1 r
n

2 mod n

2

is a valid encryption of m1 +m2

Goldwasser-Micali Cryptosystem: Proposed
by Goldwasser and Micali as the first probabilistic
encryption scheme [44, 45]. Also the first to in-
vent the term semantic security. The security of
the scheme is based on the complexity of deciding
whether a number is quadratic residues with respect
to composite modulo n = pq, where p and q are two
distinct prime numbers. The homomorphic prop-
erty of the scheme is the support of the addition
operation modulo 2, or in algebraic terms the XOR
(�) operation. Given two ciphertexts c1 = �1x1

r1
2

and c2 = �1x2
r2

2, then

c1c2 = (�1x1
r1

2)(�1x2
r2

2) mod 2

= �1(x1+x2)(r1r2)
2
mod 2

is a valid encryption of x1 + x2 mod 2.
Benaloh Cryptosystem: Due to the problem

of large ciphertext expansion in Goldwasser-Micali
cryptosystem, Benaloh proposed his scheme in 1994
that decreased the ciphertext size at the cost of
decryption complexity [9]. Benaloh scheme sup-
ports both addition and subtraction over cipher-
texts. Given two ciphertexts c1 = y

m1
u1

r

mod n

and c2 = y

m2
u2

r

mod n, then

c1c2 = (ym1
u1

r)(ym2
u2

r) mod n

= y

m1+m2(u1u2)
r

mod n

is a valid encryption of m1 +m2, and

c1c2
�1 = (ym1

u1
r)(ym2

u2
r)�1

mod n

= (ym1
u1

r)(y�m2(u2
�1)r) mod n

= y

m1�m2(u1u
�1
2 )r mod n

is a valid encryption of m1 �m2.
Boneh-Goh-Nissim Cryptosystem: This sys-

tem utilizes the bilinear pairing to supports the ho-
momorphic addition while at the same time allow-
ing the computation of a single homomorphic mul-
tiplication of two cipertexts [14]. Let
c1 = g

m1
h

r1
mod n and c2 = g

m2
h

r2
mod n, then

c1c2 mod n = (gm1
h

r1)(gm2
h

r2) mod n

= (gm1+m2)(hr1+r2) mod n

SIGMOD Record, September 2016 (Vol. 45, No. 3) 9



Scheme Main Homomorphic Properties Security Assumption

ElGamal [34] ⇥ Discrete Logarithms
Paillier [68] �,�,⇥

c

Composite Residuosity
Goldwasser-Micali [44, 45] � Quadratic Residues
Benaloh [9] �,� Quadratic Residues
Boneh-Goh-Nissim [14] �,⇥

once

Subgroup Decision Problem

Table 1: Summary of the most well-known PHE schemes

Processing 
Over 

Encrypted
 Data 

Homomorphic 
Schemes

Trusted 
Hardware

Client/Server 
Query 

Evaluation

Fully Homomorphic 
Schemes

Partial Homomorphic 
Schemes

Secure Co-processors

Hardware Security 
Modules

FPGAs

Figure 1: Classification of Processing Over
Encrypted Data Models

is a valid encryption of m1 +m2, and

c1
k

mod n = (gm1
h

r1)k mod n

= (gkm1
h

r1k) mod n

is a valid encryption of km1

Based on the above discussion, we argue that ho-
momorphic encryption schemes are possible. How-
ever, they lack general computation support since
they can perform limited types of operations, and
hence the question of designing full functional sys-
tems that process encrypted data using only homo-
morphic schemes is still an open challenge.

4. STATE OF THE ART
As shown in Figure 1, current systems of process-

ing over encrypted data can be classified into three
main categories: (i) Systems that utilize homomor-
phic encryption schemes, (ii) Client-server splitting
approaches, and (iii) Trusted-hardware systems. In
this section, we discuss systems that fall under these
categories.

4.1 Systems Based on Homomorphic
CryptDB is one of the recent “partially” practi-

cal systems that utilized several homomorphic sch-
emes to support database functionality [71]. Their

approach is basically built on two main ideas. First,
use SQL-aware encryption schemes to e�ciently ex-
ecute queries. And second, use onions of encryption
and adjust them dynamically at the run-time based
on the required functionality. The idea of SQL-
aware encryption schemes is a kind of mapping be-
tween the operation required and the homomorphic
scheme that can support it. However, onions of en-
cryption cause extra overhead. One major draw
back of CryptDB is the lack of support for Stored
Procedures (where the SQL code is integrated into
the DBMS itself).

CryptDB provides the highest security guaran-
tees when using a probabilistic encryption, which
means that encrypting the same value more than
once produces di↵erent result (even when using the
same encryption key). Random(RND) where no
computation is supported, and Homomorphic en-
cryption (HOM) where simple computation such as
summation is supported, are conventions used by
CryptDB to refer to such schemes. Better run-time
e�ciency was achieved by perform aggregation in
parallel by simultaneously adding multiple 32-bit
integers [36].

To allow more fine-grained operations, CryptDB
utilizes the scheme proposed by Song et al. to sup-
port search over encrypted data [81]. It enables the
user to perform search operations over encrypted
data. All text fields in the database are encrypted
using Song et al. approach and stored in the DBMS.
By using this approach, they could execute queries
to retrieve records that match a certain keyword,
such as SELECT * from Employee where Address
Like %Berlin%

Another important building block of CryptDB is
the use of Deterministic Encryption (DET) that
allows equality check operations [8]. DET means
that repeating the encryption of any message would
always produce the same ciphertext. We cannot
achieve semantic security in this scheme, but it still
provides high security guarantees. The only infor-
mation it leaks is the ability to identify which ci-
phertexts are mapped to the same plaintext, with-
out revealing the actual value of the plaintext. De-

10 SIGMOD Record, September 2016 (Vol. 45, No. 3)



terministic encryption can be constructed by the
use of a block cipher such as AES-ECB. Block-size
in AES has a fixed length of 128-bit, for lower block-
size, such as 64-bit, alternative schemes could be
used, such as Blowfish. By utilizing deterministic
encryption, the system would be able to execute, for
example, queries with equality checks, GROUP BY,
and some aggregate functions, such as COUNT.

Finally, Order-Preserving Encryption (OPE) al-
gorithms preserve the numerical order of the ci-
phertext in a way equivalent to the plaintext [2,
11]. One potential use case of such schemes is to
perform range queries on encrypted data. For in-
stance, given two plaintext values m1 and m2,

where m1 < m2, then f is order-preserving en-
cryption function if

f (m1) < f (m2)

4.2 Client-Server Splitting Approaches
Several approaches that utilize the concept of cli-

ent-server query split have been discussed by the
community [50–52,55,72,83].

Silverline keeps the data at the server-side con-
fidential by encrypting it in away that is transpar-
ent to the application and being able to have some
functionality on it as well [72]. Silveline proposed
to dynamically analyse the application to deter-
mine which parts of the data can be functionally
encryptable; it assumes that any data that is never
interpreted or manipulated by the application is en-
cryptable. For instance, a SELECT query in typi-
cal human-resource applications that searches for all
records match the employeeID ’Jan’ is not required
to interpret the actual string ’Jan’ and hence can
execute the query if it would be encrypted. As for
key-management, it divides the users into groups,
and assigns a single encryption key to this group, fa-
cilitates encryption and information sharing at the
same time. While Silverline seems to be practical to
some extent, the main drawback is that it requires
analysis of the application and the data to deter-
mine which parts can be encrypted. Such an analy-
sis would be an expensive task; also a repetition of
this process will be required whenever a change to
the application or upgrade is taking place. Further-
more, major part of the data will still be stored in
plaintext, thus privacy and data compromise issues
still open.

In contrast to Silverline, Hacigümüs et al. pro-
posed to store the entire data in an encrypted form
on the provider’s side, and introduced an algebraic
framework for query rewriting [51]. The framework
divides every query into two parts, execute the first
part on the encrypted version (i.e., stored on the

server’s side), and then perform client-side post-
processing on the result come from the server. The
e�ciency of this approach relies on how data parti-
tioning and query splitting and rewriting is accom-
plished.

Monomi utilizes both techniques, PHE and split
client-server query execution [83]. In contrast to
CryptDB that focuses on transactional workloads,
Monomi is mainly targeting analytical workloads.
Since queries are not known ahead of time, and
to maximize e�ciency, Monomi introduces an opti-
mization designer that chooses an appropriate data-
base design (on the server) according to the tar-
get workload. Further, it provides a planner that
selects the query execution path for every query.
Additionally, it provides some techniques such as
per-row pre-computation and pre-filtering. How-
ever, Monomi is far from being generally practical
for several reasons. First, in real-world enterprise
environments, it could be ine�cient since queries
over analytical workloads contain complex compu-
tations that is hard to partition between client and
server. Second, Performance cost is very expensive.
Queries over large (plain) datasets often have the
problem of i/o bottlenecks, imagine adding the cost
of using cryptography techniques. Finally, choos-
ing a physical design at the runtime, pre-filtering
and pre-computation are complex tasks and depend
mainly on the targeted workload. Thus, the task
need to be repeated for every workload or applica-
tion.

4.3 Trusted-Hardware Systems
To perform a computation on encrypted data,

the keys need to be present at the server to de-
crypt the data, compute, and then encrypt again.
The drawback of this model is the vulnerability of
compromising cryptographic keys. Therefore, sev-
eral techniques and approaches have been discussed
to overcome such vulnerabilities. These approaches
use secure, tamper-proof hardware components at-
tached to the server to store cryptographic keys and
perform computation over encrypted data [5,6]. Ex-
amples of industrial solutions that are in use in-
clude secure co-processors, Hardware Security Mod-
ules (HSM), and Field-Programmable Gate Arrays
(FPGAs).

In contrast to software-based approaches, Trusted
DB uses IBM’s 4764 cryptographic co-processors to
execute SQL queries while maintaining confiden-
tiality [6]. Since it is implemented entirely using
hardware components, the overhead of query exe-
cution is lower by orders of magnitude in compar-
ison to other approaches. Additionally, They in-

SIGMOD Record, September 2016 (Vol. 45, No. 3) 11



troduced cost-models and insights for the advan-
tages of using trusted, hardware-based solutions for
outsourced data processing. Finally, they recom-
mended that trusted-hardware approach be a first-
class candidate for remote and secure data manage-
ment. Di↵erent from TrustedDB, Cipherbase key
idea is to simulate fully-homomorphic encryption
on top of non-homomorphic encryption schemes by
using trusted hardware [5].

5. CURRENT INDUSTRY OFFERINGS
Industry o↵erings can be classified into two cat-

egories: encryption at rest and computing on en-
crypted data. In this section, we discuss the latest
technologies provided by the pioneered providers.

Oracle introduced Transparent Data Encryption
(TDE) that provides data-at-rest encryption [66].
The data will be stored on the file systems as en-
crypted. Yet, and upon request, it transparently de-
crypt the data for the application to process. TDE
supports both column-level and table-level encryp-
tion. However, a single key is used for the entire ta-
ble regardless of how many columns are encrypted.
By default, TDE utilizes AES with 192-bit key as a
standard encryption algorithm. However, 128 and
256 bits are also supported. In addition, 3DES can
be used as an alternative encryption algorithm. To
prevent unauthorized disclosure, the keys for all ta-
bles are encrypted with a database-server master
key and then stored in a dictionary table in the
database. Afterwards, the master key is stored in
an external secure module outside the database and
is accessible only to the security administrator.

Similar to Oracle, Microsoft o↵ers TDE as well
[59]. The main concept of securing data at-rest
by utilizing encryption remains the same. How-
ever, few di↵erences exist, such as storing the keys
for encrypting data in the database boot record in
comparison to a dictionary in the case of Oracle.
Another major di↵erence is that Microsoft TDE
uses three-levels of encryption along with two mas-
ter keys and one certificate. Namely Service Mas-
ter Key (SMK) and Database Master Key (DMK).
First, the SMK is created at the time of SQL Server
setup. TheWindows OS-Level Data Protection API
(DPAPI) is used to encrypt the SMK so it remains
protected. Second, The DMK is created and then
protected by encrypting it using the SMK. Finally, a
certificate is generated using the DMK and stored
in the master database that is consequently used
to encrypt the data encryption key. In addition
to TDE, Microsoft developed a new Always En-
crypted feature for protecting sensitive data, such
as credit card number that sorted in Azure SQL

Database [60]. Always Encrypted is a client-side
technology to ensure that sensitive data is encrypted
and decrypted at the client side and the database
system does not have access to the encryption keys.
Consequently, database administrator or attackers
gaining illegal access to the database are not able
to retrieve data from encrypted database.

Navajo Systems (acquired by Salesforce in 2011)
[33], CipherCloud [25], and SQLCipher [82] all pro-
vide techniques to encrypt enterprise data before
storing them in the cloud. For instance, Cipher-
Cloud o↵ers, in addition to key management and
other things, what they call Tokenization. It gen-
erates a random values to substitute the original
data and store them in the cloud. The mapping
between the random values and the original data is
stored at the client’s side. Finally, Google is imple-
menting and testing some partially homomorphic
encryptions in a new command-line client-tool that
accesses their BigQuery service [75].

The above industry o↵erings are mainly targeted
to protect data at-rest and in transit. Although we
introduced Microsoft Always Encrypted and Sky-
highy, supporting functionality over encrypted data,
other than basic search or limited queries, remains
a challenge and an open issue for both industry and
academia.

6. LIMITATIONS AND OPEN ISSUES
We point out inherited limitations of current sche-

mes and discuss some open problems in the domain
of processing over encrypted data.

6.1 FHE is Impractical
Despite the improvements that follow Gentry’s

scheme [20,22,42,84], current proposals of FHE are
far from being practical due to the expensive cost
to perform operations. For example, An evaluation
performed by Gentry et al. in 2012 for AES-128 cir-
cuit showed that it cost about 40 minutes per AES
block on an Intel core i5-3320M machine running at
2.6GHz with 256 GB of RAM [41]. The computa-
tion model required by FHE is complex due to the
need of converting the application into a boolean
circuit that may results in a very large, non-trivial
one. Therefore, designing an e�cient and practical
FHE scheme remains an open issue.

6.2 PHE Schemes are Limited
In contrast to FHE, PHE schemes are more ef-

ficient. This is due to the support of only lim-
ited functionality. For instance, paillier takes about
0.005 ms to perform an addition on two cipher-
texts [71]. PHE schemes are crucial for systems to

12 SIGMOD Record, September 2016 (Vol. 45, No. 3)



process encrypted data because of their practicality.
However, they only support partial computations,
and hence, cannot be used to build complete func-
tional systems. Yet, and motivated by the previous
schemes and advances in cryptography, we believe
that more schemes to come that can help in bridg-
ing this gap.

6.3 Strong Order-Preserving Encryption
Order-Preserving Encryption (OPE) schemes in

[2,11] are shown to be insecure and reveal about half
of the plaintext [70]. An extension to improve the
security of [11] was presented by the same authors
in [12]. However, the leakage of nothing except or-
der remains questionable. More recent approaches
claim that their schemes achieve ideal security of
OPE (i.e., they leaks nothing but order) [57,70]. Fi-
nally, although SkyhighNetworks implemented OPE
solution in their cloud security [80], the security of
the best practical OPE schemes is still not well un-
derstood [24].

6.4 Trusted-Hardware is Expensive
In spite of the fact that the benefits of hardware-

based solutions, they require fundamental changes
to the service provider’s model. Consequently, their
usage is limited to specific environments. However,
and due to the limitation of software-based solu-
tions, the integration of trusted-hardware with com-
modity servers has received a considerable attention
recently. In order to bring the trusted-hardware
model into practice, we believe that in the near fu-
ture, several IaaS providers will start to o↵er secure
co-processors, FPGAs, and HSM in their settings.
A more detailed discussion about processing on en-
crypted data using secure hardware is presented
in [30,63].

7. CONCLUSION
This paper discussed the main applications, tools,

and techniques for processing over encrypted data.
We reviewed both PHE and FHE schemes. PHE en-
cryption schemes that preserve homomorphic prop-
erty can be discussed from two di↵erent perspec-
tives. On one hand, it is a desirable property that
allows the user to perform computations on the en-
crypted data without decrypting it or even know-
ing the decryption keys. An interesting example
for such a need is electronic voting. On the other
hand, it is perceived as a drawback or a weakness
in the encryption scheme since it cannot satisfy in-
distinguishability under adaptive chosen ciphertext
attack (IND-CCA2) requirements, and hence, can
be broken. This is drawn from the fact that PHE

schemes are malleable by design. For instance, a
chosen-ciphertext attack by Ahituv et al. was re-
ported against a homomorphic scheme where the
addition operation is supported [3]. Unlike PHE,
and to overcome the security issues of the current
schemes, a breakthrough in 2009 introduced by Gen-
try for his proposal of the FHE scheme [38,39]. FHE
supports arbitrary computation over encrypted data
and remains secure. Despite Gentry’s achievement,
his approach remains very expensive and impracti-
cal. Also, we discussed and classified several as-
pects of processing over encrypted data, such as
functional encryption, searchable encryption, multi-
party computation, and the recent industry o↵er-
ings. Finally, we believe that an obvious shift in the
field of processing over encrypted data is in the inte-
gration of trusted-hardware components with com-
modity servers. Interestingly, some researchers fore-
see the future of secure remote data management as
infeasible without the usage of the trusted-hardware
model.

8. REFERENCES
[1] M. Abadi, J. Feigenbaum, and J. Kilian. On

hiding information from an oracle. In ACM
Symp. on Theory of Computing, New York,
USA, 1987.

[2] R. Agrawal, J. Kiernan, R. Srikant, and
Y. Xu. Order-preserving encryption for
numeric data. In ACM SIGMOD Conference,
Paris, France, 2004.

[3] N. Ahituv, Y. Lapid, and S. Neumann.
Processing encrypted data. Communications
of the ACM, 30(9):777–780, 1987.

[4] J. Alwen, A. Shelat, and I. Visconti.
Collusion-free protocols in the mediated
model. In CRYPTO, pages 497–514, Santa
Barbara, California, USA, 2008. Springer.

[5] A. Arasu, S. Blanas, K. Eguro, R. Kaushik,
D. Kossmann, R. Ramamurthy, and
R. Venkatesan. Orthogonal security with
cipherbase. In CIDR, California, USA, 2013.

[6] S. Bajaj and R. Sion. Trusteddb: A trusted
hardware-based database with privacy and
data confidentiality. In ACM SIGMOD
Conference, California, USA, 2011.

[7] G. R. Balkley and C. Meadows. A database
encryption scheme which allows the
computation of statistics using encrypted
data. In IEEE S&P, Oakland, CA, USA, 1985.

[8] M. Bellare, A. Boldyreva, and A. O’Neill.
Deterministic and e�ciently searchable
encryption. In CRYPTO, pages 535–552,
California, USA, 2007.

SIGMOD Record, September 2016 (Vol. 45, No. 3) 13



[9] J. Benaloh. Dense probabilistic encryption. In
Selected Areas of Cryptography, pages
120–128, Ontario, Canada, 1994.

[10] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-policy attribute-based encryption.
In IEEE S&P, pages 321–334. IEEE, 2007.

[11] A. Boldyreva, N. Chenette, Y. Lee, and
A. O’Neill. Order-preserving symmetric
encryption. In EUROCRYPT, pages 224–241,
Cologne, Germany, 2009.

[12] A. Boldyreva, N. Chenette, Y. Lee, and
A. O’Neill. Order-preserving encryption
revisited: improved security analysis and
alternative solutions. In CRYPTO, pages
578–595, California, USA, 2011.

[13] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi,
V. Nikolaenko, G. Segev, V. Vaikuntanathan,
and D. Vinayagamurthy. Fully
key-homomorphic encryption, arithmetic
circuit abe, and compact garbled circuits. In
EUROCRYPT 2014, volume 8441 of LNCS,
pages 533–556, 2014.

[14] D. Boneh, E.-J. Goh, and K. Nissim:.
Evaluating 2-dnf formulas on ciphertexts. In
Theory of Cryptography, volume 3378, pages
325–341, 2005.

[15] D. Boneh, A. Sahai, and B. Waters.
Functional encryption: Definitions and
challenges. In Theory of Cryptography, volume
6597, pages 253–273. Springer, 2011.

[16] D. Boneh and B. Waters. Conjunctive, subset,
and range queries on encrypted data. In
Theory of Cryptography, volume 4392, pages
535–554. Springer, 2007.

[17] C. Bösch, P. Hartel, W. Jonker, and A. Peter.
A survey of provably secure searchable
encryption. ACM Computing Surveys
(CSUR), 47(2):18, 2015.

[18] X. Boyen and L. Martin. Identity-based
cryptography standard (ibcs) #1:
Supersingular curve implementations of the bf
and bb1 cryptosystems. RFC5091, December
2007.

[19] E. Boyle, S. Goldwasser, and I. Ivan.
Functional signatures and pseudorandom
functions. In PKC 2014, volume 8383 of
LNCS, pages 501–519. Springer, 2014.

[20] Z. Brakerski, C. Gentry, and
V. Vaikuntanathan. (leveled) fully
homomorphic encryption without
bootstrapping. In Innovations in (Theoretical)
CS, Cambridge, MA, USA, 2012.

[21] Z. Brakerski and G. Segev. Function-private
functional encryption in the private-key

setting. Technical Report Report 2014/550,
Cryptology ePrint Archive, 2014.

[22] Z. Brakerski and V. Vaikuntanathan. Fully
homomorphic encryption from ring-lwe and
security for key dependent messages. In
CRYPTO, pages 505–524, California, USA,
2011.

[23] M. Chase. Multi-authority attribute based
encryption. In Theory of Cryptography,
volume 4392 of Lecture Notes in CS, pages
515–534. Springer, 2007.

[24] N. Chenette, K. Lewi, S. A. Weis, and D. J.
Wu. Practical order-revealing encryption with
limited leakage, 2015.

[25] CipherCloud. Cloud data protection.
[retrieved: Oct, 2014].

[26] C. Clifton, M. Kantarcioglu, J. Vaidya,
X. Lin, and M. Y. Zhu. Tools for privacy
preserving distributed data mining. ACM
SIGKDD, 4(2):28–34, December 2002.

[27] R. Cramer, R. Gennaro, and
B. Schoenmakers. A secure and optimally
e�cient multiauthority election scheme. In
EUROCRYPT, pages 103–118, NY, USA,
1997.

[28] M. H. Diallo, B. Hore, E. C. Chang,
S. Mehrotra, and N. Venkatasubramanian.
Cloudprotect: Managing data privacy in cloud
applications. In IEEE Cloud, Hawaii, USA,
2012.

[29] W. Di�e. The first ten years of public-key
cryptography. Proceedings of the IEEE,
76(5):560 – 577, May 1988.

[30] K. Eguro and R. Venkatesan. Fpgas for
trusted cloud computing. In
Field-Programmable Logic and Applications,
Oslo, Norway, 2012.

[31] J. Feigenbaum. Encrypting problem instances,
or, ..., can you take advantage of someone
without having to trust him? In CRYPTO.
Springer-Verlag, 1986.

[32] C. Fontaine and F. Galand. A survey of
homomorphic encryption for nonspecialists.
EURASIP Journal on Information Security,
pages 1–15, 2007.

[33] Forbes. Salesforce.com brings navajo into
camp to boost cloud security.
http://www.forbes.com/sites/greatspeculat-
ions/2011/08/30/salesforce-com-brings-
navajo-into-camp-to-boost-cloud-security,
2011.

[34] T. E. Gamal. A public key cryptosystem and
a signature scheme based on discrete
logarithms. In CRYPTO, pages 10–18, Santa

14 SIGMOD Record, September 2016 (Vol. 45, No. 3)



Barbara, California, USA, 1984.
[35] S. Garg, C. G. S. Halevi, M. Raykova,

A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional
encryption for all circuits. In FOCS ’13, pages
40–49. IEEE Computer Society, 2013.

[36] T. Ge and S. Zdonik. Answering aggregation
queries in a secure system model. In VLDB,
pages 519–530, 2007.

[37] C. Gentry. A fully homomorphic encryption
scheme. PhD thesis, Stanford, 2009.

[38] C. Gentry. Fully homomorphic encryption
using ideal lattices. In ACM Symp. on the
Theory of Computing, pages 169–178,
Maryland, USA, 2009.

[39] C. Gentry. Computing arbitrary functions of
encrypted data. Comm. of the ACM,
53(3):97–105, 2010.

[40] C. Gentry, S. Halevi, and N. P. Smart. Better
bootstrapping in fully homomorphic
encryption. In Public Key Cryptography,
Darmstadt, Germany, 2012.

[41] C. Gentry, S. Halevi, and N. P. Smart.
Homomorphic evaluation of the aes circuit. In
CRYPTO, pages 850–867, California, USA,
2012.

[42] C. Gentry, A. Sahai, and B. Waters.
Homomorphic encryption from learning with
errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In
CRYPTO, pages 75–92, California, USA,
2013.

[43] S. Goldwasser, S. D. Gordon, V. Goyal,
A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi,
and H.-S. Zhou. Multi-input functional
encryption. In EUROCRYPT, volume 8441 of
LNCS, pages 578–602. Springer, 2014.

[44] S. Goldwasser and S. Micali. Probabilistic
encryption & how to play mental poker
keeping secret all partial information. In ACM
Symp. on Theory of Computing, pages
365–377, California, USA, 1982.

[45] S. Goldwasser and S. Micali. Probabilistic
encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

[46] S. Gorbunov. Cryptographic Tools for the
Cloud. PhD thesis, MIT, 2015.

[47] S. Gorbunov, V. Vaikuntanathan, and
H. Wee. Attribute-based encryption for
circuits. In STOC ’13, pages 545–554. ACM,
2013.

[48] V. Goyal, O. Pandey, A. Sahai, and
B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data.

In 13th ACM Conference on CCS, pages
89–98. ACM, 2006.

[49] H. Hacigümüs, B. Hore, B. Iyer, and
S. Mehrotra. Search on Encrypted Data,
volume 33, chapter Secure Data Management
in Decentralized Systems, pages 383–425.
Springer, 2007.

[50] H. Hacigümüs, B. Lyer, , and S. Mehrotra.
Query optimization in encrypted database
systems. In Database Systems for Advanced
Applications, Beijing, China, 2005.

[51] H. Hacigümüs, B. Lyer, C. Li, , and
S. Mehrotra. Executing sql over encrypted
data in the database-service-provider model.
In ACM SIGMOD Conference, Wisconsin,
USA, 2002.

[52] H. Hacigümüs, B. Lyer, and S. Mehrotra.
E�cient execution of aggregation queries over
encrypted relational database. In Database
Systems for Advanced Applications, Jeju
Island, Korea, 2004.

[53] S. Halevi. Helib: an implementation of
homomorphic encryption.
https://github.com/shaih/HElib. [retrieved:
Oct, 2014].

[54] S. Halevi and V. Shoup. Algorithms in helib.
In CRYPTO, California, USA, 2014.

[55] B. Hore, S. Mehrotra, , and G. Tsudik. A
privacy-preserving index for range queries. In
VLDB, pages 720–731, Toronto, Canada,
2004.

[56] J. Katz, A. Sahai, and B. Waters. Predicate
encryption supporting disjunctions,
polynomial equations, and inner products. In
EUROCRYPT, volume 4965, pages 146–162.
International Association for Cryptologic
Research, 2008.

[57] F. Kerschbaum and A. Schroepfer. Optimal
average-complexity ideal-security
order-preserving encryption. In ACM
Conference on CCS, Arizona, USA, 2014.

[58] M. Lepinksi, S. Micali, and A. Shelat.
Collusion-free protocols. In ACM Symp. on
Theory of Computing, 2005.

[59] Microsoft. Transparent data encryption.
http://msdn.microsoft.com/en-
us/library/bb934049.aspx. [retrieved: Oct,
2014].

[60] Microsoft. Always encrypted (database
engine), February 3 2016.

[61] I. Miers, C. Garman, M. Green, and A. D.
Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In IEEE S&P, pages
397–411, San Francisco, California, USA,

SIGMOD Record, September 2016 (Vol. 45, No. 3) 15



2013.
[62] D. K. Mishra and M. Chandwani. Extended

protocol for secure multiparty computation
using ambiguous identity. WSEAS
Transaction on Computer Research,
2(2):227–233, February 2007.

[63] R. Müller, J. Teubner, and G. Alonso. Data
processing on fpgas. PVLDB, 2(1):910–921,
2009.

[64] V. Oleshchuk and V. Zadorozhny. Secure
multi-party computations and privacy
preservation: Results and open problems.
Telektronikk, 103(2):20–26, 2007.

[65] A. O’Neill. Definitional issues in functional
encryption. IACR Cryptology ePrint Archive,
556, 2010.

[66] Oracle. Transparent data encryption.
http://www.oracle.com/technetwork/data-
base/options/advanced-security/index-
099011.html.

[67] R. Ostrovsky, A. Sahai, and B. Waters.
Attribute-based encryption with
non-monotonic access structures. In 14th
ACM Conference on CCS, pages 195–203.
ACM, 2007.

[68] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT, pages 223–238, Prague, Czech
Republic, 1999.

[69] V. Pappas, F. Krell, B. Vo, V. Kolesnikov,
T. Malkin, S. G. Choi, W. George,
A. Keromytis, and S. Bellovin. Blind seer: A
scalable private dbms. In IEEE S&P,
Oakland, CA, USA, 2014.

[70] R. A. Popa, F. H. Li, and N. Zeldovich. An
ideal-security protocol for order-preserving
encoding. In IEEE S&P, Berkeley, California,
USA, 2013.

[71] R. A. Popa, C. M. S. Redfield, N. Zeldovich,
and H. Balakrishnan. Cryptdb: Protecting
confidentiality with encrypted query
processing. In ACM Symp. on OSP, Cascais,
Portugal, 2011.

[72] K. P. N. Puttaswamy, C. Kruegel, , and B. Y.
Zhao. Silverline: toward data confidentiality
in storage-intensive cloud applications. In
ACM SOCC, Cascais, Portugal, 2011.

[73] R. R. Ravan, N. B. Idris, and Z. Mehrabani.
A survey on querying encrypted data for
database as a service. In CyberC, pages 14–18,
Beijing, Oct. 2013. IEEE Computer Society.

[74] European Union Agency for Network and
I. Security. Survey: An sme perspective on
cloud computing.

http://www.enisa.europa.eu/activities/risk-
management/files/deliverables/cloud-
computing-sme-
survey/at download/fullReport, 2009.
[retrieved: Oct, 2014].

[75] relax Google BigQuery. Encrypted bigquery
client. https://code.google.com/p/encrypted-
bigquery-client. [retrieved: Sep,
2014].

[76] relax North Bridge. Cloud adoption survey.
http://www.northbridge.com/2013-future-
cloud-computing-survey-reveals-business-
driving-cloud-adoption-everything-service-era-
it. [retrieved: Dec,
2014].

[77] R. L. Rivest, L. Adleman, and M. L.
Dertouzos. On Data Banks and Privacy
Homomorphisms, pages 169–179. Academic
Press, New York, 1982.

[78] A. Sahai and B. Waters. Fuzzy identity-based
encryption. In EUROCRYPT, volume 3494,
pages 457–473. Springer, 2005.

[79] R. Sheikh, D. K. Mishra, and B. Kumar.
Secure multiparty computation: From
millionaires problem to anonymizer.
Information Security Journal: A Global
Perspective, 20(1):25–33, January 2011.

[80] Skyhigh. Cloud security and enablement.
https://www.skyhighnetworks.com/.
[retrieved: Feb, 2016].

[81] D. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In
IEEE S&P, Berkeley, USA, 2000.

[82] SqlCipher. Database encryption.
https://www.zetetic.net/sqlcipher/.
[retrieved: Oct, 2014].

[83] S. Tu, M. F. Kaashoek, S. Madden, and
N. Zeldovich. Processing analytical queries
over encrypted data. In VLDB, volume 6 of 5,
pages 289–300, Trento, Italy, 2013.

[84] M. v. Dijk, C. Gentry, S. Halevi, and
V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In
EUROCRYPT, Nice, France, 2010.

[85] B. Waters. A punctured programming
approach to adaptively secure functional
encryption. Technical report, University of
Texas at Austin, 2014.

[86] A. C. Yao. Protocols for secure computations.
In 23rd Symp. on Foundations of CS, pages
160–164, Indore, India, 1982.

16 SIGMOD Record, September 2016 (Vol. 45, No. 3)


