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ABSTRACT
A new class of database management systems (DBMSs) called
NewSQL tout their ability to scale modern on-line transac-
tion processing (OLTP) workloads in a way that is not possible
with legacy systems. The term NewSQL was first used by one
of the authors of this article in a 2011 business analysis report
discussing the rise of new database systems as challengers to
these established vendors (Oracle, IBM, Microsoft). The other
author was working on what became one of the first examples
of a NewSQL DBMS. Since then several companies and re-
search projects have used this term (rightly and wrongly) to
describe their systems.

Given that relational DBMSs have been around for over four
decades, it is justifiable to ask whether the claim of NewSQL’s
superiority is actually true or whether it is simply marketing.
If they are indeed able to get better performance, then the next
question is whether there is anything scientifically new about
them that enables them to achieve these gains or is it just that
hardware has advanced so much that now the bottlenecks from
earlier years are no longer a problem.

To do this, we first discuss the history of databases to under-
stand how NewSQL systems came about. We then provide a
detailed explanation of what the term NewSQL means and the
different categories of systems that fall under this definition.

1. A BRIEF HISTORY OF DBMSS
The first DBMSs came on-line in the mid 1960s. One of the

first was IBM’s IMS that was built to keep track of the supplies
and parts inventory for the Saturn V and Apollo space explo-
ration projects. It helped introduce the idea that an applica-
tion’s code should be separate from the data that it operates on.
This allows developers to write applications that only focus on
the access and manipulation of data, and not the complications
and overhead associated with how to actually perform these
operations. IMS was later followed by the pioneering work in
the early 1970s on the first relational DBMSs, IBM’s System
R and the University of California’s INGRES. INGRES was
soon adopted at other universities for their information sys-
tems and was subsequently commercialized in the late 1970s.
Around the same time, Oracle released the first version of their
DBMS that was similar to System R’s design. Other compa-
nies were founded in the early 1980s that sought to repeat the
success of the first commercial DBMSs, including Sybase and
Informix. Although IBM never made System R available to
the public, it later released a new relational DBMS (DB2) in
1983 that used parts of the System R code base.

The late 1980s and early 1990s brought about a new class
of DBMSs that were designed to overcome the much touted
impedance mismatch between the relational model and object-
oriented programming languages [65]. These object-oriented
DBMSs, however, never saw wide-spread market adoption be-
cause they lacked a standard interface like SQL. But many
of the ideas from them were eventually incorporated in rela-
tional DBMSs when the major vendors added object and XML
support a decade later, and then again in document-oriented
NoSQL systems over two decades later.

The other notable event during the 1990s was the start of
today’s two major open-source DBMS projects. MySQL was
started in Sweden in 1995 based on the earlier ISAM-based
mSQL system. PostgreSQL began in 1994 when two Berke-
ley graduate students forked the original QUEL-based Post-
gres code from the 1980s to add support for SQL.

The 2000s brought the arrival of Internet applications that
had more challenging resource requirements than applications
from previous years. They needed to scale to support large
number of concurrent users and had to be on-line all the time.
But the database for these new applications was consistently
found to be a bottleneck because the resource demands were
much greater than what DBMSs and hardware could support
at the time. Many tried the most obvious option of scaling
their DBMS vertically by moving the database to a machine
with better hardware. This, however, only improves perfor-
mance so much and has diminishing returns. Furthermore,
moving the database from one machine to another is a com-
plex process and often requires significant downtime, which is
unacceptable for these Web-based applications. To overcome
this problem, some companies created custom middleware to
shard single-node DBMSs over a cluster of less expensive ma-
chines. Such middleware presents a single logical database to
the application that is stored across multiple physical nodes.
When the application issues queries against this database, the
middleware redirects and/or rewrites them to distribute their
execution on one or more nodes in the cluster. The nodes exe-
cute these queries and send the results back to the middleware,
which then coalesces them into a single response to the ap-
plication. Two notable examples of this middleware approach
were eBay’s Oracle-based cluster [53] and Google’s MySQL-
based cluster [54]. This approach was later adopted by Face-
book for their own MySQL cluster that is still used today.

Sharding middleware works well for simple operations like
reading or updating a single record. It is more difficult, how-
ever, to execute queries that update more than one record in
a transaction or join tables. As such, these early middleware
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systems did not support these types of operations. eBay’s mid-
dleware in 2002, for example, required their developers to im-
plement all join operations in application-level code.

Eventually some of these companies moved away from us-
ing middleware and developed their own distributed DBMSs.
The motivation for this was three-fold. Foremost was that tra-
ditional DBMSs at that time were focused on consistency and
correctness at the expense of availability and performance. But
this trade-off was deemed inappropriate for Web-based appli-
cations that need to be on-line all the time and have to sup-
port a large number of concurrent operations. Secondly, it
was thought that there was too much overhead in using a full-
featured DBMS like MySQL as a “dumb” data store. Like-
wise, it was also thought that the relational model was not the
best way to represent an application’s data and that using SQL
was an overkill for simple look-up queries.

These problems turned out to be the origin of the impe-
tus for the NoSQL1 movement in the mid to late 2000s [22].
The key aspect of these NoSQL systems is that they forgo
strong transactional guarantees and the relational model of tra-
ditional DBMSs in favor of eventual consistency and alterna-
tive data models (e.g., key/value, graphs, documents). This is
because it was believed that these aspects of existing DBMSs
inhibit their ability to scale out and achieve the high avail-
ability that is needed to support Web-based applications. The
two most well-known systems that first followed this creed are
Google’s BigTable [23] and Amazon’s Dynamo [26]. Nei-
ther of these two systems were available outside of their re-
spective company at first (although they are now as cloud ser-
vices), thus other organizations created their own open source
clones of them. These include Facebook’s Cassandra (based
on BigTable and Dynamo) and PowerSet’s Hbase (based on
BigTable). Other start-ups created their own systems that were
not necessarily copies of Google’s or Amazon’s systems but
still followed the tenets of the NoSQL philosophy; the most
well-known of these is MongoDB.

By the end of the 2000s, there was now a diverse set of scal-
able and more affordable distributed DBMSs available. The
advantage of using a NoSQL system (or so people thought)
was that developers could focus on the aspects of their ap-
plication that were more beneficial to their business or orga-
nization, rather than having to worry about how to scale the
DBMS. Many applications, however, are unable to use these
NoSQL systems because they cannot give up strong transac-
tional and consistency requirements. This is common for en-
terprise systems that handle high-profile data (e.g., financial
and order processing systems). Some organizations, most no-
tably Google [24], have found that NoSQL DBMSs cause their
developers to spend too much time writing code to handle in-
consistent data and that using transactions makes them more
productive because they provide a useful abstraction that is
easier for humans to reason about. Thus, the only options
available for these organizations were to either purchase a more
powerful single-node machine and to scale the DBMS ver-
tically, or to develop their own custom sharding middleware
that supports transactions. Both approaches are prohibitively
expensive and are therefore not an option for many. It is in this
environment that brought about NewSQL systems.

1The NoSQL community argues that the sobriquet should now
be interpreted as “Not Only SQL”, since some of these systems
have since support some dialect of SQL.

2. THE RISE OF NEWSQL
Our definition of NewSQL is that they are a class of mod-

ern relational DBMSs that seek to provide the same scalable
performance of NoSQL for OLTP read-write workloads while
still maintaining ACID guarantees for transactions. In other
words, these systems want to achieve the same scalability of
NoSQL DBMSs from the 2000s, but still keep the relational
model (with SQL) and transaction support of the legacy DBMSs
from the 1970–80s. This enables applications to execute a
large number of concurrent transactions to ingest new infor-
mation and modify the state of the database using SQL (in-
stead of a proprietary API). If an application uses a NewSQL
DBMS, then developers do not have to write logic to deal with
eventually consistent updates as they would in a NoSQL sys-
tem. As we discuss below, this interpretation covers a number
of both academic and commercial systems.

We note that there are data warehouse DBMSs that came out
in the mid-2000s that some people think meet this criteria (e.g.,
Vertica, Greenplum, Aster Data). These DBMSs target on-line
analytical processing (OLAP) workloads and should not be
considered NewSQL systems. OLAP DBMSs are focused on
executing complex read-only queries (i.e., aggregations, multi-
way joins) that take a long time to process large data sets (e.g.,
seconds or even minutes). Each of these queries can be signif-
icantly different than the previous. The applications targeted
by NewSQL DBMSs, on the other hand, are characterized as
executing read-write transactions that (1) are short-lived (i.e.,
no user stalls), (2) touch a small subset of data using index
lookups (i.e., no full table scans or large distributed joins), and
(3) are repetitive (i.e., executing the same queries with differ-
ent inputs). Others have argued for a more narrow definition
where a NewSQL system’s implementation has to use (1) a
lock-free concurrency control scheme and (2) a shared-nothing
distributed architecture [57]. All of the DBMSs that we clas-
sify as NewSQL in Section 3 indeed share these properties and
thus we agree with this assessment.

3. CATEGORIZATION
Given the above definition, we now examine the landscape

of today’s NewSQL DBMSs. To simplify this analysis, we
will group systems based on the salient aspects of their imple-
mentation. The three categories that we believe best represent
NewSQL systems are (1) novel systems that are built from
the ground-up using a new architecture, (2) middleware that
re-implement the same sharding infrastructure that was devel-
oped in the 2000s by Google and others, and (3) database-as-a-
service offerings from cloud computing providers that are also
based on new architectures.

Both authors have previously included alternative storage
engines for existing single-node DBMSs in our categorization
of NewSQL systems. The most common examples of these
are replacements for MySQL’s default InnoDB storage engine
(e.g., TokuDB, ScaleDB, Akiban, deepSQL). The advantage
of using a new engine is that an organization can get better
performance without having to change anything in their ap-
plication and still leverage the DBMS’s existing ecosystem
(e.g., tools, APIs). The most interesting of these was ScaleDB
because it provided transparent sharding underneath the sys-
tem without using middleware by redistributing execution be-
tween storage engines; the company, however, has since piv-
oted to another problem domain. There has been other sim-
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ilar extensions for systems other than MySQL. Microsoft’s
in-memory Hekaton OLTP engine for SQL Server integrates
almost seamlessly with the traditional, disk-resident tables.
Others use Postgres’ foreign data wrappers and API hooks to
achieve the same type of integration but target OLAP work-
loads (e.g., Vitesse, CitusDB).

We now assert that such storage engines and extensions for
single-node DBMSs are not representative of NewSQL sys-
tems and omit them from our taxonomy. MySQL’s InnoDB
has improved significantly in terms of reliability and perfor-
mance, so the benefits of switching to another engine for OLTP
applications are not that pronounced. We acknowledge that the
benefits from switching from the row-oriented InnoDB engine
to a column-store engine for OLAP workloads are more signif-
icant (e.g., Infobright, InfiniDB). But in general, the MySQL
storage engine replacement business for OLTP workloads is
the graveyard of failed database projects.

3.1 New Architectures
This category contains the most interesting NewSQL sys-

tems for us because they are new DBMSs built from scratch.
That is, rather than extending an existing system (e.g., Mi-
crosoft’s Hekaton for SQL Server), they are designed from
a new codebase without any of the architectural baggage of
legacy systems. All of the DBMSs in this category are based
on distributed architectures that operate on shared-nothing re-
sources and contain components to support multi-node con-
currency control, fault tolerance through replication, flow con-
trol, and distributed query processing. The advantage of us-
ing a new DBMS that is built for distributed execution is that
all parts of the system can be optimized for multi-node envi-
ronments. This includes things like the query optimizer and
communication protocol between nodes. For example, most
NewSQL DBMSs are able to send intra-query data directly
between nodes rather than having to route them to a central
location like with some middleware systems.

Every one of the DBMSs in this category (with the excep-
tion of Google Spanner) also manages their own primary stor-
age, either in-memory or on disk. This means that the DBMS
is responsible for distributing the database across its resources
with a custom engine instead of relying on an off-the-shelf dis-
tributed filesystem (e.g., HDFS) or storage fabric (e.g., Apache
Ignite). This is an important aspect of them because it allows
the DBMS to “send the query to the data” rather than “bring
the data to the query,” which results in significantly less net-
work traffic since transmitting the queries is typically less net-
work traffic than having to transmit data (not just tuples, but
also indexes and materialized views) to the computation.

Managing their own storage also enables a DBMS to em-
ploy more sophisticated replication schemes than what is pos-
sible with the block-based replication scheme used in HDFS.
In general, it allows these DBMSs to achieve better perfor-
mance than other systems that are layered on top of other
existing technologies; examples of this include the “SQL on
Hadoop” systems like Trafodion [4] and Splice Machine [16]
that provide transactions on top of Hbase. As such, we believe
that such systems should not be considered NewSQL.

But there are downsides to using a DBMS based on a new
architecture. Foremost is that many organizations are wary of
adopting technologies that are too new and un-vetted with a
large installation base. This means that the number of people
that are experienced in the system is much smaller compared

to the more popular DBMS vendors. It also means that an
organization will potentially lose access to existing adminis-
tration and reporting tools. Some DBMSs, like Clustrix and
MemSQL, avoid this problem by maintaining compatibility
with the MySQL wire protocol.

Examples: Clustrix [6], CockroachDB [7], Google Span-
ner [24], H-Store [8], HyPer [39], MemSQL [11], NuoDB [14],
SAP HANA [55], VoltDB [17].

3.2 Transparent Sharding Middleware
There are now products available that provide the same kind

of sharding middleware that eBay, Google, Facebook, and other
companies developed in the 2000s. These allow an organi-
zation to split a database into multiple shards that are stored
across a cluster of single-node DBMS instances. Sharding is
different than database federation technologies of the 1990s
because each node (1) runs the same DBMS, (2) only has a
portion of the overall database, and (3) is not meant to be ac-
cessed and updated independently by separate applications.

The centralized middleware component routes queries, co-
ordinates transactions, as well as manages data placement, repli-
cation, and partitioning across the nodes. There is typically a
shim layer installed on each DBMS node that communicates
with the middleware. This component is responsible for exe-
cuting queries on behalf of the middleware at its local DBMS
instance and returning results. All together, these allow mid-
dleware products to present a single logical database to the
application without needing to modify the underlying DBMS.

The key advantage of using a sharding middleware is that
they are often a drop-in replacement for an application that
is already using an existing single-node DBMS. Developers
do not need to make any changes to their application to use
the new sharded database. The most common target for mid-
dleware systems is MySQL. This means that in order to be
MySQL compatible, the middleware must support the MySQL
wire protocol. Oracle provides the MySQL Proxy [13] and
Fabric [12] toolkits to do this, but others have written their
owning protocol handler library to avoid GPL licensing issues.

Although middleware makes it easy for an organization to
scale their database out across multiple nodes, such systems
still have to use a traditional DBMS on each node (e.g., MySQL,
Postgres, Oracle). These DBMSs are based on the disk-oriented
architecture that was developed in the 1970s, and thus they
cannot use a storage manager or concurrency control scheme
that is optimized for memory-oriented storage like in some
of the NewSQL systems that are built on new architectures.
Previous research has shown that the legacy components of
disk-oriented architectures is a significant encumbrance that
prevents these traditional DBMSs from scaling up to take ad-
vantage of higher CPU core counts and larger memory capac-
ities [38]. The middleware approach can also incur redundant
query planning and optimization on sharded nodes for com-
plex queries (i.e., once at the middleware and once on the in-
dividual DBMS nodes), but this does allow each node to apply
their own local optimizations on each query.

Examples: AgilData Scalable Cluster 2 [1], MariaDB MaxS-
cale [10], ScaleArc [15], ScaleBase3.

2Prior to 2015, AgilData Cluster was known as dbShards.
3ScaleBase was acquired by ScaleArc in 2015 and is no longer sold.
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3.3 Database-as-a-Service
Lastly, there are cloud computing providers that offer NewSQL

database-as-a-service (DBaaS) products. With these services,
organizations do not have to maintain the DBMS on either
their own private hardware or on a cloud-hosted virtual ma-
chine (VM). Instead, the DBaaS provider is responsible for
maintaining the physical configuration of the database, includ-
ing system tuning (e.g., buffer pool size), replication, and back-
ups. The customer is provided with a connection URL to the
DBMS, along with a dashboard or API to control the system.

DBaaS customers pay according to their expected applica-
tion’s resource utilization. Since database queries vary widely
in how they use computing resources, DBaaS providers typ-
ically do not meter query invocations in the same way that
they meter operations in block-oriented storage services (e.g.,
Amazon’s S3, Google’s Cloud Storage). Instead, customers
subscribe to a pricing tier that specifies the maximum resource
utilization threshold (e.g., storage size, computation power,
memory allocation) that the provider will guarantee.

As in most aspects of cloud computing, the largest com-
panies are the major players in the DBaaS field due to the
economies of scale. But almost all of the DBaaSs just pro-
vide a managed instance of a traditional, single-node DBMS
(e.g., MySQL): notable examples include Google Cloud SQL,
Microsoft Azure SQL, Rackspace Cloud Database, and Sales-
force Heroku. We do not consider these to be NewSQL sys-
tems as they use the same underlying disk-oriented DBMSs
based on the 1970s architectures. Some vendors, like Mi-
crosoft, retro-fitted their DBMS to provide better support for
multi-tenant deployments [21].

We instead regard only those DBaaS products that are based
on a new architecture as NewSQL. The most notable examples
is Amazon’s Aurora for their MySQL RDS. Its distinguish-
ing feature over InnoDB is that it uses a log-structured storage
manager to improve I/O parallelism.

There are also companies that do not maintain their own
data centers but rather sell DBaaS software that run on top of
these public cloud platforms. ClearDB provides their own cus-
tom DBaaS that can be deployed on all of the major cloud plat-
forms. This has the advantage that it can distribute a database
across different providers in the same geographical region to
avoid downtimes due to service outages.

Aurora and ClearDB are the only two products available
in this NewSQL category as of 2016. We note that several
companies in this space have failed (e.g., GenieDB, Xeround),
forcing their customers to scramble to find a new provider and
migrate their data out of those DBaaS before they were shut
down. We attribute their failure due to being ahead of market
demand and from being out-priced from the major vendors.

Examples: Amazon Aurora [3], ClearDB [5].

4. THE STATE OF THE ART
We next discuss the features of NewSQL DBMSs to under-

stand what (if anything) is novel in these systems. A summary
of our analysis is shown in Table 1.

4.1 Main Memory Storage
All of the major DBMSs use a disk-oriented storage archi-

tecture based on the original DBMSs from the 1970s. In these
systems, the primary storage location of the database is as-

sumed to be on a block-addressable durable storage device,
like an SSD or HDD. Since reading and writing to these de-
vices is slow, DBMSs use memory to cache blocks read from
disk and to buffer updates from transactions. This was nec-
essary because historically memory was much more expen-
sive and had a limited capacity compared to disks. We have
now reached the point, however, where capacities and prices
are such that it is affordable to store all but the largest OLTP
databases entirely in memory. The benefit of this approach
is that it enables certain optimizations because the DBMS no
longer has to assume that a transaction could access data at any
time that is not in memory and will have to stall. Thus, these
systems can get better performance because many of the com-
ponents that are necessary to handle these cases, like a buffer
pool manager or heavy-weight concurrency control schemes,
are not needed [38].

There are several NewSQL DBMSs that are based on a main
memory storage architecture, including both academic (e.g.,
H-Store, HyPer) and commercial (e.g., MemSQL, SAP HANA,
VoltDB) systems. These systems perform significantly better
than disk-based DBMSs for OLTP workloads because of this
main memory orientation.

The idea of storing a database entirely in main memory is
not a new one [28, 33]. The seminal research at the University
of Wisconsin-Madison in the early 1980s established the foun-
dation for many aspects of main memory DBMSs [43], includ-
ing indexes, query processing, and recovery algorithms. In
that same decade, the first distributed main-memory DBMSs,
PRISMA/DB, was also developed [40]. The first commercial
main memory DBMSs appeared in 1990s; Altibase [2], Ora-
cle’s TimesTen [60], and AT&T’s DataBlitz [20] were early
proponents of this approach.

One thing that is new with main memory NewSQL systems
is the ability to evict a subset of the database out to persistent
storage to reduce its memory footprint. This allows the DBMS
to support databases that are larger than the amount of mem-
ory available without having to switch back to a disk-oriented
architecture. The general approach is to use an internal track-
ing mechanism inside of the system to identify which tuples
are not being accessed anymore and then chose them for evic-
tion. H-Store’s anti-caching component moves cold tuples to
a disk-resident store and then installs a “tombstone” record in
the database with the location of the original data [25]. When
a transaction tries to access a tuple through one of these tomb-
stones, it is aborted and then a separate thread asynchronously
retrieves that record and moves it back into memory. An-
other variant for supporting larger-than-memory databases is
an academic project from EPFL that uses OS virtual mem-
ory paging in VoltDB [56]. To avoid false negatives, all of
these DBMSs retain the keys for evicted tuples in databases’
indexes, which inhibits the potential memory savings for those
applications with many secondary indexes. Although not a
NewSQL DBMS, Microsoft’s Project Siberia [29] for Heka-
ton maintains a Bloom filter per index to reduce the in-memory
storage overhead of tracking evicted tuples.

Another DBMS that takes a different approach for larger-
than-memory databases is MemSQL where an administrator
can manually instruct the DBMS to store a table in a columnar
format. MemSQL does not maintain any in-memory tracking
meta-data for these disk-resident tuples. It organizes this data
in log-structured storage to reduce the overhead of updates,
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which are traditionally slow in OLAP data warehouses.

4.2 Partitioning / Sharding
The way that almost all of the distributed NewSQL DBMSs

scale out is to split a database up into disjoint subsets, called
either partitions or shards.

Distributed transaction processing on partitioned databases
is not a new idea. Many of the fundamentals of these sys-
tems came from the seminal work by the great Phil Bernstein
(and others) in the SDD-1 project in the late 1970s [51]. In
the early 1980s, the teams behind the two pioneering, single-
node DBMSs, System R and INGRES, both also created dis-
tributed versions of their respective systems. IBM’s R* was
a shared-nothing, disk-oriented distributed DBMS like SDD-
1 [63]. The distributed version of INGRES is mostly remem-
bered for its dynamic query optimization algorithm that re-
cursively breaks a distributed query into smaller pieces [31].
Later, the GAMMA project [27] from the University of Wis-
consin-Madison explored different partitioning strategies.

But these earlier distributed DBMSs never caught on for two
reasons. The first of these was that computing hardware in the
20th century was so expensive that most organizations could
not afford to deploy their database on a cluster of machines.
The second issue was that the application demand for a high-
performance distributed DBMS was simply not there. Back
then the expected peak throughput of a DBMS was typically
measured at tens to hundreds of transactions per second. We
now live in an era where both of these assumptions are no
longer true. Creating a large-scale, data-intensive application
is easier now than it ever has been, in part due to the prolifera-
tion of open-source distributed system tools, cloud computing
platforms, and affordable mobile devices.

The database’s tables are horizontally divided into multiple
fragments whose boundaries are based on the values of one (or
more) of the table’s columns (i.e., the partitioning attributes).
The DBMS assigns each tuple to a fragment based on the val-
ues of these attributes using either range or hash partitioning.
Related fragments from multiple tables are combined together
to form a partition that is managed by a single node. That node
is responsible for executing any query that needs to access data
stored in its partition. Only the DBaaS systems (Amazon Au-
rora, ClearDB) do not support this type of partitioning.

Ideally, the DBMS should be able to also distribute the ex-
ecution of a query to multiple partitions and then combine
their results together into a single result. All of the NewSQL
systems except for ScaleArc that support native partitionining
provide this functionality.

The databases for many OLTP applications have a key prop-
erty that makes them amenable to partitioning. Their database
schemas can be transposed into a tree-like structure where de-
scendants in the tree have a foreign key relationship to the
root [58]. The tables are then partitioned on the attributes
involved in these relationships such that all of the data for
a single entity are co-located together in the same partition.
For example, the root of the tree could be the customer table,
and the database is partitioned such that each customer, along
with their order records and account information, are stored
together. The benefit of this is that it allows most (if not all)
transactions to only need to access data at a single partition.
This in turn reduces the communication overhead of the sys-
tem because it does not have to use an atomic commitment
protocol (e.g., two-phase commit) to make sure that transac-

tions finish correctly at different nodes.
The NewSQL DBMSs that deviate from the homegenous

cluster node architecture are NuoDB and MemSQL. For NuoDB,
it designates one or more nodes as storage managers (SM)
that each store a partition of the database. The SMs splits
a database into blocks (called “atoms” in NuoDB parlance).
All other nodes in the cluster are designated as transaction en-
gines (TEs) that act as an in-memory cache of atoms. To pro-
cess a query, a TE node retrieves all of the atoms that it needs
for that query (either from the appropriate SMs or from other
TEs). TEs acquire write-locks on tuples and then broadcasts
any changes to atoms to the other TEs and the SM. To avoid
atoms from moving back and forth between nodes, NuoDB ex-
poses load-balancing schemes to ensure that data that is used
together often reside at the same TE. This means that NuoDB
ends up with the same partitioning scheme as the other dis-
tributed DBMSs but without having to pre-partition the database
or identify the relationships between tables.

MemSQL also uses a similar heterogeneous architecture com-
prised of execution-only aggregator nodes and leaf nodes that
store the actual data. The difference between these two sys-
tems is in how they reduce the amount of data that is pulled
from the storage nodes to the execution nodes. With NuoDB,
the TEs cache atoms to reduce the amount data that they read
from the SMs. MemSQL’s aggregator nodes do not cache any
data, but the leaf nodes execute parts of queries to reduce the
amount of data that is sent to the aggregator nodes; this is not
possible in NuoDB because the SMs are only a data store.

These two systems are able to add additional execution re-
sources to the DBMS’s cluster (NuoDB’s TE nodes, Mem-
SQL’s aggregator nodes) without needing to re-partition the
database. A research prototype of SAP HANA also explored
using this approach [36]. It remains to be seen, however, whether
such a heterogeneous architecture is superior to a homegenous
one (i.e., were each node both stores data and executes queries)
in terms of either performance or operational complexity.

Another aspect of partitioning in NewSQL systems that is
new is that some of them support live migration. This al-
lows the DBMS to move data between physical resources to
re-balance and alleviate hotspots, or to increase/decrease the
DBMS’s capacity without any interruption to service. This
is similar to re-balancing in NoSQL systems, but it is more
difficult because a NewSQL DBMS has to maintain ACID
guarantees for transactions during the migration [30]. There
two approaches that DBMSs use to achieve this. The first
is to organize the database in many coarse-grained “virtual”
(i.e., logical) partitions that are spread amongst the physical
nodes [52]. Then when the DBMS needs to re-balance, it
moves these virtual partitions between nodes. This is the ap-
proach used in Clustrix and AgilData, as well as in NoSQL
systems like Cassandra and DynamoDB. The other approach
is for the DBMS to perform more fine-grained re-balancing
by redistributing individual tuples or groups of tuples through
range partitioning. This is akin to the auto-sharding feature
in the MongoDB NoSQL DBMS. It is used in systems like
ScaleBase and H-Store [30].

4.3 Concurrency Control
Concurrency control scheme is the most salient and impor-

tant implementation detail of a transaction processing DBMS
as it affects almost all aspects of the system. Concurrency con-
trol permits end-users to access a database in a multi-program-
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med fashion while preserving the illusion that each of them is
executing their transaction alone on a dedicated system. It es-
sentially provides the atomicity and isolation guarantees in the
system, and as such it influences the entire system’s behavior.

Beyond which scheme a system uses, another important as-
pect of the design of a distributed DBMS is whether the sys-
tem uses a centralized or decentralized transaction coordina-
tion protocol. In a system with a centralized coordinator, all
transactions’ operations have to go through the coordinator,
which then makes decisions about whether transactions are al-
lowed to proceed or not. This is the same approach used by
the TP monitors of the 1970–1980s (e.g., IBM CICS, Oracle
Tuxedo). In a decentralized system, each node maintains the
state of transactions that access the data that it manages. The
nodes then have to coordinate with each other to determine
whether concurrent transactions conflict. A decentralized co-
ordinator is better for scalability but requires that the clocks in
the DBMS nodes are highly synchronized in order to generate
a global ordering of transactions [24].

The first distributed DBMSs from the 1970–80s used two-
phase locking (2PL) schemes. SDD-1 was the first DBMS
specifically designed for distributed transaction processing ac-
ross a cluster of shared-nothing nodes managed by a central-
ized coordinator. IBM’s R* was similar to SDD-1, but the
main difference was that the coordination of transactions in
R* was completely decentralized; it used distributed 2PL pro-
tocol where transactions locked data items that they access di-
rectly at nodes. The distributed version of INGRES also used
decentralized 2PL with centralized deadlock detection.

Almost all of the NewSQL systems based on new archi-
tectures eschew 2PL because the complexity of dealing with
deadlocks. Instead, the current trend is to use variants of times-
tamp ordering (TO) concurrency control where the DBMS as-
sumes that transactions will not execute interleaved operations
that will violate serializable ordering. The most widely used
protocol in NewSQL systems is decentralized multi-version
concurrency control (MVCC) where the DBMS creates a new
version of a tuple in the database when it is updated by a trans-
action. Maintaining multiple versions potentially allows trans-
actions to still complete even if another transaction updates the
same tuples. It also allows for long-running, read-only trans-
actions to not block on writers. This protocol is used in al-
most all of the NewSQL systems based on new architectures,
like MemSQL, HyPer, HANA, and CockroachDB. Although
there are engineering optimizations and tweaks that these sys-
tems use in their MVCC implementations to improve perfor-
mance, the basic concepts of the scheme are not new. The
first known work describing MVCC is a MIT PhD dissertation
from 1979 [49], while the first commercial DBMSs to use it
were Digital’s VAX Rdb and InterBase in the early 1980s. We
note that the architecture of InterBase was designed by Jim
Starkey, who is also the original designer of NuoDB and the
failed Falcon MySQL storage engine project.

Other systems use a combination of 2PL and MVCC to-
gether. With this approach, transactions still have to acquire
locks under the 2PL scheme to modify the database. When a
transaction modifies a record, the DBMS creates a new ver-
sion of that record just as it would with MVCC. This scheme
allows read-only queries to avoid having to acquire locks and
therefore not block on writing transactions. The most famous
implementation of this approach is MySQL’s InnoDB, but it

is also used in both Google’s Spanner, NuoDB, and Clustrix.
NuoDB improves on the original MVCC by employing a gos-
sip protocol to broadcast versioning information between nodes.

All of the middleware and DBaaS services inherit the con-
currency control scheme of their underlying DBMS architec-
ture; since most of them use MySQL, this makes them 2PL
with MVCC systems.

We regard the concurrency control implementation in Span-
ner (along with its descendants F1 [54] and SpannerSQL) as
one of the most novel of the NewSQL systems. The actual
scheme itself is based on the 2PL and MVCC combination de-
veloped in previous decades. But what makes Spanner differ-
ent is that it uses hardware devices (e.g., GPS, atomic clocks)
for high-precision clock synchronization. The DBMS uses
these clocks to assign timestamps to transactions to enforce
consistent views of its multi-version database over wide-area
networks. CockroachDB also purports to provide the same
kind of consistency for transactions across data centers as Span-
ner but without the use of atomic clocks. They instead rely on
a hybrid clock protocol that combines loosely synchronized
hardware clocks and logical counters [41].

Spanner is also noteworthy because it heralds Google’s re-
turn to using transactions for its most critical services. The
authors of Spanner even remark that it is better to have their
application programmers deal with performance problems due
to overuse of transactions, rather than writing code to deal with
the lack of transactions as one does with a NoSQL DBMS [24].

Lastly, the only commercial NewSQL DBMS that is not us-
ing some MVCC variant is VoltDB. This system still uses TO
concurrency control, but instead of interleaving transactions
like in MVCC, it schedules transactions to execute one-at-a-
time at each partition. It also uses a hybrid architecture where
single-partition transactions are scheduled in a decentralized
manner but multi-partition transactions are scheduled with a
centralized coordinator. VoltDB orders transactions based on
logical timestamps and then schedules them for execution at
a partition when it is their turn. When a transaction executes
at a partition, it has exclusive access to all of the data at that
partition and thus the system does not have to set fine-grained
locks and latches on its data structures. This allows transac-
tions that only have to access a single partition to execute effi-
ciently because there is no contention from other transactions.
The downside of partition-based concurrency control is that
it does not work well if transactions span multiple partitions
because the network communication delays cause nodes to sit
idle while they wait for messages. This partition-based con-
currency is not a new idea. An early variant of it was first
proposed in a 1992 paper by Hector Garcia-Molina [34] and
implemented in the kdb system in late 1990s [62] and in H-
Store (which is the academic predecessor of VoltDB).

In general, we find that there is nothing significantly new
about the core concurrency control schemes in NewSQL sys-
tems other than laudable engineering to make these algorithms
work well in the context of modern hardware and distributed
operating environments.

4.4 Secondary Indexes
A secondary index contains a subset of attributes from a ta-

ble that are different than its primary key(s). This allows the
DBMS to support fast queries beyond primary key or parti-
tioning key look-ups. They are trivial to support in a non-
partitioned DBMS because the entire database is located on a
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single node. The challenge with secondary indexes in a dis-
tributed DBMS is that they cannot always be partitioned in
the same manner as with the rest of the database. For exam-
ple, suppose that the tables of a database are partitioned based
on the customer’s table primary key. But then there are some
queries that want to do a reverse look-up from the customer’s
email address to the account. Since the tables are partitioned
on the primary key, the DBMS will have to broadcast these
queries to every node, which is obviously inefficient.

The two design decisions for supporting secondary indexes
in a distributed DBMS are (1) where the system will store them
and (2) how it will maintain them in the context of transac-
tions. In a system with a centralized coordinator, like with
sharding middleware, secondary indexes can reside on both
the coordinator node and the shard nodes. The advantage of
this approach is that there is only a single version of the index
in the entire system, and thus it is easier to maintain.

All of the NewSQL systems based on new architectures
are decentralized and use partitioned secondary indexes. This
means that each node stores a portion of the index, rather than
each node having a complete copy of it. The trade-off be-
tween partitioned and replicated indexes is that with the for-
mer queries may need to span multiple nodes to find what they
are looking for but if a transaction updates an index it will only
have to modify one node. In a replicated index, the roles are
reversed: a look-up query can be satisfied by just one node in
the cluster, but any time a transaction modifies the attributes
referenced in secondary index’s underlying table (i.e., the key
or the value), the DBMS has to execute a distributed transac-
tion that updates all copies of the index.

An example of a decentralized secondary index that mixes
both of these concepts is in Clustrix. The DBMS first main-
tains a replicated, coarse-grained (i.e., range-based) index at
each node that maps values to partitions. This mapping al-
lows the DBMS to route queries to the appropriate node using
an attribute that is not the table’s partitioning attribute. These
queries will then access a second partitioned index at that node
that maps exact values to tuples. Such a two-tier approach re-
duces the amount of coordination that is needed to keep the
replicated index in sync across the cluster since it only maps
ranges instead of individual values.

The most common way that developers create secondary in-
dexes when using a NewSQL DBMS that does not support
them is to deploy an index using an in-memory, distributed
cache, such as Memcached [32]. But using an external sys-
tem requires the application to maintain the cache since the
DBMSs will not automatically invalidate the external cache.

4.5 Replication
The best way that an organization can ensure high availabil-

ity and data durability for their OLTP application is to replicate
their database. All modern DBMSs, including NewSQL sys-
tems, support some kind of replication mechanism. DBaaS
have a distinct advantage in this area because they hide all
of the gritty details of setting of replication from their cus-
tomers. They make it easy to deploy a replicated DBMS with-
out the administrator having to worry about transmitting logs
and making sure that nodes are in sync.

There are two design decisions when it comes to database
replication. The first is how the DBMS enforces data consis-
tency across nodes. In a strongly consistent DBMS, a transac-
tion’s writes must be acknowledged and installed at all replicas

before that transaction is considered committed (i.e., durable).
The advantage of this approach is that replicas can serve read-
only queries and still be consistent. That is, if the application
receives an acknowledgement that a transaction has commit-
ted, then any modifications made by that transaction are visible
to any subsequent transaction in the future regardless of what
DBMS node they access. It also means that when a replica
fails, there are no lost updates because all the other nodes
are synchronized. But maintaining this synchronization re-
quires the DBMS to use an atomic commitment protocol (e..g,
two-phase commit) to ensure that all replicas agree with the
outcome of a transaction, which has additional overhead and
can lead to stalls if a node fails or if there is a network parti-
tion/delay. This is why NoSQL systems opt for a weakly con-
sistent model (also called eventual consistency) where not all
replicas have to acknowledge a modification before the DBMS
notifies the application that the write succeeded.

All of the NewSQL systems that we are aware of support
strongly consistent replication. But there is nothing novel about
how these systems ensure this consistency. The fundamentals
of state machine replication for DBMSs were studied back in
the 1970s [37, 42]. NonStop SQL was one of the first dis-
tributed DBMSs built in the 1980s using strongly consistency
replication to provide fault tolerance in this same manner [59].

In addition to the policy of when a DBMS propagates up-
dates to replicas, there are also two different execution mod-
els for how the DBMS performs this propagation. The first,
known as active-active replication, is where each replica node
processes the same request simultaneously. For example, when
a transaction executes a query, the DBMS executes that query
in parallel at all of the replicas. This is different from active-
passive replication where a request is first processed at a sin-
gle node and then the DBMS transfers the resultant state to the
other replicas. Most NewSQL DBMSs implement this second
approach because they use a non-deterministic concurrency
control scheme. This means that they cannot send queries to
replicas as they arrive on the master because they may get ex-
ecuted in a different order on the replicas and the state of the
databases will diverge at each replica. This is because their
execution order depends on several factors, including network
delays, cache stalls, and clock skew.

Deterministic DBMSs (e.g., H-Store, VoltDB, ClearDB) on
the other hand do not perform these additional coordination
steps. This is because the DBMS guarantees that transactions’
operations execute in the same order on each replica and thus
the state of the database is guaranteed to be the same [44].
Both VoltDB and ClearDB also ensure that the application
does not execute queries that utilize sources of information
that are external to the DBMS that may be different on each
replica (e.g., setting a timestamp field to the local system clock).

One aspect of the NewSQL systems that is different than
previous work outside of academia is the consideration of repli-
cation over the wide-area network (WAN). This is a byproduct
of modern operating environments where it is now trivial to
deploy systems across multiple data centers that are separated
by large geographical differences. Any NewSQL DBMS can
be configured to provide synchronous updates of data over the
WAN, but this would cause significant slowdown for normal
operations. Thus, they instead provide asynchronous repli-
cation methods. To the best of our knowledge, Spanner and
CockroachDB are the only NewSQL systems to provide a repli-
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cation scheme that is optimized for strongly consistent replicas
over the WAN. They again achieve this through a combination
of atomic and GPS hardware clocks (in case of Spanner [24]),
or hybrid clocks (in the case of CockroachDB [41]).

4.6 Crash Recovery
Another important feature of a NewSQL DBMS for provid-

ing fault tolerance is its crash recovery mechanism. But unlike
traditional DBMSs where the main concern of fault tolerance
is to ensure that no updates are lost [47], newer DBMSs must
also minimize downtime. Modern web applications are ex-
pected to be on-line all the time and site outages are costly.

The traditional approach to recovery in a single-node sys-
tem without replicas is that when the DBMS comes back on-
line after a crash, it loads in the last checkpoint that it took
from disk and then replays its write-ahead log (WAL) to re-
turn the state of the database to where it was at the moment of
the crash. The canonical method of this approach, known as
ARIES [47], was invented by IBM researchers in the 1990s.
All major DBMSs implement some variant of ARIES.

In a distributed DBMS with replicas, however, the tradi-
tional single-node approach is not directly applicable. This
is because when the master node crashes, the system will pro-
mote one of the slave nodes to be the new master. When the
previous master comes back on-line, it cannot just load in its
last checkpoint and rerun its WAL because the DBMS has con-
tinued to process transactions and therefore the state of the
database has moved forward. The recovering node needs to get
the updates from the new master (and potentially other repli-
cas) that it missed while it was down. There are two potential
ways to do this. The first is for the recovering node to load
in its last checkpoint and WAL from its local storage and then
pull log entries that it missed from the other nodes. As long
as the node can process the log faster than new updates are
appended to it, the node will eventually converge to the same
state as the other replica nodes. This is possible if the DBMS
uses physical or physiological logging, since the time to apply
the log updates directly to tuples is much less than the time
it takes to execute the original SQL statement. To reduce the
time it takes to recover, the other option is for the recovering
node to discard its checkpoint and have system take a new one
that the node will recover from. One additional benefit of this
approach is that this same mechanism can also be used in the
DBMS to add a new replica node.

The middleware and DBaaS systems rely on the built-in
mechanisms of their underlying single-node DBMSs, but add
additional infrastructure for leader election and other manage-
ment capabilities. The NewSQL systems that are based on new
architectures use a combination of off-the-shelf components
(e.g., ZooKeeper, Raft) and their own custom implementations
of existing algorithms (e.g., Paxos). All of these are standard
procedures and technologies that have been available in com-
mercial distributed systems since the 1990s.

5. FUTURE TRENDS
We foresee the next trend for database applications in the

near future is the ability to execute analytical queries and ma-
chine learning algorithms on freshly obtained data. Such work-
loads, colloquially known as “real-time analytics” or hybrid
transaction-analytical processing (HTAP), seek to extrapolate
insights and knowledge by analyzing a combination of histor-

ical data sets with new data [35]. This differs from traditional
business intelligence operations from the previous decade that
could only perform this analysis on historical data. Having a
shorter turnaround time is important in modern applications
because data has immense value as soon as it is created, but
that value diminishes over time.

There are three approaches to supporting HTAP pipelines in
a database application. The most common is to deploy sepa-
rate DBMSs: one for transactions and another for analytical
queries. With this architecture, the front-end OLTP DBMS
stores all of the new information generated from transactions.
Then in the background, the system uses an extract-transform-
load utility to migrate data from this OLTP DBMS to a second
back-end data warehouse DBMS. The application executes all
complex OLAP queries in the back-end DBMS to avoid slow-
ing down the OLTP system. Any new information generated
from the OLAP system is pushed forward to front-end DBMS.

Another prevailing system design, known as the lambda ar-
chitecture [45], is to use a separate batch processing system
(e.g., Hadoop, Spark) to compute a comprehensive view on
historical data, while simultaneously using a stream process-
ing system (e.g., Storm [61], Spark Streaming [64]) to provide
views of incoming data. In this split architecture, the batch
processing system periodically rescans the data set and per-
forms a bulk upload of the result to the stream processing sys-
tem, which then makes modifications based on new updates.

There are several problems inherent with the bifurcated en-
vironment of these two approaches. Foremost is that the time
it takes to propagate changes between the separate systems
is often measured in minutes or even hours. This data trans-
fer inhibits an application’s ability to act on data immediately
when it is entered in the database. Second, the administrative
overhead of deploying and maintaining two different DBMSs
is non-trivial as personnel is estimated to be almost 50% of
the total ownership cost of a large-scale database system [50].
It also requires the application developer to write a query for
multiple systems if they want to combine data from different
databases. Some systems that try to achieve a single platform
by hiding this split system architecture; an example of this
is Splice Machine [16], but this approach has other technical
issues due to copying data from the OLTP system (Hbase) be-
fore it can be used in the OLAP system (Spark).

The third (and in our opinion better) approach is to use a
single HTAP DBMS that supports the high throughput and low
latency demands of OLTP workloads, while also allowing for
complex, longer running OLAP queries to operate on both hot
(transactional) and cold (historical) data. What makes these
newer HTAP systems different from legacy general-purpose
DBMSs is that they incorporate the advancements from the
last decade in the specialized OLTP (e.g., in-memory storage,
lock-free execution) and OLAP (e.g., columnar storage, vec-
torized execution) systems, but within a single DBMS.

SAP HANA and MemSQL were the first NewSQL DBMSs
to market themselves as HTAP systems. HANA achieves this
by using multiple execution engines internally: one engine for
row-oriented data that is better for transactions and a different
engine for column-oriented data that is better for analytical
queries. MemSQL uses two different storage managers (one
for rows, one for columns) but mixes them together in a single
execution engine. HyPer switched from a row-oriented system
with H-Store-style concurrency control that was focused on
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Year
Released

Main Memory
Storage Partitioning Concurrency

Control Replication Summary

N
E

W
A

R
C

H
IT

E
C

T
U

R
E

S

Clustrix [6] 2006 No Yes MVCC+2PL Strong+Passive MySQL-compatible DBMS that supports
shared-nothing, distributed execution.

CockroachDB [7] 2014 No Yes MVCC Strong+Passive Built on top of distributed key/value store. Uses
software hybrid clocks for WAN replication.

Google Spanner [24] 2012 No Yes MVCC+2PL Strong+Passive WAN-replicated, shared-nothing DBMS that
uses special hardware for timestamp generation.

H-Store [8] 2007 Yes Yes TO Strong+Active Single-threaded execution engines per partition.
Optimized for stored procedures.

HyPer [9] 2010 Yes Yes MVCC Strong+Passive HTAP DBMS that uses query compilation and
memory efficient indexes.

MemSQL [11] 2012 Yes Yes MVCC Strong+Passive Distributed, shared-nothing DBMS using com-
piled queries. Supports MySQL wire protocol.

NuoDB [14] 2013 Yes Yes MVCC Strong+Passive Split architecture with multiple in-memory ex-
ecutor nodes and a single shared storage node.

SAP HANA [55] 2010 Yes Yes MVCC Strong+Passive Hybrid storage (rows + cols). Amalgamation of
previous TREX, P*TIME, and MaxDB systems.

VoltDB [17] 2008 Yes Yes TO Strong+Active Single-threaded execution engines per partition.
Supports streaming operators.

M
ID

D
L

E
W

A
R

E AgilData [1] 2007 No Yes MVCC+2PL Strong+Passive Shared-nothing database sharding over single-
node MySQL instances.

MariaDB MaxScale [10] 2015 No Yes MVCC+2PL Strong+Passive Query router that supports custom SQL rewrit-
ing. Relies on MySQL Cluster for coordination.

ScaleArc [15] 2009 No Yes Mixed Strong+Passive Rule-based query router for MySQL, SQL
Server, and Oracle.

D
B

A
A

S Amazon Aurora [3] 2014 No No MVCC Strong+Passive Custom log-structured MySQL engine for RDS.

ClearDB [5] 2010 No No MVCC+2PL Strong+Active Centralized router that mirrors a single-node
MySQL instance in multiple data centers.

Table 1: NewSQL Systems – Summary of the system features described in Section 4 for the different DBMSs. Note that the year released is either
when the project was announced publicly or when the company was first formed.

OLTP to use an HTAP column-store architecture with MVCC
to allow it support more complex OLAP queries [48]. Even
VoltDB has pivoted their marketing strategy from pure OLTP
performance to providing streaming semantics. Similarly, the
S-Store project seeks to add support for stream processing op-
erations on top of the H-Store architecture [46]. It is likely
that the specialized OLAP systems from the mid-2000s (e.g.,
Greenplum) will start to add support for better OLTP.

We note, however, that the rise of HTAP DBMSs does mean
the end of giant, monolithic OLAP warehouses. Such systems
will still be necessary in the short-term as they stand to be the
universal back-end database for all of an organization’s front-
end OLTP silos. But eventually the resurgence of database fed-
eration will allow organization’s to execute analytical queries
that span multiple OLTP databases (including even multiple
vendors) without needing to move data around.

6. CONCLUSION
The main takeaway from our analysis is that NewSQL data-

base systems are not a radical departure from existing system
architectures but rather represent the next chapter in the con-
tinuous development of database technologies. Most of the
techniques that these systems employ have existed in previous
DBMSs from academia and industry. But many of them were
only implemented one-at-a-time in a single system and never
all together. What is therefore innovative about these NewSQL
DBMSs is that they incorporate these ideas into single plat-
forms. Achieving this is by no means a trivial engineering
effort. They are by-products of a new era where distributed
computing resources are plentiful and affordable, but at the
same time the demands of applications is much greater.

It is also interesting to consider the potential impact and fu-
ture direction of NewSQL DBMSs in the marketplace. Given
that the legacy DBMS vendors are entrenched and well funded,
NewSQL systems have an uphill battle to gain market share. In
the last five years since we first coined the term NewSQL [18],
several NewSQL companies have folded (e.g., GenieDB, Xer-
ound, Translattice) or pivoted to focus on other problem do-
mains (e.g., ScaleBase, ParElastic). Based on our analysis
and interviews with several companies, we have found that
NewSQL systems have had a relatively slow rate of adoption,
especially compared to the developer-driven NoSQL uptake.
This is because NewSQL DBMSs are designed to support the
transactional workloads that are mostly found in enterprise ap-
plications. Decisions regarding database choices for these en-
terprise applications are likely to be more conservative than
for new Web application workloads. This is also evident from
the fact that we find that NewSQL DBMSs are used to com-
plement or replace existing RDBMS deployments, whereas
NoSQL are being deployed in new application workloads [19].

Unlike with the OLAP DBMS start-ups from the 2000s,
where almost all of the vendors were acquired by major tech-
nology companies, up until now there has been only one acqui-
sition made of a NewSQL company. In March 2016, Tableau
announced that it purchased the start-up formed for the HyPer
project. The two other possible exceptions to this are (1) Ap-
ple acquiring FoundationDB in March 2015, but we exclude
them because this system was at its core a NoSQL key-value
store with an inefficient SQL layer grafted on top of it, and
(2) ScaleArc acquiring ScaleBase, but this was one competitor
buying out another. None of these examples are the same kind
of acquisition where a legacy vendor purchasing an upstart
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system (e.g., Teradata buying Aster Data Systems in 2011).
We instead see that the large vendors are choosing to innovate
and improve their own systems rather than acquire NewSQL
start-ups. Microsoft added the in-memory Hekaton engine
to SQL Server in 2014 to improve OLTP workloads. Oracle
and IBM have been slightly slower to innovate; they recently
added column-oriented storage extensions to their systems to
compete with the rising popularity of OLAP DBMSs like HP
Vertica and Amazon Redshift. It is possible that they will add
an in-memory option for OLTP workloads in the future.

More long term, we believe that there will be a conver-
gence of features in the four classes of systems that we dis-
cussed here: (1) the older DBMSs from the 1980-1990s, (2)
the OLAP data warehouses from the 2000s, (3) the NoSQL
DBMSs from the 2000s, and (4) the NewSQL DBMSs from
the 2010s. We expect that all of the key systems in these
groups will support some form of the relational model and
SQL (if they do not already), as well as both OLTP opera-
tions and OLAP queries together like HTAP DBMSs. When
this occurs, such labels will be meaningless.
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