
Data Quality: From Theory to Practice

Wenfei Fan
School of Informatics, University of Edinburgh, and RCBD, Beihang University

wenfei@inf.ed.ac.uk

ABSTRACT
Data quantity and data quality, like two sides of a coin,
are equally important to data management. This paper
provides an overview of recent advances in the study of
data quality, from theory to practice. We also address
challenges introduced by big data to data quality man-
agement.

1. INTRODUCTION
When we talk about big data, we typically empha-

size the quantity (volume) of the data. We often focus
on techniques that allow us to efficiently store, manage
and query the data. For example, there has been a host
of work on developing scalable algorithms that, given a
queryQ and a datasetD, compute query answersQ(D)
whenD is big.

But can we trust Q(D) as correct query answers?

EXAMPLE 1. In table D0 of Fig. 1, each tuple spec-
ifies the name (FN, LN), phone (country code CC, area
code AC, landline, mobile), address (street, city and
zip), and marital status of an employee. Consider the
following queries.
(1) Query Q1 is to find distinct employees in Edinburgh
whose first name is Mary. A textbook answer to Q1 in
D0 is that Q1(D0) consists of tuples t2 and t3.
However, there are at least three reasons that dis-

credit our trust in Q1(D0). (a) In tuple t1, attribute
t1[AC] is 131, which is the area code of Edinburgh, not
of London. Hence t1 is “inconsistent”, and t1[city] may
actually be Edinburgh. (b) Tuples t2 and t3 may re-
fer to the same person, i.e., they may not be “distinct”.
(c) Relation D0 may be incomplete: there are possibly
employees in Edinburgh whose records are not included
inD0. In light of these, we do not knowwhetherQ1(D0)
gives us all correct answers.
(2) Suppose that t1, t2 and t3 refer to the same Mary,
and that they were once correct records (except the ad-
dress of t1). Query Q2 is to find her current last name.
It is not clear whether the answer is Smith or Luth. In-

deed, some attributes of t1, t2 and t3 have become obso-
lete and thus inaccurate. 2

The example shows that if the quality of the data is
bad, we cannot find correct query answers no matter
how scalable and efficient our query evaluation algo-
rithms are.
Unfortunately, real-life data is often dirty: inconsis-

tent, inaccurate, incomplete, obsolete and duplicated.
Indeed, “more than 25% of critical data in the world’s
top companies is flawed” [53], and “pieces of infor-
mation perceived as being needed for clinical decisions
were missing from 13.6% to 81% of the time” [76]. It
is also estimated that “2% of records in a customer file
become obsolete in one month” [31] and hence, in a cus-
tomer database, 50% of its records may be obsolete and
inaccurate within two years.
Dirty data is costly. Statistics shows that “bad data or

poor data quality costs US businesses $600 billion annu-
ally” [31], “poor data can cost businesses 20%-35% of
their operating revenue” [92], and that “poor data across
businesses and the government costs the US economy
$3.1 trillion a year” [92]. Worse still, when it comes to
big data, the scale of the data quality problem is histori-
cally unprecedented.
These suggest that quantity and quality are equally

important to big data, i.e., big data = data quantity +
data quality.
This paper aims to provide an overview of recent ad-

vances in the study of data quality, from fundamental
research (Section 2) to practical techniques (Section 3).
It also identifies challenges introduced by big data to
data quality management (Section 4). Due to the space
constraint, this is by no means a comprehensive survey.
We opt for breadth rather than depth in the presentation.
Nonetheless, we hope that the paper will incite interest
in the study of data quality management for big data.
We refer the interested reader to recent surveys on the
subject [7, 11, 37, 52, 62, 78].

SIGMOD Record, September 2015 (Vol. 44, No. 3) 7

FN LN CC AC landline mobile street city zip status
t1: Mary Smith 44 131 3855662 7966899 5 Crichton London W1B 1JL single
t2: Mary Luth 44 131 null null 10 King’s Road Edinburgh EH4 8LE married
t3: Mary Luth 44 131 6513877 7966899 8 Mayfield Edinburgh EH4 8LE married
t4: Bob Webber 01 908 6512845 3393756 PO Box 212 Murray Hill NJ 07974 single
t5: Robert Webber 01 908 6512845 null 9 Elm St. Murray Hill NJ 07974 single

Figure 1: An employee datasetD0

2. FOUNDATIONS OF DATA QUALITY
Central to data quality are data consistency, data

deduplication, information completeness, data currency
and data accuracy. The study of data quality has been
mostly focusing on data consistency and deduplication
in relational data. Nonetheless, each and every of the
five central issues introduces fundamental problems. In
this section we survey fundamental research on these is-
sues. We highlight dependency-based approaches since
they may yield a uniform logical framework to handle
these issues.

2.1 Data Consistency
Data consistency refers to the validity and integrity

of data representing real-world entities. It aims to detect
errors (inconsistencies and conflicts) in the data, typi-
cally identified as violations of data dependencies (in-
tegrity constraints). It is also to help us repair the data
by fixing the errors.
There are at least two questions associated with data

consistency. What data dependencies should we use to
detect errors? What repair model do we adopt to fix the
errors?

Data dependencies. Several classes of data dependen-
cies have been studied as data quality rules, including

• functional dependencies (FDs) and inclusion de-
pendencies (INDs) [14, 23] found in textbooks
(e.g., [1]);

• conditional functional dependencies (CFDs) [38]
and conditional inclusion dependencies
(CINDs) [15], which extend FDs and INDs,
respectively, with a pattern tableau of semanti-
cally related constants;

• denial constraints (DCs) [8, 23], which are uni-
versally quantified first-order logic (FO) sentences
of the form 8x̄¬(�(x̄)^�(x̄)), where �(x̄) is a
non-empty conjunction of relation atoms over x̄,
and �(x̄) is a conjunction of built-in predicates
=, 6=,<,>,,�;

• equality-generating dependencies [2] (EGDs [9]),
a special case of DCs when �(x̄) is of the form
xi =xj ; our familiar FDs are a special case of
EGDs;

• tuple-generating dependencies [2] (TGDs [9]),
FO sentences of the form 8x̄(�(x̄)!9ȳ((x̄, ȳ)),
where �(x̄) and (x̄, ȳ) are conjunctions of rela-
tion atoms over x̄ and x̄[ȳ, respectively, such that
each variable of x̄ occurs in at least one relation
atom of �(x̄);

• full TGDs [2], special case of TGDs without ex-
istential quantifiers, i.e., of the form 8x̄(�(x̄)!
 (x̄)); and

• LAV TGDs [2], a special case of TGDs in which
�(x̄) is a single relation atom; LAV TGDs sub-
sume INDs.

EXAMPLE 2. We may use the following CFDs as
data quality rules on the employee relation of Figure 1:

'1 = ((CC,zip!street), TP1),
'2 = ((CC,AC!city), TP2),

where CC,zip!street and CC,AC!city are FDs em-
bedded in the CFDs, and TP1 and TP2 are pattern
tableaux:

TP1: CC zip street
44

TP2: CC AC city

44 131 Edinburgh
01 908 Murray Hill

CFD '1 states that in the UK (when CC = 44), zip code
uniquely determines street. In other words, CC,zip!
street is an FD that is enforced only on tuples that match
the pattern CC = 44, e.g., on t1–t3 in D0, but not on
t4–t5. Taking ' as a data quality rule, we find that t2
and t3 violate '1 and hence, are inconsistent: they have
the same zip but differ in street. Such errors cannot be
caught by conventional FDs.

CFD '2 says that country code CC and area code AC
uniquely determine city. Moreover, in the UK (i.e., CC
= 44), when AC is 131, city must be Edinburgh; and
in the US (CC = 01), if AC is 908, then city is Mur-
ray Hill. It catches t1 as a violation, i.e., a single tu-
ple may violate a CFD. Note that '2 subsumes conven-
tional FD CC,AC!city, as indicated by the first tuple
in TP2, in which ‘ ’ is a “wildcard” that matches any
value (see [38] for details). 2

To decide what class of dependencies we should use
as data quality rules, we want to strike a balance be-
tween its “expressive power”, i.e., whether it is capable

8 SIGMOD Record, September 2015 (Vol. 44, No. 3)

Dependencies Implication
FDs O(n) (cf. [1])
INDs PSPACE-complete (cf. [1])

FDs + INDs undecidable (cf. [1])
CFDs coNP-complete [38]
CINDs EXPTIME-complete [15]

CFDs + CINDs undecidable [15]
DCs coNP-complete [8]

TGDs undecidable (cf. [1])

Table 1: Complexity of implication analysis

of catching errors commonly found in practice, and the
complexity for reasoning about its dependencies and for
repairing data.
There are two classical problems for reasoning about

dependencies: the satisfiability and implication prob-
lems.

Satisfiability. For a class C of dependencies and '2C,
we use D |=' to denote that a database D satisfies ',
depending on how C is defined. For a set ⌃✓C, we use
D |=⌃ to denote that D satisfies all dependencies in ⌃.
The satisfiability problem for C is to decide, given a fi-
nite set⌃✓C defined on a relational schemaR, whether
there exists a nonempty finite instanceD ofR such that
D |=⌃. That is, whether the data quality rules in ⌃ are
consistent themselves.
We can specify arbitrary FDs without worrying about

their satisfiability. Indeed, every set of EGDs (or TGDs)
can be satisfied by a single-tuple relation [8]. How-
ever, a set of DCs or CFDs may not be satisfiable by
a nonempty database. While the satisfiability problem
for DCs has not been settled, it is known that it is NP-
complete for CFDs [38], owing to the constant patterns
in CFDs. That is, the expressive power of CFDs and
DCs come at a price of a higher complexity.

Implication. Consider a finite set ⌃✓C of dependen-
cies and another '2C, both defined on instances of a
relational schema R. We say that ⌃ implies ', de-
noted by ⌃ |=', if for all instances D of R, D |=' as
long as D |=⌃. The implication problem for C is to de-
cide, given ⌃✓C and '2C over a relational schemaR,
whether ⌃ |='. The implication analysis helps us re-
move redundant data quality rules and hence, speed up
error detection and data repairing processes.
Table 1 summarizes known complexity of the impli-

cation analysis of data dependencies used as data quality
rules.

Data repairing. There are two approaches to obtaining
consistent information from an inconsistent database,
both proposed by [6]: data repairing is to find another
database that is consistent and minimally differs from
the original database; and consistent query answering is

to find an answer to a given query in every repair of the
original database. Both approaches are based on the no-
tion of repairs. We focus on data repairing in this paper,
and refer the interested reader to a comprehensive sur-
vey [11] and recent work [12, 67, 86, 87] on consistent
query answering.

Repair models. Assume a function cost(D,Dr) that
measures the difference between instances D and Dr

of a relational schema R, such that the smaller it is,
the closer Dr is to D. Given a set ⌃ of dependencies
and an instance D of R, a repair of D relative to ⌃
and cost(,) is an instance Dr of R such that Dr |=⌃
and cost(D,Dr) is minimum among all instances of R
that satisfy ⌃. Several repair models have been studied,
based on how cost(D,Dr) is defined:

• S-repair [23]: cost(D,Dr) = |D\Dr|, where
Dr✓D; assuming that the information in D is in-
consistent but complete, this model allows tuple
deletions only;

• C-repair [6]: cost(D,Dr) = |D�Dr|, where D�
Dr is defined as (D\Dr)[(Dr\D); assuming
that D is neither consistent nor complete, this
model allows both tuple deletions and tuple inser-
tions;

• CC-repair [2]: a C-repair such that |D�Dr| is
strictly smaller than |D�D0

r| for all D0
r that sat-

isfies ⌃; and
• U-repair [91, 14]: cost(D,Dr) is a numerical ag-
gregation function defined in terms of distances
and accuracy of attribute values inD andDr; this
model supports attribute value modifications.

For example, the repair model of [14] assumes (a) a
weight w(t,A) associated with each attribute A of each
tuple t in D, and (b) a distance function dis(v,v0) for
values v and v0 in the same domain. Intuitively, w(t,A)
indicates the confidence in the accuracy of t[A], and
dis(v,v0) measures how close v0 is to v. The cost of
changing the value of an attribute t[A] from v to v0 is
defined as: cost(v,v0)=w(t,A)·dis(v,v0). That is, the
more accurate the original t[A] value v is and the more
distant the new value v0 is from v, the higher the cost
of the change is. The cost of changing a tuple t to t0

is the sum of cost(t[A], t0[A]) for A ranging over all at-
tributes in t in which the value of t[A] is modified. The
cost of changing D to Dr, denoted by cost(D,Dr), is
the sum of the costs of modifying tuples in D. In prac-
tice, repairing is typically carried out via U -repair (see
Section 3).

The repair checking problem. Consider a class C of de-
pendencies and a repair model T with which function
costT (,) is associated. The repair checking problem for

SIGMOD Record, September 2015 (Vol. 44, No. 3) 9

Dependencies Repair model Repair checking
full TGDs S-repair PTIME [85]

one FD + one IND S-repair coNP-complete [23]
DCs S-repair LOGSPACE (cf. [2])

WA LAV TGDs + EGDs S-repair LOGSPACE [2]
full TGDs + EGDs S-repair PTIME-complete [2]
WA TGDs + EGDs S-repair coNP-complete [2]

DCs C-repair coNP-complete [73]
full TGDs + EGDs C-repair coNP-complete [2]
WA TGDs + EGDs C-repair coNP-complete [2]

DCs CC-repair coNP-complete [2]
full TGDs + EGDs CC-repair coNP-complete [2]
WA TGDs + EGDs CC-repair coNP-complete [2]

fixed FDs U -repair coNP-complete [14]
fixed CINDs U -repair coNP-complete [14]

Table 2: Complexity of repair checking

(C,T) is to decide, given a finite set ⌃✓C of depen-
dencies defined over a relational schemaR, and two in-
stances D and Dr of R, whether Dr is a repair of D
relative to ⌃ and costT (,)?
The repair checking problem has been studied for var-

ious dependencies and repair models; some of the com-
plexity bounds are presented in Table 2. Here a set of
TGDs is said to be weakly acyclic (WA) if its depen-
dency graph does not have a cycle going through a spe-
cial edge that indicates an existentially quantified vari-
able in ⌃ (see [2] for details).
Table 2 tells us that data repairing is rather expen-

sive, especially for U -repair when attribute values are
allowed to be updated: following [14], one can show
that its data complexity is already intractable when only
FDs or INDs are used.

2.2 Data Deduplication
Data deduplication is the problem of identifying tu-

ples from one or more (possibly unreliable) relations
that refer to the same real-world entity. It is also
known as record matching, record linkage, entity res-
olution, instance identification, duplicate identification,
merge-purge, database hardening, name matching, co-
reference resolution, identity uncertainty, and object
identification. It is a longstanding issue that has been
studied for decades [49], and is perhaps the most exten-
sively studied data quality problem.
The need for data deduplication is evident in, e.g.,

data quality management, data integration and fraud de-
tection. It is particularly important to big data, which
is often characterized by a large number of (heteroge-
neous) data sources. To make practical use of the data,
it is often necessary to accurately identify tuples from
different sources that refer to the same entity, so that we
can fuse the data and enhance the information about the
entity. This is nontrivial: data from various sources may

be dirty, and moreover, even when the data sources are
seemingly reliable, inconsistencies and conflicts often
emerge when we integrate the data [14].
A variety of approaches have been proposed for

data deduplication: probabilistic (e.g., [49, 65, 95]),
learning-based [27, 82], distance-based [60], and rule-
based [3, 44, 61] (see [33, 62, 78] for surveys). In this
paper we focus on rule-based collective and collabora-
tive deduplication.

Data deduplication. To simplify the discussion, con-
sider a single relation schema R. This does not
lose generality since for any relational schema R=
(R1, . . . ,Rn), one can construct a single relation schema
R and a linear bijective function f() from instances ofR
to instances of R, without loss of information. Consider
a set E of entity types, each specified by e[X], whereX
is a set of attributes of R.
Given an instanceD of R and a set E of entity types,

data deduplication is to determine, for all tuples t, t0 in
D, and for each entity type e[X], whether t[X] and t0[X]
should be identified, i.e., they refer to the same entity of
type e. Following [13], we call t[X] and t0[X] refer-
ences to e entities.

EXAMPLE 3. On the employee relation of Figure 1,
we may consider two entity types: address specified
by (CC,street,city,zip), and person as the list of all
attributes of employee. Given employee tuples t and
t0, deduplication is to decide whether t[address] and
t0[address] refer to the same address, and whether t and
t0 are the same person. 2

As observed in [13], references to different entities
may co-occur, and entities for co-occurring references
should be determined jointly. For instance, papers and
authors co-occur; identifying two authors helps identify
their papers, and vice versa. This is referred to as col-
lective entity resolution (deduplication) [13]. A graph-
based method is proposed in [13] to propagate similar-
ity among references, for collective deduplication. A
datalog-like language is introduced in [5], with recur-
sive rules for collective deduplication.

Matching rules. Rules were first studied in [3] for
deduplication. Extending [3], a class of matching de-
pendencies is defined in [44] in terms of similarity pred-
icates and a matching operator ⌦, based on a dynamic
semantics [34].

EXAMPLE 4. Matching dependencies on the em-
ployee relation of Figure 1 include the following:

 1 = 8t, t0(t[CC,AC, landline]= t0[CC,AC, landline]
! t[address]⌦t0[address]),

10 SIGMOD Record, September 2015 (Vol. 44, No. 3)

 2 = 8t, t0(t[LN,address]= t0[LN,address]^t[FN]⇡ t0[FN]
! t[person]⌦t0[person]),

 3 = 8t, t0(t[CC,AC,mobile]= t0[CC,AC,mobile]
! t[person]⌦t0[person]),

Intuitively, (a) 1 states that if t and t0 have the same
landline phone, then t[address] and t0[address] should
refer to the same address and be equalized via updates;
(b) 2 says that if t and t0 have the same address and
last name, and if they have similar first names, then they
refer to the same person; and (c) 3 states that if t and t0

have the same mobile phone, then they should be iden-
tified as the same person. Here ⇡ denotes a predicate
for similarity of FN, such that, e.g., Bob⇡ Robert, since
Bob is a nickname of Robert.
These rules identify t4 and t5 in Figure 1 as follows.

(a) By 1, t4[address] and t5[address] should be iden-
tified although their values are radically different; and
(b) by (a) and 2, t4 and t5 refer to the same person.
Note that matching dependencies can be “recursively”
applied: the outcome of (a) is used to deduce (b), for
collective deduplication. 2

There exists a sound and complete axiom system for
deducing matching dependencies from a set of known
matching dependencies, based on their dynamic seman-
tics [34]. The deduction process is in quadratic time.
Moreover, “negative rules” such as “a male and a fe-
male cannot be the same person” can be expressed as
matching dependencies without the need for introduc-
ing negation [45].
An operational semantics is developed for matching

dependencies in [12] by means of a chase process with
matching functions. It is shown that matching depen-
dencies can also be used in data cleaning, together with
related complexity bounds for consistent query answer-
ing [12]. Other types of rules have also been studied in,
e.g., [4, 16, 89].

Collaborative deduplication. Data repairing and dedu-
plication are often taken as separate processes. To im-
prove the accuracy of both processes, the two should be
unified [45].

EXAMPLE 5. We show how data repairing and
deduplication interact to identify t1–t3 of Figure 1 as
follows.
(a) By CFD '1 of Example 2, we have that t2 and
t3 have the same address. By matching dependency
 2 of Example 4, we deduce that t2 and t3 refer to
the same person. Moreover, we can enrich t2 by
t2[landline,mobile] := t3[landline,mobile].
(b) By 3 of Example 4, we deduce that t1 and t3 refer
to the same person. Therefore, t1–t3 refer to the same
Mary. 2

The example shows that repairing helps deduplica-
tion and vice versa. This is also observed in [5]. Al-
gorithms for unifying repairing and deduplication are
given in [45]. In addition to data consistency, it has
also been verified that data deduplication should also
be combined with the analyses of data currency (timeli-
ness) and data accuracy [42, 70].
Putting these together, we advocate collaborative

deduplication that incorporates the analyses of data
consistency (repairing), currency, accuracy and co-
occurrences of attributes into the deduplication process,
not limited to co-occurring references considered in col-
lective deduplication [13].

2.3 Information Completeness
Information completeness concerns whether our

database has complete information to answer our
queries. Given a database D and a query Q, we want
to know whether Q can be correctly answered by using
only the data in D.
A database is typically assumed either closed or open.

• Under the Closed World Assumption (CWA), our
database includes all the tuples representing real-
world entities, but some attribute values may be
missing.

• Under the Open World Assumption (OWA), our
database may only be a proper subset of the set of
tuples that represent real-world entities. That is,
both tuples and values may be missing.

The CWA is often too strong in the real world [76]. Un-
der the OWA, however, few queries can find correct an-
swers.
To deal with missing values, representation systems

are typically used (e.g., c-tables, v-tables [59, 64]),
based on certain query answers, which are recently re-
vised in [71]. There has also been work on coping with
missing tuples, by assuming that there exists a virtual
databaseDc with “complete information”, and that part
ofD is known as a view ofDc [69, 77, 80]. Given such
a database D, we want to determine whether a query
posed onDc can be answered by an equivalent query on
D, via query answering using views.

Relative information completeness. We can possibly
do better by making use of master data. An enterprise
nowadays typically maintains master data (a.k.a. refer-
ence data), a single repository of high-quality data that
provides various applications with a synchronized, con-
sistent view of the core business entities of the enter-
prise [74].
Given a databaseD and master dataDm, we specify a

set V of containment constraints [36]. Such a constraint

SIGMOD Record, September 2015 (Vol. 44, No. 3) 11

RCDP(LQ,LC) combined complexity [36] data complexity [17]
(FO, CQ) undecidable undecidable
(CQ, CQ) ⇧p

2-complete PTIME
(UCQ, UCQ) ⇧p

2-complete PTIME

Table 3: Relative information completeness

is of the form q(D)✓p(Dm), where q is a query on D,
and p is a simple projection on Dm. Intuitively, Dm

is closed-world, and the part of D that is constrained
by V is bounded by Dm, while the rest is open-world.
We refer to a database D that satisfies V as a partially
closed database w.r.t. (Dm,V). A databaseDe is a par-
tially closed extension of D if D✓De and De is par-
tially closed w.r.t. (Dm,V) itself.
A partially closed database D is said to be complete

for a query Q relative to (Dm,V) if for all partially
closed extensions De of D w.r.t. (Dm,V), Q(De)=
Q(D). That is, there is no need for adding new tuples to
D, since they either violate the containment constraints,
or do not change the answer to Q in D. In other words,
D already contains complete information necessary for
answeringQ [36].

EXAMPLE 6. Recall that relation D0 of Figure 1
may not have complete information to answer queryQ1

of Example 1. Now suppose that we have a master re-
lation Dm of schema (FN,LN,city), which maintains
complete employee records in the UK, and a contain-
ment constraint �: ⇡FN,LN,city�CC=44(D0)✓Dm, i.e.,
the set of UK employees inD0 is contained inDm. Then
if Q1(D0) returns all employees in Edinburgh found in
Dm, we can safely conclude that D0 is complete for Q1

relative to (Dm,{�}). 2

Several problems have been studied for relative in-
formation completeness [17, 36]. One of the prob-
lems, denoted by RCDP(LQ,LC), is to determine,
given a query Q, master data Dm, a set V of con-
tainment constraints, and a partially closed database
D w.r.t. (Dm,V), whether D is complete for Q rela-
tively to (Dm,V), where LQ and LC are query lan-
guages in which Q and q (in containment constraints)
are expressed, respectively. Some complexity bounds
of RCDP(LQ,LC) are shown in Table 3, where CQ,
UCQ and FO denote conjunctive queries (SPJ), unions
of conjunctive queries (SPJU) and FO queries (the full
relational algebra), respectively. The complexity bounds
demonstrate the difficulty of reasoning about informa-
tion completeness. Relative information completeness
has also been studied in the setting where both values
and tuples may be missing, by extending representation
systems for missing values [35].
Containment constraints are also able to express de-

pendencies used in the analysis of data consistency, such
as CFDs and CINDs [36]. Hence we can study data
consistency and information completeness in a uniform
framework.

2.4 Data Currency
Data currency (timeliness) aims to identify the cur-

rent values of entities represented by tuples in a (possi-
bly stale) database, and to answer queries with the cur-
rent values.
There has been work on how to define current tuples

by means of timestamps in temporal databases (see, e.g.,
[24, 83] for surveys). In practice, however, timestamps
are often unavailable or imprecise [96]. The question is
how to determine data currency in the absence of reli-
able timestamps.

Modeling data currency. We present a model proposed
in [43]. Consider a database D that possibly contains
stale data. For each tuple t2D, t[eid] denotes the id of
the entity that t represents, obtained by data deduplica-
tion (see Section 2.2).
(1) The model assumes a currency order�A for each at-
tributeA of each relation schemaR, such that for tuples
t1 and t2 of schemaR inD, if t1[eid] = t2[eid], i.e.,when
t1 and t2 represent the same entity, then t1�A t2 indi-
cates that t2 is more up-to-date than t1 in theA attribute
value. This is to model partially available currency in-
formation inD.
(2) The model uses currency constraints to specify cur-
rency relationships derived from the semantics of the
data, expressed as denial constraints equipped with con-
stants.

EXAMPLE 7. Extending relationD0 of Figure 1 with
attribute eid, currency constraints on D0 include:

8s,t
�
(s[eid]= t[eid]^s[status]=“married”^

t[status]=“single”) ! t�status s
�
,

8s,t
�
(s[eid]= t[eid]^t�status s! t�LN s

�
.

These constraints are derived from the semantics of the
data: (a) marital changes from “single” to “married”,
but not the other way around; and (b) LN and status are
correlated: if t has more current status than s, it also
has more current LN.
Based on these, query Q2 of Example 1 can be an-

swered with the most current LN value of Mary, namely,
Luth. 2

Based on currency orders and constraints, we can define
(3) consistent completions Dc of D, which extend �A

inD to a total order on all tuples pertaining to the same

12 SIGMOD Record, September 2015 (Vol. 44, No. 3)

CCQA(LQ) combined complexity [43] data complexity [43]
FO PSPACE-complete coNP-complete

CQ, UCQ ⇧p
2-complete coNP-complete

Table 4: Certain current answers

entity, such that Dc satisfies the currency constraints;
and
(4) from Dc, we can extract the current tuple for each
entity eid, composed of the entity’s most currentA value
for each attribute A based on �A. This yields the cur-
rent instance ofDc consisting of only the current tuples
of the entities in D, from which currency orders can be
removed.
(5) We compute certain current answers to a queryQ in
D, i.e., answers to Q in all consistent completions Dc

ofD.
Several problems associated with data currency are

studied in [43]. One of the problems, denoted by
CCQA(LQ), is to decide, given a database D with
partial currency orders �A and currency constraints, a
query Q2LQ and a tuple t, whether t is a certain cur-
rent answer to Q in D. Some of the complexity results
for CCQA(LQ) are shown in Table 4.

2.5 Data Accuracy
Data accuracy refers to the closeness of values in a

database to the true values of the entities that the data
in the database represents, when the true values are not
known.
While it has long been recognized that data accuracy

is critical to data quality [7], the topic has not been well
studied. Prior work typically studies the reliability of
data sources, e.g., dependencies [30] and lineage infor-
mation [90] of data sources to detect copy relationships
and identify reliable sources, vote counting and prob-
abilistic analysis based on the trustworthiness of data
sources [51, 97].
Complementary to the reliability analysis of sources,

relative accuracy is studied in [18]. Given tuples t1 and
t2 that pertain to the same entity, it is to infer whether
t1[A] is more accurate than t2[A] for attributes A of the
tuples. The inference is conducted by a chase process,
by combining the analyses of data consistency, currency
and correlated attributes.

3. DATA CLEANING TECHNIQUES
As Gartner [54] put it, the data quality tool market

is “among the fastest-growing in the enterprise software
sector”. It reached $1.13 billion in software revenue in
2013, about 13.2% growth, and will reach $2 billion
by 2017, 16% growth. While data quality tools have

mostly been dealing with customer, citizen and patient
data, they are rapidly expanding into financial and quan-
titative data domains.
What does the industry need from data quality tools?

Such tools are expected to automate key elements, in-
cluding: (1) data profiling to discover data quality
rules, in particular “dependency analysis (cross-table
and cross-dataset analysis)”; (2) cleaning, “the mod-
ification of data values to meet domain restrictions,
integrity constraints or other business rules”; and (3)
matching, “the identifying, linking and merging of re-
lated entries within or across sets of data”, and in partic-
ular, “matching rules or algorithms” [54].
In this section we briefly survey techniques for pro-

filing (discovery of data quality rules), cleaning (error
detection and data repairing) and matching (data dedu-
plication).

3.1 Discovering Data Quality Rules
To clean data with data quality rules, the first ques-

tion we have to answer is how we can get the rules. It
is unrealistic to rely on domain experts to design data
quality rules via an expensive and long manual process,
or count on business rules that have been accumulated.
This highlights the need for automatically discovering
and validating data quality rules.

Rule discovery. For a class C of dependencies that are
used as data quality rules, the discovery problem for C is
stated as follows. Given a database instance D, it is to
find a minimal cover, a non-redundant set of dependen-
cies that is logically equivalent to the set of all depen-
dencies in C that hold onD.
A number of discovery algorithms are developed for,

e.g.,

• FDs, e.g., [63, 93], and INDs (see [72] for a sur-
vey);

• CFDs, e.g., [21, 39, 56, 58], and CINDs [56];
• denial constraints DCs [25]; and for
• matching dependencies [84].

Discovery algorithms are often based on the levelwise
approach proposed by [63], e.g., [21, 39], depth-first
search of [93], e.g., [25, 39], and association rule min-
ing [39, 56].

Rule validation. Data quality rules are discovered from
possibly dirty data, and are likely “dirty” themselves.
Hence given a set ⌃ of discovered rules, we need to
identify what rules in ⌃ make sense, by checking their
satisfiability. In addition, we want to remove redundant
rules from⌃, by making use of implication analysis (see
Section 2.1).

SIGMOD Record, September 2015 (Vol. 44, No. 3) 13

It is nontrivial to identify sensible rules from ⌃. Re-
call that the satisfiability problem is NP-complete for
CFDs, and is nontrivial for DCs. Nevertheless, approx-
imation algorithms can be developed. For CFDs, such
algorithms have been studied [38], which extract a set
⌃0 of satisfiable dependencies from ⌃, and guarantee
that ⌃0 is “close” to a maximum satisfiable subset of ⌃,
within a constant bound.

3.2 Error Detection
After data quality rules are discovered and validated,

the next question concerns how to effectively catch er-
rors in a database by using these rules. Given a database
D and a set ⌃ of dependencies as data quality rules, er-
ror detection (a.k.a. error localization) is to find all tu-
ples in D that violate at least one dependency in ⌃. Er-
ror detection is a routine operation of data quality tools.
To clean data we have to detect errors first. Many users
simply want errors in their data to be detected, without
asking for repairing the data.
Error detection methods depend on (a) what depen-

dencies are used as data quality rules, and (b) whether
the data is stored in a local database or distributed across
different sites.

Centralized databases. When D resides in a central-
ized database and when ⌃ is a set of CFDs, two SQL
queriesQc andQv can be automatically generated such
that Qc(D) and Qv(D) return all and only those tuples
in D that violate ⌃ [38]. Better still, Qc and Qv are in-
dependent of the number and size of CFDs in ⌃. That
is, we can detect errors by leveraging existing facility of
commercial relational DBMS.

EXAMPLE 8. To detect violations of '2 =
((CC,AC!city), TP2) of Example 2, we use the
followingQc andQv:

QC SELECT * FROM R t, TP2 tp
WHERE t[CC,AC]⇣ tp[CC,AC] AND t[city] 6⇣ tp[city]

QV SELECT DISTNCT CC,AC FROM R t, TP2 tp
WHERE t[CC,AC]⇣ tp[CC,AC] AND tp[city]= ‘ ’
GROUP BY CC,AC HAVING COUNT(DISTNCT city)>1

where t[CC,AC]⇣ tp[CC,AC] denotes (t[CC] = tp[CC]
OR tp[CC] = ‘ ’) AND (t[AC] = tp[AC] OR tp[AC] = ‘ ’);
and R denotes the schema of employee datasets. In-
tuitively, QC catches single-tuple violations of '2, i.e.,
those that violate a pattern in TP2, and QV identifies
violations of the FD embedded in '2. Note that QC and
QV simply treat pattern tableau TP2 as an “input” re-
lation, regardless of its size. In other words, QC and
QV are determined only by the FD embedded in '2, no
matter how large the tableau TP2 is.
When ⌃ consists of multiple CFDs, we can “merge”

these CFDs into an equivalent one, by making use of

a new wildcard [38]. Thus two SQL queries as above
suffice for ⌃. 2

The SQL-based method also works for CINDs [20].

Distributed data. In practice a database is often frag-
mented and distributed across different sites. In this set-
ting, error detection necessarily requires data shipment
from one site to another. For both vertically or hori-
zontally partitioned data, it is NP-complete to decide
whether error detection can be carried out by shipping a
bounded amount of data, and the SQL-based method no
longer works [40]. Nevertheless, distributed algorithms
are in place to detect CFD violations in distributed data,
with performance guarantees [40, 47].

3.3 Data Repairing
After errors are detected, we want to fix the errors.

Given a databaseD and a set ⌃ of dependencies as data
quality rules, data repairing (a.k.a. data imputation) is
to find a repair Dr of D with minimum cost(D,Dr).
We focus on theU -repair model based on attribute-value
modifications (see Section 2.1), as it is widely used in
the real world [54].

Heuristic fixes. Data repairing is cost-prohibitive: its
data complexity is coNP-complete for fixed FDs or
INDs [14]. In light of this, repairing algorithms are
mostly heuristic, by enforcing dependencies in ⌃ one
by one. This is nontrivial.

EXAMPLE 9. Consider two relation schemas
R1(A,B) and R2(B,C), an FD on R1: A!B,
and an IND R2[B]✓R1[B]. Consider instances
D1 ={(1,2),(1,3)} of R1 and D2 ={(2,1),(3,4)},
where D1 does not satisfy the FD. To repair (D1,D2),
a heuristic may enforce the FD first, to “equalize” 2
and 3; it then needs to enforce the IND, by ensuring
that D1 includes {2,3} as its B-attribute values. This
yields a repairing process that does not terminate. 2

Taking both FDs and INDs as data quality rules, a
heuristic method is proposed in [14] based on equiva-
lence classes, which group together attribute values of
D that must take the same value. The idea is to separate
the decision of which values should be equal from the
decision of what values should be assigned to the equiv-
alence classes. Based on the cost(,) function given in
Section 2.1, it guarantees to find a repair. The method
has been extended to repair data based on CFDs [28],
EGDs and TGDs [55] with a partial order on equiva-
lence classes to specify preferred updates, and DCs [26]
by generalizing equivalence classes to conflict hyper-
graphs. An approximation algorithm for repairing data
based on FDs was developed in [66].

14 SIGMOD Record, September 2015 (Vol. 44, No. 3)

A semi-automated method is introduced in [94] for
data repairing based on CFDs. In contrast to [14], it
interacts with users to solicit credible updates and im-
prove the accuracy. Another repairing method is studied
in [45], which picks reliable fixes based on an analysis
of the relative certainty of the data, measured by entropy.
There have also been attempts to unify data repairing
and deduplication [45] based on CFDs, matching depen-
dencies and master data.

Certain Fixes. A major problem with heuristic repair-
ing methods is that they do not guarantee to find correct
fixes; worse still, they may introduce new errors when
attempting to fix existing errors. As an example, to fix
tuple t1 of Figure 1 that violates CFD '2 of Example 2,
a heuristic method may very likely change t1[city] from
London to Edinburgh. While the change makes t1 a “re-
pair”, the chances are that for the entity represented by
t1, AC is 020 and city is London. That is, the heuristic
update does not correct the error in t1[AC], and worse
yet, it changes t1[city] to a wrong value. Hence, while
the heuristic methodsmay suffice for statistical analysis,
e.g., census data, they are often too risky to be used in
repairing critical data such as medical records.
This highlights the need for studying certain fixes for

critical data, i.e., fixes that are guaranteed to be cor-
rect [46]. To identify certain fixes, we make use of
(a) master data (Section 2.3), (b) editing rules instead
of data dependencies, and (c) a chase process for infer-
ring “certain regions” based on user confirmation, mas-
ter data and editing rules, where certain regions are at-
tribute values that are validated.
Editing rules are dynamic constraints that tell us

which attributes should be changed and to what values
they should be changed. In contrast, dependencies have
a static semantics; they are capable of detecting the pres-
ence of errors in the data, but they do not tell us how to
fix the errors.

EXAMPLE 10. Assume master dataDm with schema
Rm(postal, C,A) for postal code, city and area code in
the UK. An editing rule for D0 of Fig. 1 is as follows:

�: (postal,zip)!((C,city),(A,AC)),

specified with pairs of attributes from Dm and D0. It
states that for an input tuple t, if t[zip] is validated and
there exists a master tuple s2Dm such that t[zip] =
s[postal], then update t[city,AC]:=s[C,A] is guaranteed
a certain fix, and t[AC,city] becomes a certain region
(validated). Suppose that there is s = (W1B 1JL,
London, 020) in Dm, and that t1[zip] of Figure 1 is
validated. Then t1[AC] should be changed to 020; here
t1[city] remains unchanged. 2

A framework is developed in [46] for inferring certain
fixes for input tuples. Although it may not be able to fix
all the errors in the data based on available information,
it guarantees that each update fixes at least one error, and
that no new errors are introduced in the entire repairing
process. The process may consult users to validate a
minimum number of attributes in the input tuples. Static
analyses of editing rules and certain regions can also be
found in [46].
Editing rules are generalized in [29] by allowing

generic functions to encompass editing rules [46], CFDs
and matching dependencies. However, it remains to
be justified whether such generic rules can be validated
themselves and whether the fixes generated are sensible
at all.

Beyond data repairing. Data repairing typically as-
sumes that data quality rules have been validated. In-
deed, in practice we use data quality rules to clean data
only after the rules are confirmed correct themselves. A
more general setting is studied in [22], when both data
and data quality rules are possibly dirty and need to be
repaired.
There has also been work on (a) causality of er-

rors [75] and its connection with data repairs [81], and
(b) propagation of errors and dependencies in data trans-
formations [19, 48].

3.4 Data Deduplication
A number of systems have been developed for

data deduplication, e.g., BigMatch [95], Tailor [32],
Swoosh [10] AJAX [50], CrowdER [88] and Cor-
leone [57], as stand-alone tools, embedded packages in
ETL systems, or crowd-sourced systems. Criteria for
developing such systems include (a) accuracy, to reduce
false matches (false positives) and false non-matches
(false negatives); and (b) scalability with big data. To
improve accuracy, we advocate collaborative deduplica-
tion (Section 2.2), including but not limited to collective
deduplication [13]. For scalability, parallel matching
methods need to be developed and combined with tra-
ditional blocking and windowing techniques (see [33]).
We refer the interested reader to [62, 78] for detailed
surveys.

4. CHALLENGES INTRODUCED BY
BIG DATA

The study of data quality has raised as many ques-
tions as it has answered. In particular, a full treatment is
required for each of data accuracy, currency and infor-
mation completeness, as well as their interaction with
data consistency and deduplication. Moreover, big data
introduces a number of challenges, and the study of big

SIGMOD Record, September 2015 (Vol. 44, No. 3) 15

data quality is in its infancy.

Volume. Cleaning big data is cost-prohibitive: discov-
ering data quality rules, error detection, data repairing
and data deduplication are all expensive; e.g., the data
complexity of data repairing is coNP-complete for FDs
and INDs [14]. To see what it means in the context of
big data, observe that a linear scan of a dataset D of PB
size (1015 bytes) takes days using a solid state drive with
a read speed of 6GB/s, and it takes years if D is of EB
size (1018 bytes) [41].
To cope with the volume of big data, we advocate the

following approaches, taking data repairing as an exam-
ple.

Parallel scalable algorithms. We approach big data re-
pairing by developing parallel algorithms. This is often
necessary since in the real world, big data is often dis-
tributed.
It is not always the case that the more processors are

used, the faster we get. To characterize the effective-
ness of parallelization, we formalize parallel scalability
following [68].
Consider a datasetD and a set⌃ of data quality rules.

We denote by t(|D|, |⌃|) the worst-case running time of
a sequential algorithm for repairing D with ⌃; and by
T (|D|, |⌃|,n) the time taken by a parallel algorithm for
the task by using n processors, taking n as a parameter.
Here we assume n⌧ |D|, i.e., the number of processors
does not exceed the size of the data, as commonly found
in practice.
We say that the algorithm is parallel scalable if

T (|D|, |⌃|,n)=O(t(|D|, |⌃|)/n)+(n|⌃|)O(1).

That is, the parallel algorithm achieves a polynomial re-
duction in sequential running time, plus a “bookkeep-
ing” cost O((n|⌃|)l) for a constant l that is independent
of |D|.
Obviously, if the algorithm is parallel scalable, then

for a given D, it guarantees that the more processors
are used, the less time it takes to repair D. It allows us
to repair big data by adding processors when needed. If
an algorithm is not parallel scalable, it may not be able
to efficiently repairD whenD grows big no matter how
many processors are used.

Entity instances. We propose to deal with entity in-
stances instead of processing the big datasetD directly.
An entity instance Ie is a set of tuples in D that pertain
to the same entity e. It is substantially smaller than D,
and typically retains a manageable size when D grows
big. This suggests the following approach to repairing
big data: (1) cluster D into entity instances Ie, by us-
ing a parallel data deduplication algorithm; (2) for each
entity e, deduce “the true values” of e from Ie, by pro-

cessing all entities in parallel; and (3) resolve inconsis-
tencies across different entities, again in parallel.
We find that this approach allows us to effectively

and efficiently deduce accurate values for each entity,
by reasoning about data consistency, data deduplication
with master data, data accuracy and data currency to-
gether [18, 42].

Bounded incremental repairing. We advocate incre-
mental data repairing. Given a big dataset D, a set ⌃
of data quality rules, a repair Dr of D with ⌃, and up-
dates �D to D, it is to find changes �Dr to the repair
Dr such that Dr��Dr is a repair of D��D with ⌃,
where D��D denotes the updated dataset of D with
�D; similarly forDr��Dr.
Intuitively, small changes �D to D often incur a

small number of new violations to the rules in ⌃; hence,
changes �Dr to the repair Dr are also small, and it is
more efficient to find �Dr than to compute a new re-
pair starting from scratch. In practice, data is frequently
updated, but the changes �D are typically small. We
can minimize unnecessary recomputation of Dr by in-
cremental data repairing.
The benefit is more evident if there exists a bounded

incremental repairing algorithm. As argued in [79], in-
cremental algorithms should be analyzed in terms of
|CHANGED| = |�D| + |�Dr|, indicating the updating
costs that are inherent to the incremental problem itself.
An incremental algorithm is said to be bounded if its
cost can be expressed as a function of |CHANGED| and
|⌃|, i.e., it depends only on |CHANGED| and |⌃|, inde-
pendent of the size of bigD.
This suggests the following approach to repairing and

maintaining a big dataset D. (1) We compute repairDr

of D once, in parallel by using a number of processors.
(2) In response to updates �D to D, we incrementally
compute�Dr, by reducing the problem of repairing big
D to an incremental problem on “small data” of size
|CHANGED|. The incremental step may not need a lot
of resources.
Besides the scalability of repairing algorithms with

big data, we need to ensure the accuracy of repairs. To
this end, we promote the following approach.

Knowledge bases as master data. Master data is ex-
tremely helpful in identifying certain fixes [46], data
repairing [45] and in deducing the true values of enti-
ties [18, 42]. A number of high-quality knowledge bases
are already developed these days, and can be employed
as master data. We believe that repairing algorithms
should be developed by taking the knowledge bases as
master data, to improve the accuracy.

Velocity. Big datasets are “dynamic”: they change fre-

16 SIGMOD Record, September 2015 (Vol. 44, No. 3)

quently. This further highlights the need for develop-
ing bounded incremental algorithms for data cleaning.
When CFDs are used as data quality rules, incremental
algorithms are in place for error detection in centralized
databases [38] and distributed data [47], and for data
repairing [28]. Nonetheless, parallel incremental algo-
rithms need to be developed for error detection, data re-
pairing and deduplication.

Variety. Big data is also characterized by its hetero-
geneity. Unfortunately, very little is known about how to
model and improve the quality of data beyond relations.
In particular, graphs are a major source of big data, e.g.,
social graphs, knowledge bases, Web sites, and trans-
portation networks. However, integrity constraints are
not yet well studied for graphs to determine the consis-
tency of the data. Even keys, a primary form of data
dependencies, are not yet defined for graphs. Given a
graph G, we need keys that help us uniquely identify
entities represented by vertices in G.
Keys for graphs are, however, a departure from their

counterparts for relations, since such keys have to be
specified in terms of both attribute values of vertices and
the topological structures of neighborhoods, perhaps in
terms of graph pattern matching by means of subgraph
isomorphism.

Acknowledgments. The author thanks Floris Geerts
for his thorough reading of the first draft and for helpful
comments. The author is supported in part by NSFC
61133002, 973 Program 2012CB316200, ERC 652976,
Shenzhen Peacock Program 1105100030834361,
Guangdong Innovative Research Team Program
2011D005, EPSRC EP/J015377/1 and EP/M025268/1,
NSF III 1302212, and a Google Faculty Research
Award.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] F. N. Afrati and P. G. Kolaitis. Repair checking in inconsistent

databases: algorithms and complexity. In ICDT, pages 31–41,
2009.

[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
fuzzy duplicates in data warehouses. In VLDB, pages 586–597,
2002.

[4] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based
framework for record matching. In ICDE, pages 40–49, 2008.

[5] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with
constraints using dedupalog. In ICDE, pages 952–963, 2009.

[6] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. In PODS, pages 68–79, 1999.

[7] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Springer, 2006.

[8] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating
dependencies. JCSS, 59(1):94–115, 1999.

[9] C. Beeri and M. Y. Vardi. A proof procedure for data
dependencies. JACM, 31(4):718–741, 1984.

[10] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E.

Whang, and J. Widom. Swoosh: a generic approach to entity
resolution. VLDB J., 18(1):255–276, 2009.

[11] L. Bertossi. Database Repairing and Consistent Query
Answering. Morgan & Claypool Publishers, 2011.

[12] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data
cleaning and query answering with matching dependencies and
matching functions. TCS, 52(3):441–482, 2013.

[13] I. Bhattacharya and L. Getoor. Collective entity resolution in
relational data. TKDD, 1(1), 2007.

[14] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based
model and effective heuristic for repairing constraints by value
modification. In SIGMOD, pages 143–154, 2005.

[15] L. Bravo, W. Fan, and S. Ma. Extending inclusion dependencies
with conditions. In VLDB, 2007.

[16] D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. A
declarative framework for linking entities. In ICDT, 2015.

[17] Y. Cao, T. Deng, W. Fan, and F. Geerts. On the data complexity
of relative information completeness. Inf. Syst., 45:18–34, 2014.

[18] Y. Cao, W. Fan, and W. Yu. Determining the relative accuracy
of attributes. In SIGMOD, pages 565–576, 2013.

[19] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti.
Descriptive and prescriptive data cleaning. In SIGMOD, pages
445–456, 2014.

[20] W. Chen, W. Fan, and S. Ma. Analyses and validation of
conditional dependencies with built-in predicates. In DEXA,
2009.

[21] F. Chiang and R. J. Miller. Discovering data quality rules.
PVLDB, 1(1):1166–1177, 2008.

[22] F. Chiang and R. J. Miller. A unified model for data and
constraint repair. In ICDE, pages 446–457, 2011.

[23] J. Chomicki and J. Marcinkowski. Minimal-change integrity
maintenance using tuple deletions. Information and
Computation, 197(1-2):90–121, 2005.

[24] J. Chomicki and D. Toman. Time in database systems. In
M. Fisher, D. Gabbay, and L. Vı́la, editors, Handbook of
Temporal Reasoning in Artificial Intelligence, pages 429–467.
Elsevier, 2005.

[25] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[26] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In ICDE, pages 458–469, 2013.

[27] W. W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In KDD,
2002.

[28] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data
quality: Consistency and accuracy. In VLDB, pages 315–326,
2007.

[29] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang. NADEEF: a commodity data
cleaning system. In SIGMOD, 2013.

[30] X. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery
and copying detection in a dynamic world. In PVLDB, 2009.

[31] W. W. Eckerson. Data quality and the bottom line: Achieving
business success through a commitment to high quality data.
Technical report, The Data Warehousing Institute, 2002.

[32] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios. TAILOR:
A record linkage tool box. In ICDE, 2002.

[33] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. TKDE, 19(1):1–16, 2007.

[34] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints
for record matching. VLDB J., 20(4):495–520, 2011.

[35] W. Fan and F. Geerts. Capturing missing tuples and missing
values. In PODS, pages 169–178, 2010.

[36] W. Fan and F. Geerts. Relative information completeness. ACM
Trans. on Database Systems, 35(4), 2010.

[37] W. Fan and F. Geerts. Foundations of Data Quality
Management. Morgan & Claypool Publishers, 2012.

[38] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for capturing data inconsistencies.

SIGMOD Record, September 2015 (Vol. 44, No. 3) 17

TODS, 33(1), 2008.
[39] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional

functional dependencies. TKDE, 23(5):683–698, 2011.
[40] W. Fan, F. Geerts, S. Ma, and H. Müller. Detecting

inconsistencies in distributed data. In ICDE, pages 64–75, 2010.
[41] W. Fan, F. Geerts, and F. Neven. Making queries tractable on

big data with preprocessing. PVLDB, 6(8):577–588, 2013.
[42] W. Fan, F. Geerts, N. Tang, and W. Yu. Conflict resolution with

data currency and consistency. J. Data and Information Quality,
5(1-2):6, 2014.

[43] W. Fan, F. Geerts, and J. Wijsen. Determining the currency of
data. TODS, 37(4), 2012.

[44] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. In VLDB, 2009.

[45] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between
record matching and data repairing. In SIGMOD, 2011.

[46] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes
with editing rules and master data. VLDB J., 21(2):213–238,
2012.

[47] W. Fan, J. Li, N. Tang, and W. Yu. Incremental detection of
inconsistencies in distributed data. TKDE, 2014.

[48] W. Fan, S. Ma, Y. Hu, J. Liu, and Y. Wu. Propagating functional
dependencies with conditions. PVLDB, 1(1):391–407, 2008.

[49] I. Fellegi and A. B. Sunter. A theory for record linkage.
J. American Statistical Association, 64(328):1183–1210, 1969.

[50] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: An
extensible data cleaning tool. In SIGMOD, page 590, 2000.

[51] A. Galland, S. Abiteboul, A. Marian, and P. Senellart.
Corroborating information from disagreeing views. In WSDM,
2010.

[52] V. Ganti and A. D. Sarma. Data Cleaning: A Practical
Perspective. Morgan & Claypool Publishers, 2013.

[53] Gartner. ’Dirty data’ is a business problem, not an IT problem,
2007. http://www.gartner.com/newsroom/id/501733.

[54] Gartner. Magic quardrant for data quality tools, 2014.
[55] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The

LLUNATIC data-cleaning framework. PVLDB, 2013.
[56] B. Goethals, W. L. Page, and H. Mannila. Mining association

rules of simple conjunctive queries. In SDM, 2008.
[57] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W.

Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing for
entity matching. In SIGMOD, 2014.

[58] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. PVLDB, 1(1):376–390, 2008.

[59] G. Grahne. The Problem of Incomplete Information in
Relational Databases. Springer, 1991.

[60] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging
the results of approximate match operations. In VLDB, 2004.

[61] M. A. Hernández and S. J. Stolfo. The merge/purge problem for
large databases. In SIGMOD, pages 127–138, 1995.

[62] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Quality
and Record Linkage Techniques. Springer, 2009.

[63] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE:
An efficient algorithm for discovering functional and
approximate dependencies. COMP. J., 42(2):100–111, 1999.

[64] T. Imieliński and W. Lipski, Jr. Incomplete information in
relational databases. JACM, 31(4), 1984.

[65] M. A. Jaro. Advances in record-linkage methodology as applied
to matching the 1985 census of Tampa Florida. J. American
Statistical Association, 89:414–420, 1989.

[66] S. Kolahi and L. V. S. Lakshmanan. On approximating optimum
repairs for functional dependency violations. In ICDT, 2009.

[67] P. G. Kolaitis and E. Pema. A dichotomy in the complexity of
consistent query answering for queries with two atoms. Inf.
Process. Lett., 112(3):77–85, 2012.

[68] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of
efficient parallel algorithms. TCS, 71(1):95–132, 1990.

[69] A. Y. Levy. Obtaining complete answers from incomplete

databases. In VLDB, pages 402–412, 1996.
[70] P. Li, X. L. Dong, A. Maurino, and D. Srivastava. Linking

temporal records. PVLDB, 4(11):956–967, 2011.
[71] L. Libkin. Certain answers as objects and knowledge. In KR,

2014.
[72] J. Liu, J. Li, C. Liu, and Y. Chen. Discover dependencies from

data - a review. TKDE, 24(2):251–264, 2012.
[73] A. Lopatenko and L. E. Bertossi. Complexity of consistent

query answering in databases under cardinality-based and
incremental repair semantics. In ICDT, pages 179–193, 2007.

[74] D. Loshin. Master Data Management. Knowledge Integrity,
Inc., 2009.

[75] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data
errors with view-conditioned causality. In SIGMOD, pages
505–516, 2011.

[76] D. W. Miller Jr., J. D. Yeast, and R. L. Evans. Missing prenatal
records at a birth center: A communication problem quantified.
In AMIA Annu Symp Proc., pages 535–539, 2005.

[77] A. Motro. Integrity = validity + completeness. ACM Trans. on
Database Systems, 14(4):480–502, 1989.

[78] F. Naumann and M. Herschel. An Introduction to Duplicate
Detection. Morgan & Claypool Publishers, 2010.

[79] G. Ramalingam and T. Reps. On the computational complexity
of dynamic graph problems. TCS, 158(1-2):213–224, 1996.

[80] S. Razniewski and W. Nutt. Completeness of queries over
incomplete databases. PVLDB, pages 749–760, 2011.

[81] B. Salimi and L. E. Bertossi. From causes for database queries
to repairs and model-based diagnosis and back. In ICDT, 2015.

[82] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, pages 269–278, 2002.

[83] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 1999.

[84] S. Song and L. Chen. Efficient discovery of similarity
constraints for matching dependencies. TKDE, 87:146–166,
2013.

[85] S. Staworko. Declarative inconsistency handling in relational
and semi-structured databases. PhD thesis, the State University
of New York at Buffalo, 2007.

[86] S. Staworko, J. Chomicki, and J. Marcinkowski. Prioritized
repairing and consistent query answering in relational
databases. Ann. Math. Artif. Intell., 64(2-3):209–246, 2012.

[87] B. ten Cate, G. Fontaine, and P. G. Kolaitis. On the data
complexity of consistent query answering. In ICDT, pages
22–33, 2012.

[88] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:
Crowdsourcing entity resolution. PVLDB, 2012.

[89] S. Whang, O. Benjelloun, and H. Garcia-Molina. Generic entity
resolution with negative rules. VLDB J., 18(6):1261–1277,
2009.

[90] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, 2005.

[91] J. Wijsen. Database repairing using updates. TODS, 30(3),
2005.

[92] Wikibon. A comprehensive list of big data statistics, 2012.
http://wikibon.org/blog/big-data-statistics/.

[93] C. M. Wyss, C. Giannella, and E. L. Robertson. Fastfds: A
heuristic-driven, depth-first algorithm for mining functional
dependencies from relation instances. In DaWak, 2001.

[94] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F.
Ilyas. Guided data repair. PVLDB, pages 279–289, 2011.

[95] W. Yancey. BigMatch: A program for extracting probable
matches from a large file. Technical Report Computing
2007/01, U.S. Census Bureau, 2007.

[96] H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in
streams with imprecise timestamps. PVLDB, pages 244–255,
2010.

[97] B. Zhao, B. I. P. Rubinstein, J. Gemmell, and J. Han. A
bayesian approach to discovering truth from conflicting sources
for data integration. PVLDB, 2012.

18 SIGMOD Record, September 2015 (Vol. 44, No. 3)

