
A Survey on Accessing Dataspaces

Yihan Wang
Tsinghua University,

Beijing, China

yihanwang@tsinghua.edu.cn

Shaoxu Song⇤

Tsinghua University,
Beijing, China

sxsong@tsinghua.edu.cn

Lei Chen
The Hong Kong University of

Science and Technology

leichen@cse.ust.hk

ABSTRACT
Dataspaces provide a co-existence approach for het-
erogeneous data. Relationships among these het-
erogeneous data are often incrementally identified,
such as object associations or attribute synonyms.
With the di↵erent degree of relationships recognized,
various query answers may be obtained. In this pa-
per, we review the major techniques for process-
ing and optimizing queries in dataspaces, according
to their di↵erent abilities of handling relationships,
including 1) simple search query without consider-
ing relationships, 2) association query over object
associations, 3) heterogeneity query with attribute
correspondences, and 4) similarity query for similar
objects. Techniques such as indexing, query rewrit-
ing, expansion, and semantic query optimization are
discussed for these query types. Finally, we high-
light possible directions in accessing dataspaces.

1. INTRODUCTION
A dataspace system [8, 10] processes data, with

various formats, accessible through many systems
with di↵erent interfaces, such as relational [11], se-
quential [30], XML [32], RDF [31], etc. Unlike data
integration over DBMS, a dataspace system does
not have full control on its data, and gradually in-
tegrates data as necessary.
Dataspace is a data co-existence approach, which

provides base functionality over various data sources,
regardless of how integrated they are. A dataspace
system may return best-e↵ort approximate answers,
from multiple sources, where a set of correct seman-
tic mappings have not been applied. In addition,
dataspace query answering also takes into consider-
ation a sequence of earlier queries leading up to it,
not only for optimizing potential future queries (see
[26]), but also for creating better semantic integra-
tion between sources in a dataspace [10].
Dataspace systems could apply existing approx-

imate or uncertain mappings and keyword search
∗
Corresponding Author

techniques, however, as also indicated in [10], these
works need to be generalized considerably to cases
where we do not have semantic mappings of sources
and where the data models of the sources di↵er.
In particular, since dataspaces are loosely coupled,
rather that providing exact answers, the goal of
dataspaces is best-e↵ort query answering.
Some of the challenges in accessing dataspaces

have been (partially) addressed, such as studying
a sequence of earlier queries (for query optimiza-
tion and potentially better semantic integration),
or ranking answers from multiple sources with var-
ious levels of semantic mappings. Other challenges
remain open, e.g., handling inconsistencies in datas-
paces. (See a detailed discussion in Section 7).
In this paper, we focus on search queries for ac-

cessing dataspaces, i.e., returning items already ex-
isting in the dataspace. Since well-established se-
mantic mappings are often unavailable in datas-
paces, more complex SPJ queries with transforma-
tions and views are not considered in this survey.
Being aware of di↵erent levels of connections, we
categorize recently proposed techniques for search-
ing dataspaces into four potential categories.

Simple Search Query
Since the relationships between data objects may
barely be obtained, it is necessary to provide an
elementary way to access all the data in a datas-
pace. Simple search query, e.g., keyword queries
(with or without attribute names) or attribute pred-
icate queries, is a good choice to meet such require-
ments [16]. It returns a set of dataspace resources
(objects) that directly match the query predicates
without considering associations. Inverted index is
thus naturally extended to dataspaces for e�cient
keyword query processing (see details in Section 3).

Association Query
A number of associations among objects may be
naturally embedded in dataspace initialization, such
as the tree relationships between file objects in a

SIGMOD Record, June 2016 (Vol. 45, No. 2) 33

personal information management dataspace. The
object associations could also be incrementally spec-
ified, e.g., all the persons graduated from the same
university, known as association trails. These as-
sociations between objects are often modeled in a
graph structure. Association query, performed on
the association graph, returns not only the objects
matching the query specified contents, but also those
related objects connected via associations. Exten-
sions on index for associations are discussed as well
in Section 4.

Heterogeneity Query
Besides associations among objects, relationships
between heterogeneous attributes could also be con-
sidered when querying a dataspace. For example,
the matching between attributes “manu” and “prod”
indicates that both of them specify similar infor-
mation about manufacturers or producers. Such
attribute matching is often recognized by schema
matching techniques [18]. As mentioned, in datas-
paces, a pay-as-you-go style [12] is usually applied
to gradually identify attribute matching (accord-
ing to users’ feedback when necessary). The het-
erogeneity query extends query results by consid-
ering the matching relationships between hetero-
geneous attributes. For instance, a heterogeneity
query on attribute manu searches not only the men-
tioned manu but also the identified prod attribute.
Query rewrite is often employed for such query ex-
pansion (see details in Section 5).

Similarity Query
Rather than simply specifying keywords, a more ad-
vanced query may pose an object and return datas-
pace objects that are similar to the query object,
known as similarity query. To accelerate similarity
query processing, semantic query optimization [3,
13] can be employed. It relies on data dependen-
cies introduced in dataspaces for query rewriting
(in Section 6).
The remainder of this paper is organized as fol-

low. In Section 2, we introduce models for rep-
resenting dataspaces. The aforesaid four types of
queries are discussed from Sections 3 to 6, respec-
tively. Finally, we summarize this paper in Section
7 and discuss possible future directions.

2. MODELING
Owing to heterogeneity, dataspaces need to em-

ploy an elementary model to represent the most
common part of data from various sources, and pro-
vide a very basic accessing way to begin with.

2.1 Data Model

The data model indicates how the contents of ob-
jects in dataspaces are organized. Usually, the ob-
jects consist of values on several attributes.

2.1.1 Triple Store
Since the objects in a dataspace are collected

from various heterogeneous sources with distinct at-
tributes, it is obviously inappropriate to manage the
data as tables with fixed columns like the relational
model. Instead, the data are often modeled as a
collection of triples [12, 5], in the form of

hobject, attribute, valuei.

For example, Table 1 presents 6 triples, recording
the (School)Color attribute values of 6 objects.

Table 1: Triples in a dataspace

hobject, attribute, valuei
t0 hWisconsin, SchoolColor, Cardinali
t1 hCal, SchoolColor, Bluei
t2 hWashington, SchoolColor, Purplei
t3 hBerkeley, Color, Navyi
t4 hUW-Madison, Color, Redi
t5 hStanford, Color, Cardinali

It is worth noting that the triples can be con-
verted to graph representation. In order to present
examples more intuitively, we use graph represen-
tation by default in the remainder of this paper.

2.1.2 Resource Views
The triple store scatters attribute values of an

object, which may not be e�cient in object ori-
ented retrieval. The iMeMex Data Model (iDM),
specialized for personal data management [4, 20],
introduces an object oriented data model, by group-
ing the attribute-value pairs of an object together,
known as resource views.

Table 2: Components of a resource view RVi

Component Description

RVi.name Name of a resource view RVi

RVi.tuple Set of attribute value pairs
(att0 : value0), (att1 : value1), . . .

RVi.content Finite byte sequence of content

Table 2 lists the components that can be attached
to a resource view RVi. Besides the set of attribute-
value pairs stored in RVi.tuple, other components,

34 SIGMOD Record, June 2016 (Vol. 42, No. 2)

such as a finite byte sequence of content (a file in
personal information management), could be fur-
ther attached to a resource view.

2.2 Object Association
As mentioned in the introduction, we cannot iden-

tify ahead of time all the associations of objects in
dataspaces. Ad hoc recognized associations among
objects are managed in an extraordinary manner.

2.2.1 Association Graph
In iDM [20], the associations are modeled as a

graph,G := (RV , E), whereRV := {RV1, . . . , RVn}
denotes a set of n resource views (nodes). E is a
sequence of directed edges between resource views.

Figure 1: An example graph of associations among
resource views (objects)

For instance, Figure 1 presents an example asso-
ciation graph of 5 resource views. The edges denote
the associations between the corresponding resource
views, e.g., (Projects!PIM) indicates that PIM is
a project under the directory of all Projects in a
personal file management dataspace.

2.2.2 Association Triple
The association between objects in a dataspace

can be represented as a collection of triples as well,
in the form of hobject, association, objecti [5]. Un-
like the edges without any label in the aforesaid
association graph, a type is indicated in the associ-
ation triple for the association between two objects.

Figure 2: An example triple base

Figure 2 illustrate an example dataspace of 4 ob-
jects (p1, p2, a1 and c1, denoted by ellipses). Rect-
angles attached to each object denote its attribute
values, e.g., “Tian Zhang” attached to p1 through
an edge with label “name”, representing an attribute
value pair (name:Tian Zhang) of object p1. Each
association triple corresponds to an edge in Figure
2 with a label indicating its association type. For

example, ha1, contactAuthor, p1i means that a1 is
connected to p1 as a contactAuthor.

2.2.3 Association Trail
Rather than representing specific single associa-

tions, an association trail [19], denotes a group of
associations by a join predicate ✓. Instead of orig-
inally embedded in data, such associations can be
gradually declared.
Let QL(G) and QR(G) be two collections of ob-

jects specified by queries QL and QR, respectively,
over an association graph G. An association trail

� : QL
✓(l,r)
=) QR represents all the associations from

objects in QL(G) to objects in QR(G) according to
✓(l, r). It conceptually introduces in the associa-
tion graph a directed edge from left to right and la-
beled �, for each pair of nodes given by QL ./✓ QR,
namely intensional edge. Association trails cover
relational and non-relational theta-joins as special

cases. A bidirectional association trail � : QL
✓(l,r)()

QR represents associations in both directions.

Figure 3: Example association trails

Consider the example in Figure 3. Let ellipses
denote objects, while the rectangle attached to each
object lists its attribute-value pairs. A bidirectional
association trail is given by

sameUniversity : class = person

✓(l,r)() class = person,

✓(l, r) : (l.university = r.university).

Arrows with dotted lines, labeled sameUniversity,
represents 3 intensional edges introduced by the as-
sociation trail. For instance, the intensional edge
between Anna and Fred indicates that they share
the same university attribute value.

2.2.4 Other Associations
Besides the aforesaid general associations between

objects, a special category of “referenceOf” rela-
tionships in personal data are considered, namely
Context-Based Reference (CR) [14]. Such associa-
tions are generated by user behaviors. Similar to
association trails, the CR associations could be in-
troduced gradually and represented in association
graphs as well.

SIGMOD Record, June 2016 (Vol. 45, No. 2) 35

2.3 Semantic Correspondences
While associations represent the relationships be-

tween objects, the attribute correspondences indi-
cate the identity relationships of attributes.

2.3.1 Attribute Synonyms
Synonym correspondence between two attributes

(e.g., manu vs. prod) can be identified by schema
matching techniques in data integration (see [18] for
a survey). In dataspaces, the synonym correspon-
dence between attributes are often incrementally
recognized in a pay-as-you-go style [12]. Automated
mechanisms such as schema matching and refer-
ence reconciliation provide initial correspondences,
termed candidate matches, and then user feedback
is used to incrementally confirm these matches (when
necessary).
Two attributes A,B having synonym correspon-

dence are denoted by A $ B, e.g., manu $ prod.
There may exist multiple attributes having synonym
correspondences to an attribute A. A synonym ta-
ble is introduced in [5] for attributes with correspon-
dence. If attribute A is referred to as A1, . . . , An in
di↵erent data sources, having A $ A1, . . . , A $
An, the canonical name of A is chosen as one of
A1, . . . , An.

2.3.2 Trails
Instead of the symmetric synonyms relationships

between attributes, the concept of trail is also pro-
posed to specify asymmetric correspondences [20].
A unidirectional trail is denoted as : QL ! QR.

It means that the query on the left QL induces the
query on the right QR, i.e., whenever we query for
QL we should also query for QR.
For example, a trail

 1 : // ⇤ .tuple.created ! // ⇤ .tuple.date

indicates that whenever querying objects (resource
views) on attribute created, it also needs to query
objects on attribute date.
A bidirectional trail is denoted as : QL $ QR.

It further indicates that the query on the right QR

induces the query on the left QL.
Indeed, trails can specify correspondences between

more general queries. For example, they could be
used to transform a simple keyword query into a
query to the mediated data source. Consider a trail
“dataspace ! //Projects/PIM/⇤”. With such a
trail, the query will not only return resources con-
taining keyword dataspace, but also “vldb2006.tex”
and “Grant.doc” in Figure 1 (although the keyword
dataspace does not appear in these documents).
Traditional data integration approaches, such as

GAV, LAV, and GLAV, need high upfront e↵ort to
semantically integrate all source schemas and pro-
vide a mediated schema. Trails provide a declara-
tive mechanism to enable semantic enrichment of a
dataspace in a pay-as-you-go fashion.

2.3.3 Probabilistic Mapping
Instead of the synonym correspondence based on

certain schema mapping, a probabilistic mapping
describe a probability distribution of a set of possi-
ble schema mapping [21].
A probabilistic mapping is defined as (S, T,m),

where S and T are relations belonging to source
schema and target schema respectively, and m is a
set whose elements mi consist of a one-to-one map-
ping between S and T and a probability, indicating
the probability of each mapping.
For example, consider three possible mappings in

Table 3. Each possible mapping consists of a set of
attribute correspondences, and is associated with a
corresponding probability. Note that the sum of all
probability is 1.
It is worth noting that even though the studies [6,

7] focus now on attribute correspondences, proba-
bilistic schema mappings could be much more com-
plex semantic correspondences, e.g., more general
GLAV mappings.

Table 3: Probabilistic schema mapping

Possible Mapping Prob

m1 {(pname, name), (email-addr, email), 0.5
(current-addr, mailing-addr),
(permanent-addr, home-addr)}

m2 {(pname, name), (email-addr, email), 0.4
(permanent-addr, mailing-addr),
(current-addr, home-addr)}

m3 {(pname, name), 0.1
(email-addr, mailing-addr),
(current-addr, home-addr)}

3. SIMPLE SEARCH QUERY
The primary and easy way for most people access-

ing dataspaces is the keyword predicate query [5].
Each predicate is of the form (attribute : keyword),
denoted by (A : K), where A is an attribute name
and K is a keyword in the value of attribute A. For
example, a keyword predicate query could be:

{(title : Birch), (author : Raghu)}.

To answer the keyword predicate query, we con-
sider both the query and objects as sets of items of

36 SIGMOD Record, June 2016 (Vol. 42, No. 2)

attribute keyword pairs. An objectO (or a queryQ)
in dataspaces is thus a set of items {(A1 : K1), (A2 :
K2), . . . , (A

|O|

: K
|O|

)}. For example, an object with
attribute value (manu : Apple Inc.) can be repre-
sented by a set of items {(manu : Apple), (manu :
Inc.)}, if each word is considered as a keyword.
The keyword predicate query returns the objects

in the dataspace that match most items. Query
answers are ranked by the following matching score
in descending order score(Q,O) = |Q \O|.
A similar Filter operator is also considered in

[11]. It returns resources (objects) satisfying the
given conditions, which can be specified as a set of
(attribute : keyword) pairs as well.

3.1 Index
Inverted lists are utilized for indexing dataspaces

[5]. The inverted index, also known as inverted files
or inverted lists, consists of a vocabulary of items
and a set of inverted lists. Each item e corresponds
to an inverted list of object ids, where each id re-
ports the occurrence of item e in that object.

Figure 4: Indexing by attribute inverted lists
(ATIL) for items of attribute-keyword pairs

The items of objects in dataspaces are indeed
attribute-keyword pairs. The attribute inverted lists
(ATIL) are lists of objects where the corresponding
item (attribute-keyword pair) appears [5]. Figure 4
shows an example dataspace S which consists of 11
objects with a vocabulary I of 12 items. For each
item (an attribute-keyword pair), we have a pointer
referring to a specific list of object ids, where the
item appears. For instance, consider the inverted
list of item (D : a) in Figure 4(b). It indicates that
the keyword a on attribute D appears in the objects
2, 3, 5, 8, 11, as presented in in Figure 4(a). In real
implementation, each object id in the list is associ-
ated with a value, which denotes the weight of the
item (D : a) in that object.

3.2 Compression
The heavy cost of inverted index based query pro-

cessing arises from two aspects, 1) I/O cost of read-
ing inverted lists from disks, and 2) aggregation of
these inverted lists for ranking results. To reduce
the cost of retrieving and merging lists, compres-
sion of inverted lists is studied [22]. The basic idea
is to store the merged lists for items that appear
together frequently in queries or dataspace objects.

Figure 5: Compressing inverted lists on items (an
item corresponds to only one list)

For instance, in Figure 5, the inverted lists of
items, attribute-keyword pairs (D:a), (F:f), are com-
bined together as a big single list. We have several
sections in each compressed list, such as the sublist
of tuples with both (D:a) and (F:f), the sublist with
only (D:a), and the sublist with only (F:f).

3.3 Materialization
Materialized views in relational databases are of-

ten utilized to find equivalent view-based re-writings
of relational queries [9], such as conjunctive queries
or aggregate queries in databases. The concept of
materialization is also extended to dataspaces for
exploring query optimization opportunities [26].

Figure 6: Materializing views of items (an item
may be materialized multiple times)

In Figure 6, we show an example of materialized
lists of item views. For instance, the first view,
denoted by V1 = {(A : a), (B : a)}, materializes the
merge results of lists corresponding to item (A : a)
and (B : a) in the example of Figure 4. Without
materialization, we need two random disk accesses
for query predicates (A : a) and (B : a), respectively.
In contrast, by materialized views, only one random
disk access is needed for the same query. Moreover,
besides reducing the I/O cost, we also avoid the
aggregation of the aforesaid two separate inverted
tuple lists in the query.

4. ASSOCIATION QUERY

SIGMOD Record, June 2016 (Vol. 45, No. 2) 37

Next, we discuss the queries specifying associ-
ation requirements of objects. Again, both data
models, triple store and resource view, support key-
word predicate queries.

4.1 Association Search Query

4.1.1 Neighborhood Keyword Query
Neighborhood keyword query extends traditional

keyword query by taking associations into account,
that is, it also explores associations between data
items. A neighborhood keyword query specifies a
set of keywords, and the result consists of (1) rel-
evant instance, which contains at least one of the
query keywords; (2) associated instance, which is
associated with a relevant instance.
For example, consider a query whose keyword is

“Birch” in Figure 2. Instance a1 is a relevant in-
stance as it contains “Birch” in the title attribute,
and p1, p2 and c1 are associated instances as they
have association with a1.

4.1.2 Association Predicate Query
Besides the predicates on attribute values, pred-

icates on associations can also be specified [5], of
the form (R : K), where R in the predicate is an
association name. Objects satisfy the predicate if
they have associations of type R with objects that
contain the keyword K in attribute values.
For example, a query “Raghu’s Birch paper in

Sigmod” can be described with three predicates:

{(title : Birch), (author : Raghu),

(publishedIn : Sigmod)}.

The query is satisfied by object a1 in Figure 2,
which has attribute value (title : Birch), and in
association with c1 (containing keyword Sigmod)
in type publishedIn and p2 (containing keyword
Raghu) with type author.

4.1.3 Indexing Associations
Similar to indexing attribute keywords, attribute-

association inverted lists (AAIL) are introduced for
indexing association information (together with the
aforesaid attribute-keyword information). Suppose
that an object O has an association R with objects
O1, . . . , On in the dataspace, and each of O1, . . . , On

has the keyword K in one of its attribute values.
An inverted list will be generated for the associa-
tion:value item (R : K), which contains n objects
O1, . . . , On in the list. For instance, in Figure 7, ob-
ject a1 appears in the list of (publishedIn : 1996),
since a1 is in association (with type publishedIn)

to another object (c1) containing keyword 1996 in
its attribute (year), as illustrated in Figure 2.

Figure 7: Attribute-association inverted lists
(AAIL) for both associations and attribute-keyword
items (for the example dataspace in Figure 2)

An association predicate query {(R : K1), . . . , (R :
Kn)} can be answered over the AAIL. For exam-
ple, when searching for “Raghu’s papers”, the query
contains an association predicate (author : Raghu).
Based on the AAIL in Figure 2, it returns object a1.

4.2 Association Trail Query
Other than query over arbitrary individual asso-

ciations, [19] considers queries with specific groups
of associations, specified by association trails.

4.2.1 Neighborhood Query
Given a queryQ (of attribute-keyword items) and

an association trail �i, the association trail query
results are given by (Q\Qi

L)o✓i Q
i
R, where Q

i
L and

Qi
R are the queries on the left and right sides of trail

�i, respectively, and ✓i is the ✓-predicate of �i.
For example, consider the dataspace in Figure 3

and an association trail

sameUniversity : class = person

✓(l,r)() class = person,

✓(l, r) : (l.university = r.university).

A query Q = {(name : Anna)} with the asso-
ciation trail returns not only object 1 in Figure 3
(matching the query content), but also objects 2
and 3 who share the same university (identified by
✓(l, r)).
When considering a set of association trails �⇤ :=

{�1, . . . ,�n}, the query results could be the union
of the corresponding results given by �i.

4.2.2 Indexing Association Trails
The most intuitive strategy for processing asso-

ciation trail queries is to explicitly materialize all
intensional edges in the graph, through a join index
[28]. For instance, Figure 8 lists all the objects 2
and 3, which have association to object 1 specified
by association trail 1 (sameUniversity). Similarly,
objects 1 and 3 have association to object 2 as well.

38 SIGMOD Record, June 2016 (Vol. 42, No. 2)

Figure 8: Association trail index

At query time, it looks up materialization to ob-
tain the neighborhoods for each object returned by
the original queryQ. A queryQ = {(name : Anna)}
thus returns object 1 (containing the specified key-
word in Q) as well as objects 2 and 3 with the spec-
ified association 1 (sameUniversity) to object 1.

Figure 9: Grouping-compressed index (GCI) for
association trail

Association (join) relationships can be grouped
together as cliques. The grouping-compressed in-
dex (GCI) [19] explicitly represents the edges from
a given object (node) O1 in the clique to all the
other objects {O2, . . . , OC}, and for each remaining
node in the clique, represents special lookup edges
hOj , O1, lookupi that state Oj connects to the same
objects as O1. Thus, it represents the information
in the clique with C normal edges for O1 plus C�1
edges for the lookup edges of all remaining nodes.
In short, a reduction in storage space (and conse-
quently join indexing time) from C2 edges to 2C�1
edges.
For example, consider the clique of three objects

{1, 2, 3} in Figure 3. It corresponds to three groups
of edges {(1, 2), (1, 3)}, {(2, 1), (2, 3)}, {(3, 1), (3, 2)},
in Figure 8. In the grouping-compressed index as
shown in Figure 9, only one group of (normal) edges
{(1, 2), (1, 3)} is preserved, while other two groups
of edges are represented by lookupEdges (2, 1) and
(3, 1). The lookupEdges denote that objects 2 and
3 share the same connections as object 1 w.r.t. asso-
ciation trail 1 (sameUniversity). The total number
of edges (inverted lists) reduce.

4.3 Path Expression Query
Path expressions (as well as keywords and predi-

cates) have been used in XML search engines refer-
ring to the NEXI language [27]. The queries have
been adapted to dataspaces by iDM [4, 20] and [32].
A most typical path expression query, //A//B, re-
turns resource views named B, from which there
exists a path to another resource view named A.
The path expression can also be combined with

attribute predicates, such as //A//B[b = 42]. It
further requiresRV.tuple.b = 42 for the results spec-
ified by //A//B. For example,

//Projects//Grant[created = “2006”]

returns resource views which are documents entitled
Grant and created in 2006 in all the Projects. Con-
sequently, the object Grant.doc in Figure 1 will be
returned, which has a path from Project to Grant.
A Traverse operator, similar to the path expres-

sion query, is also introduced in [11], which is used
to find resources referenced by a property. It ac-
cepts a sequence of resources with attribute pred-
icates and a set of conditions. The returned re-
sources satisfy the conditions and have association
to the given resources successively, i.e., there is a
path from the first resource to the result.

5. HETEROGENEITY QUERY
Dataspace queries could be extended to not only

objects with associations, but also attributes with
correspondence owing to information heterogeneity.

5.1 Attribute Hierarchy Query
Owing to information heterogeneity, an attribute

(such as name) may correspond to multiple descen-
dants in hierarchies, e.g., firstName, lastName,
nickName, etc. A query (name : T ian) may refer
to firstName, lastName, or nickName.
To support such hierarchies in attribute hetero-

geneity, a natural idea is to index dataspaces with
duplication. Attribute inverted lists with duplica-
tion (Dup-ATIL) [5] is constructed as follows. If
the keyword K appears in the value of attribute
A0, and A is an ancestor of A0 in the hierarchy,
then there is a list for (A : K). It records the num-
ber of occurrences of K in values of the attribute A
and A’s sub-attributes. Consequently, a predicate
query with the Dup-ATIL is answered in the same
way as we use the ATIL.

Indexing Attributes with Hierarchy Path
The size of Dup-ATIL could be very large if the at-
tribute hierarchy contains long paths from the root

SIGMOD Record, June 2016 (Vol. 45, No. 2) 39

attribute to the leaf attributes and most values in
the dataspace belong to leaf attributes.
A more concise way is to generalize the inverted

lists without introducing duplicates [5]. Attribute
inverted lists with hierarchies (Hier-ATIL) is con-
structed by extending the attribute inverted list as
follows. Let A0, . . . , An be attributes such that for
each i 2 [0, n�1], attribute Ai is the super-attribute
of Ai+1, and A0 does not have super-attribute. It
introduces a hierarchy path A0// . . . //An for at-
tribute An. For each keyword K in the value of
attribute An, there is an inverted list generated for
(A0// . . . //An : K). Each object in the list denotes
that the keyword K appears in the attribute An of
the object.
The attribute-keyword predicate query (A : K)

can be answered by considering all the inverted lists
whose hierarchy paths contain the attribute A.

5.2 Attribute Synonym Query
Besides attribute hierarchies, a more general form

of information heterogeneity is the attribute syn-
onyms, A $ B, in more arbitrary attribute pairs.

Query Rewrite with Canonical Name
To accommodate synonyms, a straightforward idea
is to introduce a synonym table for attribute and
association names [5]. If attribute A is referred to
as A1, . . . , An in di↵erent data sources, it chooses
the canonical name of A as one of A1, . . . , An.
In the index, when a keyword K appears in a

value of the Ai attribute, there is an inverted list for
(A : K). The object in the list for (A : K) denotes
the occurrence of K in its attribute A1, . . . , or An.
To answer a predicate query with attribute pred-

icate (Ai,K), i 2 [1, n], we transform it into a key-
word search for (K : A). For example, suppose that
author is considered as a canonical name for author
and authorship. The predicate (authorship : T ian)
will be transformed into (author : T ian).

Query Rewrite with Predicate Expansion
The attribute synonym relationship is often incre-
mentally determined, in a pay-as-you-go style. To
avoid updating the existing index (w.r.t. synonym
attributes), we may also consider to expand the
query with synonym attributes [26], rather than re-
placing them with canonical names.
Consider a query Q = {(A1 : K1), . . . , (A

|Q|

:
K

|Q|

)} specifying predicates on a set of attribute-

keyword pairs. The expanded query Q̂ of Q is

Q̂ = {(Bi : Ki) | Bi $ Ai, (Ai : Ki) 2 Q} [Q.

For example, we consider a query

Q = {(manu : Apple), (post : Infinite)}.

The query evaluation searches not only in the manu
and post attributes specified in the query, but also
in the attributes prod and addr according to the at-
tribute synonym correspondences manu $ prod and
addr $ post, respectively, having

Q̂ = {(manu : Apple), (prod : Apple),

(post : Infinite), (addr : Infinite)}.

5.3 Trail Query
Rather than simple attribute pairs or hierarchies,

trails specify more complicated relationships among
attributes of query answers [20]. Query processing
in the presence of trails first detects whether a trail
should be applied to a given queryQ. The matching
of a unidirectional trail is performed on the left side
of the trail. If the left side of a trail was matched by
a query Q, the right side of that trail will be used
to compute the transformation of Q. Finally, the
original query Q is merged with the transformation
as a new query. The new query extends the seman-
tics of the original query based on the information
provided by the trail definition.

Query Rewrite with Trails
Let L

i and R
i denote the left and right sides of a

trail i, respectively. The rewrite processing con-
sists of three phases: Matching, Transformation,
and Merging.
(1) Matching. A trail i matches a query Q when-
ever its left side query, �L

i , is contained in Q as a
subset.
(2) Transformation. The query Q is transformed by
substituting L

i with R
i , denoted by QT

 i
.

(3) Merging. The transformed query QT
 i

is merged
with the matched subexpression.
Consequently, the query is expanded not only on
 L

i but also the related R
i .

For example, consider a query

Q := //Projects//Grant[created = “2006”],

and a trail

 1 := // ⇤ .tuple.created ! // ⇤ .tuple.date.

The trail states that when querying the created
attribute of an object (resource view), it should
also consider the query on the date attribute. 1

matches Q as its left side query L
1 is contained in

Q. After transformation, we have

QT
 1

:= // ⇤ [date = “2006”].

40 SIGMOD Record, June 2016 (Vol. 42, No. 2)

The final merged query Q⇤

{ 1}
is

Q⇤

{ 1}
:= //Projects//Grant[created=“2006” OR

date=“2006”].

5.4 Query with Probabilistic Mapping
Instead of certain attribute synonym correspon-

dence, the matching of attributes (especially the one
generated by auto-matching tools) is often uncer-
tain. Query answering is thus performed on such
probabilistic mapping [6, 7, 21].
Consider the possible mappings in Table 3. By-

table semantics [6, 7] could be considered for query
answering based on p-mapping, i.e., one mapping
for all tuples. A query Q with attribute-keyword
predicate {(mailing-addr : Sunnyvale)} will be ex-
panded as

Q̂ = {{(current-addr : Sunnyvale)},
{(permanent-addr : Sunnyvale)},
{(email-addr : Sunnyvale)}}.

The probability of an objectOmatching the query
is computed by aggregation w.r.t. possible map-
pings. Suppose that there is an object O with the
following attribute-value pairs

O = {(pname : Bob), (email-addr, bob),

(current-addr : Sunnyvale),

(permanent-addr : Sunnyvale)}.
As shown, two predicates on attributes current-addr
and permanent-addr match, w.r.t. mappings m1

and m2, respectively. Referring to the probabili-
ties of m1 and m2 in Table 3, the probability of this
object O matching the query Q is 0.9.
Besides the simple predicate queries, more com-

plex SPJ queries could be answered based on prob-
abilistic mapping [6, 7, 21]. As aforesaid, semantic
mappings are often not well-established in datas-
paces, we do not consider the complex SPJ queries
in this survey.
In addition, queries could also be answered based

on trails with probability variants, named proba-
bilistic trails [20]. Specifically, a probability value
0 p 1 is assigned to a trail. The probability re-
flects the likelihood that the results obtained by the
trail are correct. Similarly, there is another variant
named scored trails, which bind a score to a trail,
reflecting the relevance of the trail.

6. SIMILARITY QUERY
Other than given a set of attribute-keyword pred-

icates, a similarity query poses a query object with
attribute-value pairs, and returns dataspace objects
that are similar to the query object.

Similarity Query Answering
Given a query of attribute value pairs, Q = {(A1 :
W1), . . . , (A

|Q|

: W
|Q|

)}, the similarity query re-
turns a set of objects, which are similar toQ on each
attribute w.r.t. attribute similarity function [25].
A similarity function ✓(Ai, Aj) : [Ai ⇡ii Ai, Ai ⇡ij

Aj , Aj ⇡jj Aj] specifies a constraint on similar-
ity correspondence of two values from attribute Ai

or Aj , according to their corresponding similarity
operators ⇡ii,⇡ij or ⇡jj . Here, Ai, Aj are often
synonym attributes, and the similarity function of-
ten comes together with the attribute matching on
how their attribute values should be compared. For
instance, a similarity function specified on two at-
tributes (manu, prod) for the example dataspace in
Figure 10 can be

✓(manu, prod) : [manu ⇡
5 manu,manu ⇡

5 prod,

prod ⇡
5 prod].

Two objects O1, O2 are said to be similar w.r.t.
✓(Ai, Aj), denoted by (O1, O2) ⇣ ✓(Ai, Aj), if at
least one of three similarity operators in ✓(Ai, Aj)
evaluates to true. For example, (t1, t2) are simi-
lar w.r.t. ✓(manu, prod), since the edit distance of
(t1[manu], t2[prod]) is 4 5, satisfying the similar-
ity operator manu ⇡

5 prod.

t1:{(name : iPod), (color : red), (manu : Apple Inc.),

(addr : InfiniteLoop,CA), (tel : 567),

(website : itunes.com)};
t2:{(name : iPod), (color : cardinal), (prod : Apple),

(post : InfiniteLoop,Cupert), (tel : 123),

(website : apple.com)};
t3:{(name : iPad), (color : white), (manu : Apple Inc.),

(post : InfiniteLoop), (phn : 567),

(website : apple.com)}.

Figure 10: Example dataspace with three objects

Consider a similarity query Q over dataspace S
with a set ⇥ of similarity functions. It returns all
the objects O in S with similar attribute values to
Q, i.e., for each Ai specified in Q, having (Q,O) ⇣
✓(Ai, Bi) for some ✓(Ai, Bi) 2 ⇥. For example, let

✓(addr, post) : [addr ⇡
9 addr, addr ⇡9 post,

post ⇡
9 post]

be another similarity function. Consider a query
Q = {(manu : Apple), (post : InfiniteLoop,CA)}. It re-
turns all the 3 objects in Figure 10 as similarity
query answers.

SIGMOD Record, June 2016 (Vol. 45, No. 2) 41

Semantic Query Optimization
Integrity constraints (e.g., fds) can be utilized to
rewrite and optimize queries, which is known as the
semantic query optimization [3, 13]. In [24, 25],
data dependencies are extended for similarity query
optimization in dataspaces.
Data dependencies in dataspaces are generally

in the form of ' : ✓(Ai, Aj) ! ✓(Bi, Bj) defined
on similarity functions ✓(Ai, Aj) and ✓(Bi, Bj). It
states that for any two objects O1, O2 that are sim-
ilar w.r.t. ✓(Ai, Aj), it always implies (O1, O2) ⇣
✓(Bi, Bj) as well. For example,

'1 : ✓(manu, prod) ! ✓(addr, post).

states that if the manu or prod values of two objects
are similar, then their corresponding addr or post
values should also be similar.
For instance, consider again the query object with

(post : InfiniteLoop,CA) and (manu : Apple). As men-
tioned, the similarity query searches not only in
the manu, post attributes specified in the query, but
also in the synonym attributes prod, addr accord-
ing to the similarity functions ✓(manu, prod) and
✓(addr, post), respectively. Recall the semantics of
the above dependency '1. If (manu, prod) of the
query object and a data object are found to be sim-
ilar, then the data object can be directly returned as
answer without evaluation on post, addr since their
corresponding (post, addr) values must be similar as
well. The query e�ciency is improved.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we review several cases of access-

ing dataspaces (listed in Table 4), depending on the
relationship information obtained thus far. When a
dataspace system is first launched, with relation-
ships barely identified, simple keyword queries ap-
ply. With the pay-as-you-go identification of rela-
tionships among data in dataspaces, the query an-
swers are enhanced, e.g., trail queries, or probabilis-
tic query answering with the partial probabilistic
mapping. The gradually identified attribute rela-
tionships further enable the similarity query.
A dataspace system o↵ers a suite of interrelated

services and guarantees, where techniques, such as
keyword query and probabilistic query answering,
could be applied and considerably generalized [8,
10]. While some of the challenges in accessing datas-
paces have been (partially) addressed, such as study-
ing a sequence of earlier queries (for query optimiza-
tion and potentially better semantic integration),
or ranking answers from multiple sources with var-
ious levels of semantic mappings, the others remain
open, e.g., handling inconsistencies in dataspaces.

We list some advice of future directions.
(1) To address inconsistencies in dataspaces, the

comparable dependencies [24, 25] could be applied.
However, such a notation is defined at schema level
(originally for query optimization). Following the
same line of extending data dependencies with con-
ditions in databases, known as conditional depen-
dencies [2, 17], we may also study data dependencies
declared with conditions (instances) in dataspaces.
For example, we may consider a keyword depen-
dency � : ([Ai $ Bi] : Ki) ! ([Aj $ Bj] : Kj), by
extending matching keys [23]. It states that if an
object contains a keyword Ki in either attribute Ai

or its synonym Bi, then it must also have a keyword
Kj appearing in either attribute Aj or Bj .
(2) To answer queries over inconsistent datas-

paces, consistent query answering [1] for dataspaces
needs to be studied. Existing study [15] could han-
dle uncertainty and inconsistency together, but do
not consider the heterogeneous data in dataspaces.
In essence, we need to manipulate simultaneously
the uncertainty originated from both schema map-
ping and data inconsistency.
(3) Beyond relational, tree-structured (XML) or

graph-structured (RDF), more data types are ex-
pected to be supported in dataspaces, e.g., sequen-
tial (event logs). While the integration of sequential
event data [33, 34] and inconsistency detection [30,
29] have been investigated, searching and consistent
query answering over such heterogeneous event se-
quences, especially ranking together with other data
types, remain open.

Acknowledgement
This work is supported in part by the Tsinghua
University Initiative Scientific Research Program;
China NSFC under Grants 61572272 and 61202008.

8. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki.

Consistent query answers in inconsistent
databases. In Proceedings of the Eighteenth
ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database
Systems, May 31 - June 2, 1999, Philadelphia,
Pennsylvania, USA, pages 68–79, 1999.

[2] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional
dependencies for data cleaning. In Proceedings
of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara
Hotel, Istanbul, Turkey, April 15-20, 2007,
pages 746–755, 2007.

[3] U. S. Chakravarthy, J. Grant, and J. Minker.
Logic-based approach to semantic query

42 SIGMOD Record, June 2016 (Vol. 42, No. 2)

Table 4: Summary of the surveyed works

Query Case Method Detail

Simple Search index [5] Extend inverted lists for indexing dataspaces. Cost of list
merging could be heavy in query processing

compression [22] Compress inverted lists to reduce the cost of retrieving and
merging list

materialization [26] Materialize inverted lists to reduce the I/O and merging cost.
May introduce large additional space cost

Association association predicate [5] Consider queries specifying association requirements of ob-
jects by keywords or predicates.

association trail [19] Consider queries with specific groups of associations, specified
by association trails.

path expression [4] Consider relationships expressed in paths

Heterogeneity hierarchy [5] Handle the situation that an attribute corresponds to multiple
descendants in hierarchies

synonym [5, 26] Consider attribute synonyms

trail [20] Expand query by tail associations

probabilistic [21] Enhance semantic mappings by modeling uncertainty

Similarity dependency [25] Return similar objects

optimization. ACM Trans. Database Syst.,
15(2):162–207, 1990.

[4] J. Dittrich and M. A. V. Salles. idm: A
unified and versatile data model for personal
dataspace management. In Proceedings of the
32nd International Conference on Very Large
Data Bases, Seoul, Korea, September 12-15,
2006, pages 367–378, 2006.

[5] X. Dong and A. Y. Halevy. Indexing
dataspaces. In Proceedings of the ACM
SIGMOD International Conference on
Management of Data, Beijing, China, June
12-14, 2007, pages 43–54, 2007.

[6] X. L. Dong, A. Y. Halevy, and C. Yu. Data
integration with uncertainty. In Proceedings of
the 33rd International Conference on Very
Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages
687–698, 2007.

[7] X. L. Dong, A. Y. Halevy, and C. Yu. Data
integration with uncertainty. VLDB J.,
18(2):469–500, 2009.

[8] M. J. Franklin, A. Y. Halevy, and D. Maier.
From databases to dataspaces: a new
abstraction for information management.
SIGMOD Record, 34(4):27–33, 2005.

[9] G. Gou, M. Kormilitsin, and R. Chirkova.
Query evaluation using overlapping views:
completeness and e�ciency. In Proceedings of

the ACM SIGMOD International Conference
on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006, pages 37–48, 2006.

[10] A. Y. Halevy, M. J. Franklin, and D. Maier.
Principles of dataspace systems. In
Proceedings of the Twenty-Fifth ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 26-28,
2006, Chicago, Illinois, USA, pages 1–9, 2006.

[11] B. Howe, D. Maier, N. Rayner, and J. Rucker.
Quarrying dataspaces: Schemaless profiling of
unfamiliar information sources. In Proceedings
of the 24th International Conference on Data
Engineering Workshops, ICDE 2008, April
7-12, 2008, Cancún, México, pages 270–277,
2008.

[12] S. R. Je↵ery, M. J. Franklin, and A. Y.
Halevy. Pay-as-you-go user feedback for
dataspace systems. In Proceedings of the ACM
SIGMOD International Conference on
Management of Data, SIGMOD 2008,
Vancouver, BC, Canada, June 10-12, 2008,
pages 847–860, 2008.

[13] A. Y. Levy and Y. Sagiv. Semantic query
optimization in datalog programs. In
Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 22-25,
1995, San Jose, California, USA, pages

SIGMOD Record, June 2016 (Vol. 45, No. 2) 43

163–173, 1995.
[14] Y. Li and X. Meng. Supporting context-based

query in personal dataspace. In Proceedings of
the 18th ACM Conference on Information and
Knowledge Management, CIKM 2009, Hong
Kong, China, November 2-6, 2009, pages
1437–1440, 2009.

[15] X. Lian, L. Chen, and S. Song. Consistent
query answers in inconsistent probabilistic
databases. In Proceedings of the ACM
SIGMOD International Conference on
Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6-10, 2010,
pages 303–314, 2010.

[16] J. Liu, X. Dong, and A. Y. Halevy. Answering
structured queries on unstructured data. In
Ninth International Workshop on the Web
and Databases, WebDB 2006, Chicago,
Illinois, USA, June 30, 2006, 2006.

[17] S. Ma, W. Fan, and L. Bravo. Extending
inclusion dependencies with conditions.
Theor. Comput. Sci., 515:64–95, 2014.

[18] E. Rahm and P. A. Bernstein. A survey of
approaches to automatic schema matching.
VLDB J., 10(4):334–350, 2001.

[19] M. A. V. Salles, J. Dittrich, and L. Blunschi.
Intensional associations in dataspaces. In
Proceedings of the 26th International
Conference on Data Engineering, ICDE 2010,
March 1-6, 2010, Long Beach, California,
USA, pages 984–987, 2010.

[20] M. A. V. Salles, J. Dittrich, S. K.
Karakashian, O. R. Girard, and L. Blunschi.
itrails: Pay-as-you-go information integration
in dataspaces. In Proceedings of the 33rd
International Conference on Very Large Data
Bases, University of Vienna, Austria,
September 23-27, 2007, pages 663–674, 2007.

[21] A. D. Sarma, X. L. Dong, and A. Y. Halevy.
Uncertainty in data integration and dataspace
support platforms. In Z. Bellahsene,
A. Bonifati, and E. Rahm, editors, Schema
Matching and Mapping, Data-Centric Systems
and Applications, pages 75–108. Springer,
2011.

[22] S. Song and L. Chen. Indexing dataspaces
with partitions. World Wide Web,
16(2):141–170, 2013.

[23] S. Song, L. Chen, and H. Cheng. On concise
set of relative candidate keys. PVLDB,
7(12):1179–1190, 2014.

[24] S. Song, L. Chen, and P. S. Yu. On data
dependencies in dataspaces. In Proceedings of

the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, pages 470–481, 2011.

[25] S. Song, L. Chen, and P. S. Yu. Comparable
dependencies over heterogeneous data. VLDB
J., 22(2):253–274, 2013.

[26] S. Song, L. Chen, and M. Yuan.
Materialization and decomposition of
dataspaces for e�cient search. IEEE Trans.
Knowl. Data Eng., 23(12):1872–1887, 2011.

[27] A. Trotman and B. Sigurbjörnsson. Narrowed
extended xpath I (NEXI). In Advances in
XML Information Retrieval, Third
International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004,
Dagstuhl Castle, Germany, December 6-8,
2004, Revised Selected Papers, pages 16–40,
2004.

[28] P. Valduriez. Join indices. ACM Trans.
Database Syst., 12(2):218–246, 1987.

[29] J. Wang, S. Song, X. Lin, X. Zhu, and J. Pei.
Cleaning structured event logs: A graph
repair approach. In 31st IEEE International
Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, April 13-17, 2015, pages
30–41, 2015.

[30] J. Wang, S. Song, X. Zhu, and X. Lin.
E�cient recovery of missing events. PVLDB,
6(10):841–852, 2013.

[31] W. Zheng, L. Zou, X. Lian, J. X. Yu, S. Song,
and D. Zhao. How to build templates for RDF
question/answering: An uncertain graph
similarity join approach. In Proceedings of the
2015 ACM SIGMOD International
Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 -
June 4, 2015, pages 1809–1824, 2015.

[32] M. Zhong, M. Liu, and Y. He. 3sepias: A
semi-structured search engine for personal
information in dataspace system. Inf. Sci.,
218:31–50, 2013.

[33] X. Zhu, S. Song, X. Lian, J. Wang, and
L. Zou. Matching heterogeneous event data.
In International Conference on Management
of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014, pages 1211–1222, 2014.

[34] X. Zhu, S. Song, J. Wang, P. S. Yu, and
J. Sun. Matching heterogeneous events with
patterns. In IEEE 30th International
Conference on Data Engineering, Chicago,
ICDE 2014, IL, USA, March 31 - April 4,
2014, pages 376–387, 2014.

44 SIGMOD Record, June 2016 (Vol. 42, No. 2)

