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ABSTRACT
For big data, data quality problem is more serious. Big
data cleaning system requires scalability and the ability
of handling mixed errors. Motivated by this, we develop
Cleanix, a prototype system for cleaning relational Big
Data. Cleanix takes data integrated from multiple data
sources and cleans them on a shared-nothing machine
cluster. The backend system is built on-top-of an exten-
sible and flexible data-parallel substrate— the Hyrack-
s framework. Cleanix supports various data cleaning
tasks such as abnormal value detection and correction,
incomplete data filling, de-duplication, and conflict res-
olution. In this paper, we show the organization, data
cleaning algorithms as well as the design of Cleanix.

1. INTRODUCTION
Recent popular Big Data analytics applications are

motivating both industry and academia to design and
implement highly scalable data management tools.
However, the value of data not only depends on the
quantity but also relies on the quality. On one side, due
to the high volume and variation, those Big Data ap-
plications suffer more data quality issues than tradition-
al applications. On the other side, efficiently cleaning
a huge amount of data in a shared-nothing architecture
has not been well studied yet. Therefore, to improve the
data quality is an important yet challenging task.

Many data cleaning tools [1] have been proposed
to help users to detect and repair errors in data. Al-
though these systems could clean data effectively for
many datasets, they are not suitable for cleaning Big Da-
ta due to the following three reasons. First, none of the
existing systems can scale out to thousands of machines
in a shared-nothing manner. Second, various error types
such as incompleteness, inconsistency, duplication, and
value conflicting may co-exist in the Big Data while
most existing systems are ad-hoc. As examples, Cer-
Fix [2] focuses on inconsistency while AJAX [3] is for
de-duplication and conflict resolution. The last but not
least, existing systems often requires users to have spe-

cific data cleaning expertise. For example, CerFix [2]
requires users to understand the concept of condition-
al functional dependency (CFD), while AJAX [3] needs
users to express data cleaning tasks with a declarative
language. However, many real-world users do not have
a solid data cleaning background nor understand the se-
mantics of a specific data cleaning language.

In order to address the fundamental issues in existing
systems and support data cleaning at a large scale, we
design and implement a new system called Cleanix. The
key features of Cleanix are listed as follows.

• Scalability. Cleanix performs data quality reporting
tasks and data cleaning tasks in parallel on a shared-
nothing cluster. The backend system is built on-top-
of Hyracks [4], an extensible, flexible, scalable and
general-purpose data parallel execution engine, with
our user-defined data cleaning second-order operators
and first-order functions.

• Unification. Cleanix unifies various automated data re-
pairing tasks for errors by integrating them into a single
parallel dataflow. New cleaning functionalities for new-
ly discovered data quality issues could be easily added
to the Cleanix dataflow as either user-defined second-
order operators or first-order functions.

• Usability. Cleanix does not require users to be da-
ta cleaning experts. It provides a simple and friendly
graphical user interface for users to select rules with in-
tuitive meanings and high-level descriptions. Cleanix
also provides a bunch of visualization utilities for user-
s to better understand error statistics, easily locate the
errors and fix them.

The main goal of this demonstration is to present the
Cleanix system architecture and execution process by
performing a series of data integration and cleaning
tasks. We show how the data cleaning operators are used
to clean data integrated from multiple data sources.

2. RELATED WORK
Big data has been very popular among academical

and industrial fields. However, due to the features of
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four Vs, which means Volume, Velocity, Variety and
Value, we may face the problems of data quality easi-
ly and need to detect and solve the errors in data. The
detection of error means to find dirty items. According
to the difference among methods, there are three types
of methods.

• Entity identification The entity identification means to
find the different items representing the same thing in
the real world. By entity identification, we can detect
the phenomenon of duplication. There has already been
several methods for entity identification [5].

• Error detection according to rules To utilize rules
during the detection we can use variable kinds of rules
such as the functional dependencies [6], conditional
functional dependencies [7], and so on. [7] designs an
auto-detection algorithm based on the SQL language to
find the items going against the conditional functional
dependencies and extending inclusion dependencies.

• Error detection based on master data The main da-
ta is a high-quality data set to provide a synchronous
consistent view. For example, [8] gives a relatively
complete theory to describe the integrity of main data
and the complexity of the users’ queries.

The repairing for error means the modification or sup-
plement to the data with error to improve the quality.
According to different thoughts, the methods for repair-
ing can be divided into three parts.

• Repairing by rules Repairing by rules mainly means
to modify the data and make it satisfy the rules provid-
ed by managers. The [9] provides a repairing algo-
rithm GREEDY REPAIR. The algorithm is expended
from the above method and uses the conditional func-
tional dependencies for repairing. The [10] repairs the
inconsistent data by the graph theory.

• Truth Discovery To solve the conflict data during en-
tity resolution, we use truth discovery algorithm. The
[11] uses the iteration method to calculate the truth de-
gree of the source and the self-confidence degree of the
value. [12] considers dependency among data sources,
which is calculated from the self-confidence of the val-
ue.

• Machine learning Machine learning methods are
mainly used for repairing incomplete data. The meth-
ods based on machine learning include decision tree,
Bayesian network and Neural Network.

[13] is the demo plan of this paper. This paper intro-
duces the detail of design and techniques in Cleanix.

3. SYSTEM OVERVIEW

3.1 Data Cleaning Tasks
Cleanix aims to handle four types of data quality is-

sues in a unified way:

• Abnormal value detection and correcting is to find the
anomalies according to users’ options of rules and mod-
ify them to a near value that coincides with the rules.

• Incomplete data filling is to find the empty attributes in
the data and fill them with proper values.

• De-duplication is to merge and remove duplicated data.
• Conflict resolution is to find conflicting attributes in the

tuples referring to the same real-world entity and find
the true values for these attributes. For example, tuples
referring to the same person may have different values
in age, but only one value should be chosen.

We believe that these four data cleaning tasks cover most
data quality issues. Note that even though some da-
ta errors could not be processed directly such as non-
concurrency and inconsistency, one can take care of
them by dynamically deploying new first-order user-
defined functions into our system. For example, non-
concurrency can be processed as conflict resolutions a-
mong the data referring to the same real-world entity.

3.2 The Hyracks Execution Engine
We use Hyracks as backend to accomplish the above

tasks efficiently at large scales. Hyracks is a data-
parallel execution engine for Big Data computations on
shared-nothing commodity machine clusters. Compared
to MapReduce, Hyracks has following advantages:

• Extensibility. It allows users to add data processing
operators and connectors, and orchestrate them into
whatever DAGs. However, in the MapReduce world,
we need to cast the data cleaning semantics into a scan
(map)—group-by(reduce) framework.

• Flexibility. Hyracks supports a variety of materi-
alization policies for repartitioning connectors, while
MapReduce only has local file system blocking-
materialization policy and HDFS materialization poli-
cy. This allows Hyracks to be elastic to different cluster
configurations., e.g., behaving like a parallel database
style optimistic engine for small clusters (e.g., 200 ma-
chines) but a MapReduce style pessimistic engine for
large clusters (e.g., 2000 machines).

• Efficiency. The extensibility and flexibility together
lead to significant efficiency potentials., e.g., one can
implement the hybrid-hash style conflict resolution on
Hyracks but not on MapReduce.

Several cloud computing vendors are developing non-
MapReduce parallel SQL engines such as Impala 1 and
Stinger 2 to support fast Big Data analytics. However,
these systems are like “onions” [14]—one cannot direct-
ly use their internal Hyracks-like engines under the SQL
skin for data cleaning. However, the Hyracks software
1https://github.com/cloudera/impala
2http://hortonworks.com/blog/
100x-faster-hive/
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stack is like a layered “parfait” [14] and Cleanix is yet-
another parfait layer on-top-of the core Hyracks layer.

3.3 Cleanix Architecture
Cleanix provides web interfaces for users to input the

information of data sources, parameters and rule selec-
tions. Data from multiple data sources are preprocessed
and loaded into a distributed file system—HDFS3. Then
each slave machine reads part of data to start cleaning.
The data cleaning dataflow containing second-order op-
erators and connectors is executed on slaves according
to the user specified parameters and rules (e.g., first-
order functions). At end of dataflow, the cleaned data
are written to HDFS. Finally, cleaned data are extracted
from HDFS and loaded into desired target database.

4. THE SYSTEM INTERNALS
In this section, we discuss the details of the Cleanix

data cleaning tasks, pipeline, the algorithmic operators
and the profiling mechanism.

4.1 Integration of Data
Before cleaning data, we need to download data to

our system. We can support downloading from differ-
ent kinds of databases including MySQL and MSSQL.
While integrating items from different source databases,
there will be a problem of conflicts among primary keys.
To solve this, we add a new column as new primary key
and a new column to show source of an item.

4.2 Data Cleaning Algorithms
The four data cleaning tasks including abnormal val-

ue detection and correcting, incomplete data filling, de-
duplication and conflict resolution all have their own im-
plementation algorithms. These algorithms are devel-
oped for parallel platform. We will introduce solutions
to the four tasks respectively as following.

4.2.1 Abnormal Value Detection and Correcting
Before executing the part, users can select data type

for each attribute from types provided by Cleanix.
Meanwhile, they can set cleaning rules for attributes.
The rules include the detection rule for data type, legal
range and the correcting rule after detecting abnormal
data. According to the rules, we can detect and do sim-
ple filling in this cleaning part. For example, to the Nu-
meric(integer or float) Attribute: Detection Rule: Set the
maximum number and minimum number to detect ab-
normal value. Filling Rule: a. Simple Filling: Fill with
fixed number or date. b. Intelligent Filling: Accord-
ing to attributes provided by users, which are relevant to
the abnormal attribute, we find similar items. Using the
3http://en.wikipedia.org/wiki/Apache_
Hadoop

items’ attributes relevant to the abnormal value, we get
suitable result by choosing the biggest, smallest, most
frequent, least frequent, average number of them.

4.2.2 Data Imputation Algorithm
To fill incomplete data, the system needs to find items

similar to the incomplete items. For big data, we need
an efficient algorithm to obtain the similarity. There
are two common algorithms called Edit Distance and 2-
Gram Table. We choose the 2-Gram Table [15] and
give up the Edit Distance due to its high complexity
(O(n2)), working process not suitable for paralleliza-
tion(compare one string with all others) and drawback
for some common phenomenons such as reversal of
names. To build the 2-Gram table, we firstly build an
empty Hash Table with two columns called Key and
Number. Each item of Key Column is a String and each
item of the Number Column’s is an Integer Array. Then,
for all the items, we read strings and take each string’s
2-character substring as Hash’s key. If there has already
been such a key in the table, we add the number to the
end of corresponding array. Otherwise, we add a new
item into the table with the key and number of the string.

With the 2-Gram table, the similarity between strings
can be calculated by the following process: Firstly,
build another Hash table. There are two columns in the
table called Key and Amount. Each item of Key Colum-
n is an integer to show the number of a string. Each item
of Amount Column an integer to record the number of
the same substrings. Then, traverse all 2-character sub-
strings. Regard substring s as Key and inquire it in the
2-Gram table we have got. Thirdly, if there is such a
Key in 2-Gram table, we regard the items in the corre-
sponding array as key and insert them into Hash table.
We initialize the corresponding amount as 1. If there
is already such key, we add the corresponding amount
with 1. Finally, after traverse to strings, we traverse the
Hash table we build this time. Key represents string and
Amount represents the number of the same substrings.
So the bigger Amount represents more similar string.

After getting the similarities, if it is larger than a
threshold, we regard the item similar to the incomplete
item. Put all similar items into an ArrayList. According
to filling rule set by users, we complete the imputation.

4.2.3 De-duplication Algorithm
De-duplication is also called entity identification. We

divide this duty into two parts. One part is the Grouping
Algorithm and the other part is the Merging In A Group.

Grouping Algorithm The kernel idea is to group the
whole data. We put the similar items into the same
group. Meanwhile, we promise different items are in
different groups. So the First Problem is to separate the
items which are similar but represent different things.
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The Second Problem is to put the items, which are not
similar but represent the same thing, together. For the
First Problem, we firstly use the Grouping Algorithm to
put them together. For the Second Problem, we set a for-
mula to calculate the similarity. We add other attributes
and let users to set the weight. Thus, we can ensure
the items, which are not similar but represent the same
thing, in one group. In our algorithm, users can set many
attributes as relevant attributes in De-duplication. By
setting weight for each relevant attribute and a thresh-
old, if the similarity calculated is larger than the thresh-
old, we think the two items are the same and put them
in the same group.

Merging In One Group After grouping, master node
will get an array whose elements represent a set for sim-
ilar items.Then we do the Merging In One Group. First-
ly, Master Node traverses the sets in the array generated
from the Grouping Algorithm. Then, Master Node use
the greedy method to send each set to different Slave
Node and try to make each node deal the same amoun-
t of data. Finally, each Slave Node uses the effective
clustering approach introduced in [16]. We can know
the complexity of the Merging In One Group algorithm
is O(n). The main theory is that if there are two items’
similar substrings are more than a threshold in a group,
we will regard them as duplicate items.

4.2.4 Conflict Resolution Algorithm
Conflict Resolution is to solve the conflicts while

merging many duplicate items to one item. During the
process, some attribute may be different.The system will
automatically choose the strings which appear most fre-
quently. Meanwhile, the users can also set their own
rules to solve the problem. For example, to date at-
tribute, users can choose the earliest, latest, most fre-
quent and least frequent date to fill in. The working pro-
cess of the Conflict Resolution is as following: Firstly,
Master Node sends the users’ rules to each slave node.
Then, Slave Nodes traverse the repeated items set. If
there is any conflict among the items, we solve the con-
flicts by the rules set by users. If there is no user rule,
we can automatically choose the most frequent one. Fi-
nally, each Slave Node sends back the items to Master
Node and Master Node collects the items from Slave N-
odes and get the final result.

4.2.5 Share Information and Output Result
Share information among cluster In the working pro-

cess for parallel cluster, we always need to share infor-
mation. The easiest method shown in Figure 1 is to let
all slave nodes send their own information to the master
node. Then, the master node sends the integrated infor-
mation back. This method is easy, but has some prob-
lems. For example, when many slave nodes send data to

Master

Slave1 Slave 3Slave 2

n
n

n

Master

Slave 1 Slave 3Slave 2

n
n

n
3

33

Figure 1: Primary Method
to Send Data

NC 1 NC 2 NC 3
n1 n2

n3

NC 1 NC 2 NC 3
n3 n1

n2

Figure 2: Improved Method
to Send Data

master node in the meantime, there may be blocking for
the network and the overlap of memory in master node.
Therefore, we design an annular transmission algorithm
to solve the above problem as the Figure 2. We suppose
there are m nodes called NC1, NC2....NCm. Suppose the
data they store is n1,....nm. We only need to circle for m-
1 times to finish sharing information. In each circling,
each Slave Node only needs to send his own data.

Output Result During the Conflict Resolution, we
have finished the data collection. But when we collect
items from different sources, we will face a problem of
conflict to the Key. So we build a new ID column as a
new key to solve the conflict. Meanwhile, we will add
the column describing the data source.

4.3 Data Processing Ordering
To make the discussion brief, we use A, I, D and C

to represent the modules of the process of abnormal val-
ue detection and correcting, incomplete data filling, de-
duplication and conflict resolution, respectively. The or-
der of four tasks of data cleaning in Cleanix is deter-
mined with the consideration of effectiveness and effi-
ciency. These four modules could be divided into two
groups. Module A and I are in the same group (Group
1) sharing the same detection phase since the detection
of abnormal values and empty attributes can be accom-
plished in a single scan of the data. Module D and C
are in the same group (Group 2) since the identifica-
tions of entities with the entity resolution operator are
required for both de-duplication and conflict resolution.
De-duplication merges tuples with the same entity iden-
tification while conflict resolution is to find true values
for conflicting attributes for the different tuples referring
the same entity identification. The reason why Group
1 is executed before Group 2 is that the repairation of
abnormal values and empty attributed will increase the
accuracy of entity resolution. In Group 1, Module A is
before I since abnormal values interfere the incomplete
attribute filing and lead to incorrect fillings. In Group 2,
Module D is before C since only when different tuples
referring to the same entity are found and grouped, the
true values of conflicting attributes could be found.

4.4 Dataflow
The dataflow graph is shown in Figure 3. The

dataflow has 8 algorithmic operators and 4 stages, where
the computation of each stage is “local” to each single
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Figure 3: The Cleanix Dataflow Graph

machine and the data exchange (e.g., broadcast or hash
repartitioning) happens at the stage boundaries. In fol-
lowing part, we illustrate the algorithmic operators and
the rules for each stage in topological order in Figure 3.
Stage 1.This is performed on each slave machine.

• DataRead. It scans incoming file splits from the HDF-
S. The data are parsed and translated into the Cleanix
internal format.

• Correct. This is blocking operator—data are checked
according to the rules selected by users to detect the ab-
normal values and incomplete tuples. When an abnor-
mal value is detected, it is corrected according to cor-
responding revision rules (first-order functions). When
an incomplete tuple is encountered, it is identified for
further processing.

• BuildNullGram. This operator builds an inverted list for
all incomplete tuples for the imputation based on similar
tuples. The inverted list is called gram table. It is a hash
table in which the k-gram is the key and the id set of
tuples containing such a k-gram is the value.

Stage 2. The incoming broadcast connector to this stage
broadcasts the gram tables such that all slaves share the
same global gram table.

• Fill. For each tuple with incomplete attribute, similar
tuples are found according to the gram table. The in-
complete attribute is filled with the aggregated value of
the corresponding attribute in similar tuples according
to the imputation rules (first-order functions) selected
by users such as average, max or the most frequent.

• BuildGram. A local gram table is built for the local data
for the attributes potentially containing duplications or
conflicts, which are chosen by users. Since a local gram
table has been built with BuildNullGram operator, only
the newly filled values of corresponding attributes are
scanned in this step.

Stage 3.The local gram tables are broadcast to make al-
l slaves share the same global gram table. Note: on-
ly updated values in local gram tables are broadcast in
Stage3.

• ComputeSimilarity. The similarities between each local
tuple and other tuples are computed according to the
global gram table. When the similarity between two
tuples is larger than a threshold, they are added to the
same group and form many groups finally.

Stage 4.Groups are partitioned according to hashing val-
ue of bloom filter of the union of gram sets in group.

• De-duplication. A weighted graph G is built to describe
the similarity between tuples in each group. Similar
vertices are merged iteratively in G until no pairs of
vertices can be merged [16]. This step is executed it-
eratively until the ratio between the number of shared
connected vertices and the number of the adjacent ver-
tices of each vertex is smaller than a threshold. The
tuples corresponding to all merged vertices are consid-
ered as duplications.

• Conflict Resolution. Tuples corresponding to the
merged vertices are merged. During merging, when
an attribute with conflicting values is detected, it is re-
solved with voting according to selected rules chosen
by users. Options (first-order functions) include max,
min, average and the most frequent.

4.5 Data Cleaning Result
In the final part of the demonstration, we illustrate

the exploration of data cleaning results and interaction
of user and the system. More specifically, Cleanix will
compare the repaired data with the original ones. The
original and modified data are distinguished in differen-
t colors. When the user selects a modified value, the
modifications are shown. Additionally, the user could
modify the data. The modifications are merged when
the cleaned data is transmitted from HDFS to the target
database.

Besides, users can also check the data quality in high
level. We can see how the violations are distributed a-
mong the data by different histograms and statistical cat-
egorization for both attribute and tuple level.

5. INTERFACE
The system allows users to add several machines to

clean data from different data sources. You can input the
name of new Slave Nodes in the NodeController Name
as shown in Figure 4. And if we are cleaning data s-
tored in different machine, we can input the IP address
of the machine, Port, Username and Password to get ac-
cess to the data at the bottom of the same page shown in
Figure 4. After setting the database connection informa-
tion, we can set the cleaning rules to find abnormal value
and do filling as Figure 5 shows. Users can also set the
weight and threshold to do de-duplication like Figure 6.
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After setting the basic information for data cleaning, we
can click the button See the status of the working sys-
tem and you need to start it to work here and open the
page like Figure 7. We can start working there and find
the status of system. When system finishes cleaning,
we can check the data cleaning result by inputting the
range of item’s ID. Cleaning results include four type-
s of dirty items including abnormal value, duplication,
incomplete value and conflict. Part of the four types of
cleaning results is shown in Figure 8.

Figure 4: Add New Slave Nodes and Data Source

Figure 5: Set Data Cleaning Rules

Figure 6: De-duplication

Figure 7: See the Working Status of the System
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Figure 8: Part of Cleaning result : Incomplete Value and
Conflict
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