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ABSTRACT
In the era of "big" data, data analysis algorithms need to
be efficient. Traditionally researchers would tackle this
problem by considering "small" data algorithms, and
investigating how to make them computationally more
efficient for big data applications. The main means to
achieve computational efficiency would be to revise the
necessity and order of subroutines, or to approximate
calculations. This paper presents a viewpoint that in or-
der to be able to cope with the new challenges of the
growing digital universe, research needs to take a com-
bined view towards data analysis algorithm design and
hardware design, and discusses a potential research di-
rection in taking an intreated approach in terms of algo-
rithm design and hardware design. Analyzing how data
mining algorithms operate at the elementary operations
level can help do design more specialized and dedicated
hardware, that, for instance, would be more energy effi-
cient. In turn, understanding hardware design can help
to develop more effective algorithms.

1. INTRODUCTION
More and more data is being generated every day

by people, enterprises and smart devices. It is es-
timated [5] that the digital universe is growing by
40% a year, and by 2020 the data we create and
copy annually will reach 44 zettabytes, or 44 tril-
lion gigabytes. While currently less than 5% of the
information in the digital universe is actually ana-
lyzed, it is estimated that at least 20% would be a
candidate for analysis. Hence, there are more op-
portunities, but at the same time, more challenges
for data analysis, and not only human resources,
but also new technologies are needed to make the
best use of these opportunities.

Data generated by smart devices is particularly
interesting, since it presents opportunities for anal-
ysis that did not exist a few years ago. Currently
data from embedded systems (Internet of Things)
accounts for only about 10% of all the analyzable
data, it is estimated [5] that by 2020 data from

embedded systems will account for half of all the
analyzable data. Such devices typically operate us-
ing autonomous power sources, therefore, research
needs to anticipate how to process such data in the
most energy e�cient way.

This presents an interesting dilemma from the
data mining perspective. Ideally, all of the data
gathered in the wireless sensors would be tranferred
wirelessly to be centrally processed. And while the
energy consumption of data processing continually
falls with Moore’s Law [7, 6], the energy consump-
tion of transmitting a bit across a given distance
does not follow the Law as advantageously as the
digital processing. Therefore, the energy cost of
wireless transmission will proportionally grow when
compared to digital processing. This means we will
have to do more and more data analysis on smart
devices, instead of sending it around.

Due to power constraints, it appears that the cur-
rent general processor multi-core model is unlikely
to scale beyond a limited number of cores; it will
no longer be possible to use all cores simultane-
ously (a notion called Dark Silicon by ARM). This
will result in heterogeneous multi-cores where only
a few accelerators are used at any given time. An
example can be seen in current mobile phone ap-
plication processors which consist of many special-
ized units, for instance graphics processing acceler-
ators, radio baseband accelerators etc. For exam-
ple, Qualcomm’s new Snapdragon S4, marketed as
a dual-core processor, is actually a 10-core unit with
a GPU, several DSPs, modem, etc. Processors will
further develop into consisting of more subsystems
and will therefore be heterogeneous units special-
ized for particular purposes.

In this article we present a viewpoint that in or-
der to be able to cope with the new challenges of
the growing digital universe, research needs to take
a combined view towards data analysis algorithm
design and hardware design. Analyzing how data
mining algorithms operate at the elementary op-
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erations level can help do design more specialized
and dedicated hardware, that, for instance, would
be more energy e�cient. In turn, understanding
hardware design can help to develop more e↵ective
algorithms.

The remainder of the paper is organized as fol-
lows. Section 2 overviews the challenges and de-
sired properties from the hardware side. Section 3
overviews the challenges and desired properties from
the algorithmic side. Section 4 analyses the existing
most popular data mining/machine learning algo-
rithms in terms of elementary operations, and re-
lates algorithmic and hardware side. Section 5 dis-
cusses open research directions in energy e�cient
data mining.

2. OPPORTUNITIES AND
CHALLENGES FROM
THE HARDWARE PERSPECTIVE

Moore’s Law has promised doubling of processing
power every 18 months due to the scaling of CMOS1

transistors, which are at the heart of all proces-
sors. While the scaling of transistors still contin-
ues, extraneous circumstances have made achieving
the higher processing power increasingly di�cult.
About ten years ago, UC Berkeley’s David Patter-
son defined the ”Three Walls”. While these design
complexities (aka. ”Walls”) were known previously,
Patterson combined them in a forward-looking equa-
tion:

Power Wall+Memory Wall+ILP Wall = Brick Wall.

These Three Walls could be shortly defined as
follows:

Power Wall
If processor speed (clock frequency) would fol-
low Moore’s Law, the ensuing heat generated
by the power consumption would destroy the
processor. As the processor clock frequency is
linearly (and superlinearly in extreme cases)
related to power consumption, this can be seen
in the plateauing of processor clock frequencies
to c. 3-5 GHz.

Memory Wall
Ideally, all of the data to be processed would
be stored adjacent to the processing element.
However, with current memory technology, only
small amounts can be stored beside the pro-
cessor (e.g. L1 cache) and the ensuing data
transfer delay stalls the processing. This can

1Complementary metal oxide semiconductor (CMOS) is
a technology for constructing integrated circuits.

be seen in hiding memory latency with increas-
ing on-chip cache sizes and levels and also the
increasing amount of concurrently processed
threads.

Instruction-Level Parallelism Wall (ILP)
The single-thread performance has been tradi-
tionally increased by parallelizing the sequen-
tial part of computer programs. This was
achieved with better compilers or more com-
plex architectures (out-of-order instruction pro-
cessing, branch speculation, VLIW2).

To compound the problem, tackling one wall will
make the other two worse.

The ultimate solution to break the Brick Wall
is moving away CMOS technology to a novel tech-
nology. As such a mature technology does not yet
exist, other tricks have been devised to mitigate the
problem and lower the Wall. In the early 2000s pro-
cessors moved from single core to multi core, but
this made the Memory Wall worse. Cache coher-
ence reduces the Memory Wall, but aggravates the
Power Wall. The Power Wall currently also man-
ifests itself in cloud computing via the electricity
bill.

As smaller transistors allow cramming more cores
into a single chip, Dark silicon, described in Section
1 is truly the main way to lower the Power Wall.
However, two other problems ensue: the Program-
mer Wall and the Communication Wall.

The Programmer Wall basically relates to ab-
stracting the heterogeneous nature of Dark Sil-
icon as algorithms and software are not ready
for computing on thousands of processors.

The Communication Wall Communication here
means either moving data between levels of
a memory hierarchy (sequential case), over a
network connecting processors (parallel case),
or wirelessly between processing nodes (sensor
network case).

While creating an e�cient programming model and
associated compilers for Dark Silicon is out of scope
for this discussion, the Communication Wall can
already be tackled at the algorithm level (see e.g.
[2]). Previously, the cost of communicating was di-
vided into bandwidth and latency. However, the en-
ergy cost of communication is proportionally grow-
ing when compared to computation. As mentioned
previously, due to the physics of electromagnetic
signalling, wireless communication is the extreme
2Very long instruction word (VLIW) is a processor ar-
chitecture designed to take advantage of instruction
level parallelism.
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case. But even on-chip, the delay of wiring grows
quadratically with scaling and as a result increas-
ing amount of energy will have to be used to achieve
su�cient bandwidth and delay.

To summarize, the algorithm designer should think
of specialized functions that can be turned into Dark
Silicon processing elements and minimize communi-
cation (memory accesses and data transfer between
cores). When designing algorithms, or choosing ex-
isting algorithms for implementation, data analysis
should be aware of energy costs of elementary oper-
ations at di↵erent hardware designs, and much en-
ergy which operation consumes. That would allow
to prioritize. Algorithm and elementary function
complexity and algorithm execution time are rudi-
mentary estimates on energy consumption, which,
in some cases, can be mitigated with Dark Sili-
con. Amount of memory required by the algorithm
should also be minimized. Communication can be
minimized by, for example, using small data sets
that fit in a processor cache (and thereby avoid ex-
tra communication with the main memory) or using
hierarchical algorithms (where some levels of the hi-
erarchy can be performed in wireless nodes).

3. LOW-ENERGY ALGORITHMS
All data analysis algorithms can be broadly cat-

egorized as descriptive or predictive modeling.

Descriptive modelling aims to extract information
from large amount of data and summarize it
into a model. The main goal is to describe
a dataset at hand, and the main result of an
algorithm is data summary (e.g. clustering
traces of rental bicycles into groups in order
to develop new bicycle roads).

Predictive modelling aims to extract summariz-
ing information from large amount data into a
model as well, however, the main goal is not
to describe the data at hand, but rather to
be able to generalize to new unseen data (e.g.
recognizing the model of transportation based
on accelerometer data captured by a mobile
device).

While in descriptive modeling the modeling algo-
rithms need to be as e�cient as possible, in pre-
dictive modeling there needs to be a tradeo↵ be-
tween e�cient modeling and e�cient generalization.
For example, producing a regression model requires
much more computation resources than later ap-
plying the model to new data. On the other hand,
for instance, k-nearest neighbour algorithm would
require much more computing resources at the ap-
plication stage.

There are many strands of research related to
energy-e�ciency, rather scattered across di↵erent
research areas. The authors in [15] insist that a
paradigm shift towards energy-e�ciency is needed,
if we want to use thousands of battery-powered low-
cost sensors for long-term surveillance, for instance.
The shift means that we need to focus on max-
imizing resource e�ciency rather than just maxi-
mizing performance. They emphasize that in order
to achieve e�cient use of energy and communica-
tions, systems should be distributed, co-operative,
and opportunistic (e.g. power-down mechanisms,
or systems with multiple states [1]).

Sensor networks are inherently distributed sys-
tems. They have many areas of application, includ-
ing tracking by multiple sensors [4], and structural
health monitoring [9], to mention a few. In these ap-
plications, there is a concern whether the long-term
operation of such systems is feasible at all, consid-
ering that there is a large cost for maintenance, to
change the batteries, for instance. In the area of
structural health monitoring, there are solutions to
seek for for parsimonious models in order to min-
imize the amount of communication [10] between
the sensor nodes.

Mobile sensing has become commonplace in ev-
eryday smart phone applications, however, the sens-
ing consumes a fair amount of energy [16]. Since en-
ergy consumption may become an issue, researchers
[3] created a simulation library to simulate a real-
world deployment scenario in order to predict re-
source use in smart phones and wireless sensor net-
works.

A more theoretical perspective on computation
and the energy needed to to compute (if at all) is
discussed in [13], where the trade-o↵ between time
to perform a computation and energy needed to
compute is discussed.

One line of work towards more resource-aware
computation is to use lower precision of floating
point numbers than the standard [8] used in digital
computers. One such work makes use of limited-
precision floating point numbers in the context of
naive Bayes classification [11]. The research ques-
tions are then to quantify the overall compromise
in the accuracy of the algorithm in the classifica-
tion setting.

Overall, most of the research on energy e�cient
algorithms consider optimizations and savings that
are algorithm specific. It means that optimizing ev-
ery next algorithm starts from the beginning.
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4. ANALYSIS OF ALGORITHMS AND EL-
EMENTARY OPERATIONS

From the data analysis algorithm design perspec-
tive energy e�ciency may be improved in three main
ways:

1. approximate computation,

2. revising the necessity of operations within an
algorithm,

3. more e�cient implementation of operations.

The first two approaches would need to be tai-
lored for concrete algorithms. For example, if we
want to optimize k-means clustering algorithm, we
would need to decide, which computations within
this algorithm can be done approximately, and which
operations may not be necessary. Moreover, opti-
mizing single algorithms is tedious, and the gains
in energy e�ciency may vary from algorithm to al-
gorithm. For some algorithms it may be di�cult or
impossible to come up with further computational
optimization. Hence, we find the third approach to
optimization to be promising.

Instead of optimizing individual algorithms, we
can try to optimize elementary operations that are
commonly used by many algorithms. These oper-
ations could be optimized at the algorithmic level
and the corresponding processing elements at the
hardware level. For example, k-means requires com-
puting distances between two vectors many times.
Optimizing the distance computation operation would
contribute to a wide range of data analysis algo-
rithms, not only k-means.

The first step towards such an approach would be
to identify the most common elementary operations
used in data analysis. For a rough approximation
of such ranking we conduct the following survey.

We analyze the top 10 data mining algorithms
[14], recently identified by a panel of research lead-
ers: C4.5, k-Means, SVM, Apriori, EM, PageRank,
AdaBoost, kNN, Naive Bayes, and CART. In addi-
tion, we consider three more algorithms, commonly
used in practical data mining tasks: the logistic re-
gression (classification), the linear regression, and
the Fast Fourier Transform (FFT) commonly used
in signal processing.

Table 1 lists elementary operations on the left
hand side, and each column corresponds to one of
the 13 data mining algorithms. A bullet sign in-
dicates the presence of an elementary operation in
that algorithm. The bottom line indicates to which
data mining task an algorithm belongs: CLA - clas-
sification, REG - regression, C&R - classification
and regression, CLU - clustering, ASS - association

classification and regression
clustering

signal processing

ranking
association rules

45%
35%

10%

5%
5%

Figure 1: Estimated shares of data min-
ing/machine learning tasks on autonomous
devices.

rule discovery, DSP - digital signal processing. The
right column gives a weighted score, that we will
describe in more detail.

We could simply sum the appearances of each
elementary operation and prioritize the operations,
that get the largest number of points, assuming that
these are the most frequent operations. However,
this does not take into account that each of the
13 algorithms is not equally to be used, some al-
gorithms may be used more often than the others.
To take the frequency of usage into account we first
consider what is the share of each data mining task
in practical sensor data analysis using autonomous
devices. This allocation is completely subjective,
and is based on our personal experiences; however,
it provides a baseline for a start. An alternative
way to estimate the relative prevalences of di↵erent
algorithms would be to use an experiment database,
see [12].

If we think of a data mining/machine learning
processor, optimized for energy e�ciency when an-
alyzing data, we allocate shares of usage to di↵erent
activities as given in Figure 1. Each of the 13 algo-
rithms belongs to one of the categories. We assume
that within each category any of the considered al-
gorithms is equally likely to be used. For example,
all clustering is assumed to take 35% of the pro-
cessor time, we have two clustering algorithms (k-
means and EM), hence, each of them is allocated
17.5%, which is half of the total allocation. The
weighted scores are obtained by the following equa-
tion: Sweighted = N

�N
i=1 wiri, where N = 13 is

the number of algorithms, wi is the weight of each
algorithm, ri = 1 indicates the presence or ri = 0
indicates the absence of a given elementary opera-
tion in algorithm i. The weighted scores in Table
1 indicate the frequency of each operation in the
presumed general purpose autonomous data mining
device, the higher the score - the more important it
is to optimize this operation for making it energy
e�cient. This is a simplified approach to analysis,
since we assume that each algorithm requires the
same number of operations.

18 SIGMOD Record, December 2014 (Vol. 43, No. 4)



Table 1: Analysis of elementary computations.
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Average of the vector elements • • • • • • • • • 10.2
Sub-setting of values, windowing, find • • • • • • • • • 10.1
Normalization to unity • • • • • • • • 9.3
Euclidean distance • • • • • 5.2
Logarithm • • • • • 5.2
Histogram • • • • 4.3
Inner product • • • • 2.9
Square root • • • • 2.9
Discretization • • • • 2.8
Entropy calculation, conditional entropy • • • 2.2
Gini index • • • 2.2
Cosine, Sine (due to exp()) • • 2.0
Sigmoid function (non-linearity due to exp()) • • 1.5
SVD, Matrix inversion • • 1.5
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We can see from the table that vector operations
take the priority. The first four operations receive
by a large margin higher weighted score than the
rest. These should have priority for optimization on
the hardware level with application specific compo-
nents and memory addressing.

5. CONCLUSION
Our position is that in order to be able to cope

with the new challenges of the growing digital uni-
verse, research needs to take a combined view to-
wards data analysis algorithm design and hardware
design. A way to do it is to iteratively analyze the
algorithms at an elementary operation level, opti-
mize the performance of the relevant elementary op-
erations at the hardware level. As the first step in
this direction, we presented a preliminary survey of
such operations.

When designing algorithms, or choosing existing
algorithms for implementation, data analysis should
be aware of energy costs of elementary operations at
di↵erent hardware designs, and much energy which
operation consumes. That would allow to prioritize
elementary operations in the hardware design.

This integrated approach to algorithm design opens
an interesting and important research directions.
The focus should be on understanding the big pic-
ture of the available data analysis algorithms, which
will allow to develop low-energy solutions for the big

data problems in a systematic way.
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