
Foundations of Crowd Data Sourcing

Yael Amsterdamer and Tova Milo

{yaelamst, milo}@post.tau.ac.il
Tel Aviv University, Tel Aviv, Israel

ABSTRACT
Crowdsourcing techniques are very powerful when har-
nessed for the purpose of collecting and managing data.
In order to provide sound scientific foundations for crowd-
sourcing and support the development of efficient crowd-
sourcing processes, adequate formal models must be de-
fined. In particular, the models must formalize unique
characteristics of crowd-based settings, such as the knowl-
edge of the crowd and crowd-provided data; the interac-
tion with crowd members; the inherent inaccuracies and
disagreements in crowd answers; and evaluation met-
rics that capture the cost and effort of the crowd. In this
paper, we review the foundational challenges in model-
ing crowd-based data sourcing, for its two main tasks,
namely, harvesting data and processing it with the help
of the crowd. For each of the two task types, we dive
into the details of one foundational line of work, analyz-
ing its model and reviewing the theoretical results es-
tablished using this model, such as complexity bounds
and efficient algorithms. We also overview a broader
spectrum of work on crowd data sourcing, and highlight
directions for further research.

1. INTRODUCTION
Crowd-based data sourcing is an emerging data

procurement paradigm that engages Web users to
collectively contribute and process information [8].
Well-known crowd platforms include Wikipedia,1
websites of reviews and ratings such as IMDB,2 and
many more.

In order to work with the crowd, one has to
overcome several challenges, such as dealing with
users of di↵erent expertise and reliability, and whose
time, memory and attention are limited; handling
data that is uncertain, subjective and contradictory;
and so on. Particular crowd platforms typically
tackle these challenges in an ad-hoc manner, which
is application-specific and rarely sharable. These
challenges along with the evident potential of crowd-
1

http://en.wikipedia.org/

2

http://www.imdb.com

sourcing have raised the attention of the scientific
community, and called for developing sound foun-
dations and provably e�cient approaches to crowd-
sourcing. The present paper surveys established
theoretical foundations of crowdsourcing, reviews a
variety of approaches and results, and highlights re-
maining questions and directions for future research.

We start, in Section 2, by discussing an essential
but challenging aspect of crowdsourcing, namely,
providing formal models for the crowd. On the one
hand, such models are necessary for studying the the-
oretical foundations of crowdsourcing. On the other
hand, the behavior of the crowd may be very unex-
pected, and hard to formalize. We consider three
aspects of crowdsourcing models, namely the data
model (Section 2.1), the interface with the crowd
(Section 2.2), and the target function of the crowd-
sourcing process (Section 2.3). For each of the three,
we survey the di↵erent modeling considerations, and
solutions that address them.

For example, consider a dietician that wishes to
study the culinary habits of people in a certain
population, e.g., combinations of food dishes that
are consumed together with ca↵eine. The culinary
habits within the population may not be recorded
anywhere, and are individual, so the data must be
collected by asking people about their habits. For
this purpose, crowdsourcing is a notably powerful
tool, as it enables a systematic exploration of a po-
tentially huge data space (relevant combinations of
food dishes) in a manner reminiscent of database
exploration. Considering the underlying model for
such an example, the data model must account for
the unrecorded, personal habits of crowd members.
One must also define the interface with the crowd,
namely what types of questions are posed to crowd
members (e.g., “When you eat X, how often do you
also eat Y ?”), what types of answers are expected
(e.g., selecting a frequency for the habit in ques-
tion from a drop-down list), and how the answers
are analyzed by the system. The latter task is par-

SIGMOD Record, December 2014 (Vol. 43, No. 4) 5

ticularly challenging, since the crowd can provide
answers that are approximate, contradictory and
even malicious. Last, the process of harvesting the
culinary habits from the crowd must be guided by
some target function. For example, since the crowd
is an expensive resource, a typical target function is
learning about the habits of crowd members while
minimizing their e↵ort. Additional considerations
(such as the quality of the computed results) and the
tradeo↵ between them are discussed in Section 2.3.

The crowd could be harnessed for various data-
related tasks, which can be divided into two main
types. First, the crowd could be engaged in harvest-
ing new or missing data; and second, the crowd can
process data that was already collected, by providing
their judgments, comparing, cleaning and matching
data items. Both types of tasks have been studied
in previous literature, e.g., [3, 6, 7, 9, 12, 13, 14, 15,
17, 19, 24, 26, 28]. However, much of the work has
been focused on the technical and practical aspects
of crowdsourcing. To gain a deeper understanding of
the theoretical foundations of crowdsourcing, we pro-
vide a more complete picture for two foundational
research studies, one for harvesting data and one for
processing it with the crowd.

In Section 3, we consider a recently developed
approach for harvesting the crowd, namely, crowd
mining [3], which focuses on identifying statistically
significant patterns within the habits and prefer-
ences of the crowd. Crowd mining can be used, e.g.,
for identifying popular combinations of food dishes
(useful to the dietician from our previous example).
Crowd mining poses several theoretical challenges:
first, its model must account for the individual data
of the crowd which is mined in this process, as well
as for a notion of overall significant data patterns
in a given population (rather than in the habits of a
single person). We outline this in Section 3.1. Sec-
ond, similarly to standard data mining techniques,
the space of patterns may be huge, and e�cient
algorithms are required for making this approach
feasible. Due to the crowd involvement, the setting
is quite di↵erent from that of standard data mining,
and calls for the development of dedicated solutions,
as described in Section 3.2.

To exemplify the second type of crowdsourced
tasks, namely, data processing tasks, we consider
in Section 4 the crowdsourced implementation of
two classic database operators, top-k and group-by,
which has been studied in [7]. For example, consider
the grouping of photos of individuals by person and
finding the most recent photo within each cluster,
something which is easy for humans to do but di�-
cult to evaluate by machines (assuming that person

name tags and photo dates are unavailable or unreli-
able). One promising approach for performing such
a task is with the help of the crowd. In Section 4.1,
we describe the theoretical model defined in [7] for
the crowd, and how the top-k and group-by opera-
tors can be evaluated with the crowd. Unlike crowd
mining, where the considered data is individual, in
this setting we assume that there is an (unknown)
ground truth, i.e., the true top-k most recent photos
of each person; however, this also means that crowd
members may make mistakes, e.g., wrongly identify
the most recent photo. We describe probabilistic
models, which capture the likelihood of errors in
crowd answers, as a function of the question di�-
culty. The target function is then minimizing the
number of questions to the crowd, while guaran-
teeing a low (fixed) overall probability of error. In
Section 4.2 we outline the complexity bounds of
algorithms that achieve this target, and show that
they are quite e�cient.

We further discuss additional notable foundational
works about crowd data sourcing, focused on data
harvesting and processing, at Sections 3.4 and 4.3,
respectively. We conclude in Section 5.

2. MODELING THE CROWD
We next discuss the challenges in providing an ad-

equate formal model to crowdsourcing, which enables
theoretical analysis and the development of e�cient
algorithms. The discussion is divided into the three
aspects of crowdsourcing modeling mentioned in the
Introduction, namely data modeling, modeling the
interface with the crowd on top of this data model,
and the target function of the entire process, which
guides the interaction with the crowd.

2.1 Models of Data
The modeling of data in crowdsourcing leverages

on existing models such as relational databases [7,
10, 16, 18, 20, 21], tree or graph-shaped data [17],
RDF [2], and so on. In cases where the crowd is
only employed to process the data (e.g., filter, group
or sort), standard data models can be used as-is.
The novelty here lies in cases when some of the
data is harvested with the help of the crowd. One
can generally distinguish between procuring two
types of data: general data that captures “general
truth” that typically resides in a standard database,
e.g., the locations of places or opening hours; versus
individual data that concerns individual people, such
as their preferences or habits.

To capture harvested general data in crowdsourc-
ing, one can use models of incomplete data, e.g.,
relational tables with missing values, rows and/or

6 SIGMOD Record, December 2014 (Vol. 43, No. 4)

columns, designated to be filled in by the crowd [20,
21]. In contrast, individual data is typically not
recorded in a systematic manner, and can only be col-
lected by posing questions to people. Such data can
thus be modeled as per-crowd-member knowledge
bases, which are not materialized and are accessed
by restricted means of interacting with the crowd [1,
3]. See a concrete such model in Section 3.1.

2.2 Models of Crowd Interface
Interacting with the crowd can be done in var-

ious, potentially intricate ways. For instance, in
Wikipedia crowd members can add, edit and delete
encyclopedic entries, participate in discussions and
more. However, to enable exact analysis of crowd-
sourcing algorithms, this interaction must be defined
in a precise manner: what types of tasks can be sub-
mitted to the crowd, what is the possible range of
answers or actions of the crowd in response, and how
these are interpreted by the system. These should
reflect, as accurately as possible, the expected be-
havior of the crowd. For example, common tasks to
the crowd include classifying single items [6, 19, 23,
24], comparing sets of items [9, 7, 11, 29], and pro-
viding missing data items and values [10, 20, 21, 25]
in domains where human judgment is required (e.g.,
ratings, recommendations, semantic analysis of im-
ages or text, etc.). The answers may be interpreted
as samples of the full population’s knowledge (which
allows estimating this full knowledge), as votes (ma-
jority vote can be used to reconcile conflicting crowd
answers), as uncertain data (see below) or as data
annotated with trust levels (based on the crowd
members that provided it).

In particular, potential errors in crowd answers
must be accounted for [10, 14, 20]. This is typically
done in crowdsourcing using error probability mod-
els. For example, in [7], the error model captures
the increase in the error probability of increasingly
di�cult tasks, as described in Section 4.1. The error
probability can be estimated based on preliminary
tests with gold-standard data (where the ground
truth is known) [6, 19] or by comparing the answers
of di↵erent users to the same question [3, 14]. Error
estimations for individual tasks allow estimating and
adjusting the overall probability of error, by assign-
ing tasks with higher uncertainty to more crowd
members. See Section 4.1.

2.3 Models of the Target Function
Several factors a↵ect the performance of crowd

data sourcing processes.
• Traditional computational factors: computational

and space complexity, network load, etc.

• Factors a↵ected by the number of tasks posed to
the crowd:
– Latency – the response time of the crowd is rel-

atively slow, and may be reduced by executing
several tasks in parallel [20].

– Monetary cost – crowd members may be paid
for performing tasks, as in crowdsourcing plat-
forms like Amazon Mechanical Turk.3

– The attention and amount of e↵ort of a crowd
member may be limited. [4]

• Factors reflecting the output quality :
– Output errors – may occur because of inaccu-

rate crowd answers [7].
– Faithful representation of the trends in the tar-

get population – relevant for the harvesting of
individual data, where results are typically com-
puted based on the answers of only a small
fraction of the population [3].

– Coverage – the number of collected or processed
data items [20].

There exist natural tradeo↵s between the aforemen-
tioned factors. E.g., computing the optimal ques-
tions to the crowd (which may be computationally
expensive) may reduce the number of required ques-
tions [1]; or, executing many crowd tasks in parallel
may reduce the overall latency but lead to the exe-
cution of redundant tasks [6, 20]. This means that
any crowdsourcing process can only optimize some
of the factors, depending on the application. Other
factors may be fixed or bounded (e.g., the budget).
In the sequel, we describe several target functions
used in specific crowdsourcing processes.

3. HARVESTING DATA WITH THE CROWD
As promised in the Introduction, in this section

we will exemplify the use of crowdsourcing for har-
vesting data from the crowd, by diving into the
theoretical foundations of a particular paradigm,
namely, crowd mining, which have been studied
in [1, 2, 3]. We start by providing a general moti-
vation for crowd mining, then detail the underlying
formal model established in [1, 2, 3] and overview
some of the main theoretical results. Throughout
the section, we use the culinary preferences example
from the Introduction as a running example, but
note that crowd mining applies to many other real-
life scenarios that involve collecting data about the
habits and preferences of the crowd [3].

Classic data mining algorithms discover interest-
ing patterns in large data sets. Such algorithms
typically assume that the transactions to be mined
(sets of co-occurring data items) are stored in a
database. In contrast, individual data is typically
3

https://www.mturk.com/

SIGMOD Record, December 2014 (Vol. 43, No. 4) 7

not recorded in a systematic manner for large popu-
lations, and thus crowdsourcing may be required for
mining such data.

The individual knowledge of a people can be mod-
eled per-person databases, accessed by posing ques-
tions to the relevant person. These databases cannot
be materialized, since asking a person to recall and
report every piece of knowledge is usually impossible.
Instead, the model of [3] relies on the common ability
of people to recall information about their habits in
the form of summaries, as shown by social studies [5].
For instance, people can report how often they eat a
specific combination of food dishes. Crowd mining
methods thus ask crowd members to specify their
habits and/or provide the frequency at which they
engage in these habits. The answers of several users
are aggregated to estimate the overall significance
of a habit (data pattern) in the population.

In [3], a framework for estimating the confidence
in the habit significance is described, and is em-
ployed for deciding which question to ask the crowd
next (see a review below). In [1], this framework
is extended by leveraging semantic connections be-
tween data items in order to e�ciently explore the
space of data patterns and identify the significant
ones. E.g., if it is known that few people in a cer-
tain population drink co↵ee, and that espresso is a
type of co↵ee, it is useless to ask people about their
espresso drinking habits. Finally, in [2], the crowd
mining model is extended to RDF-style facts4 rather
than sets of items, and a novel, rich query language
allows specifying complex data patterns of interest.
The sound theoretical results of [1] are proved to
extend to the more expressive setting of [2].

3.1 Formal Model
We next describe a combined formal model for

the crowd mining setting of [1, 3]. For simplicity, we
discuss the most basic setting, and mention how it
can be extended later, in Section 3.3.

Data model. Let I = {i1, i2, i3, . . . } be a finite set
of item names. Define a database D as a finite bag
(multiset) of transactions over I, s.t. each transac-
tion T 2 D represents an occasion, e.g., a meal. We
start with a simple model where every T contains
an itemset A ✓ I, reflecting, e.g., the set of food
dishes consumed in a particular meal. Let U be
a set of users. Every u 2 U is associated with a
personal database Du containing the transactions
of u (e.g., all the meals in u’s history). |Du| de-
notes the number of transactions in Du. The fre-
quency or support of an itemset A ✓ I in Du is
4

http://www.w3.org/standards/techs/rdf

supp
u
(A) := |{T 2 Du | A ✓ T}| / |Du|. This indi-

vidual significance measure will be aggregated to
identify the overall frequent itemsets in the popula-
tion. For example, in the domain of culinary habits,
I may consist of di↵erent food dishes, drinks, etc.
A transaction T 2 Du will contain all the items
in I consumed by u in a particular meal. If, e.g.,
the set {co↵ee, fruits, yogurt} is frequent, it means
that these food and drink items form a frequently
consumed combination.

As noted in [22], there may be dependencies be-
tween itemsets resulting from semantic relations
between items. For instance, the itemset {chocolate,
co↵ee} is semantically implied by any transaction
containing {chocolate, espresso}, since espresso is a
(type of) co↵ee. Such semantic dependencies can be
naturally captured by a taxonomy [22]. Formally,
we define a taxonomy as a partial order over I,
such that i  i

0 indicates that item i

0 is more specific
than i (any i

0 is also an i).
Based on , the semantic relationship between

items, we can define a corresponding order relation
on itemsets.5 For itemsets A, B we define A  B

i↵ every item in A is implied by some item in B.
We call the obtained structure the itemset taxon-
omy and denote it by I() . I() is then used to
extend the definition of the support of an itemset A

to supp
u
(A) := |{T 2 Du | A  T}| / |Du|, i.e., the

fraction of transactions that semantically imply A.

Crowd interface. In our crowd-based setting, the
personal database Du is not materialized and only
models the knowledge of u, so we can only access Du

by asking u questions. As shown in [3], one can ask
people for summaries of their personal knowledge,
and then interpret them as data patterns – itemset
frequencies in our case. We thus abstractly model
two types of crowd questions, as follows.
• Closed question. Parameterized by an itemset

A ✓ I and asks a user u for supp
Du

(A).
• Open questions. Asks a user u to provide some

itemset A ✓ I along with supp
Du

(A).
Intuitively, closed questions are useful for comput-
ing the significance of a particular itemset, whereas
open questions are useful for discovering previously
unknown items (if the items domain is not given
in advance) and for quickly finding itemsets that
represent prominent data patterns (which are more
likely to be spontaneously recalled by users).

5Some itemsets that are semantically equivalent are
identified by this relation, e.g., {co↵ee, espresso} is repre-
sented by the equivalent, more concise {espresso} (since
drinking espresso is a particular case of drinking co↵ee),
see [1] for full details.

8 SIGMOD Record, December 2014 (Vol. 43, No. 4)

With respect to the input With respect to the input and output

Crowd

Complexity

Lower ⌦(log |S()|) ⌦(|mfi | + |mii |)
Upper O(log |S()|) O(| | · (|mfi | + |mii |))

Comput.

Complexity

Lower ⌦(log |S()|) EQ-hard

Upper O
⇣
|I()| ·

⇣
| |2 + |I()|

⌘⌘
O

⇣
|I()| ·

⇣
| |2 + |mfi | + |mii |

⌘⌘

Table 1: Summary of crowd mining complexity results, where |I()|  2O(| |) and |S()|  2O(|I()|)

Target function. To compute the overall significance
of an itemset A, we need to aggregate the support
of A in the databases of the users in U , and apply a
predicate for deciding whether the result is significant
or not. In [3], average is used for aggregation, and
the itemset A is considered significant (frequent) if
its support exceeds a predefined threshold ⇥.

In practice, it is impossible to obtain the answers
of all the users about a certain rule. Thus, in [3], a
sample-based empirical estimation is employed by
posing questions about each data pattern to a ran-
dom (uniform) sample of the crowd members. In a
nutshell, given a small set of user answers regarding
a particular itemset, the technique of [3] estimates
the unknown distribution of the mean of these an-
swers (the aggregated result). As more answers are
obtained from the crowd, this distribution converges
to the true mean in the entire population. The deci-
sion whether an itemset is significant is done based
on the probability that the mean support of this
itemset exceeds the threshold ⇥.

Based on the above setting, the target function of
crowd mining can be defined in di↵erent ways. In [3],
a greedy algorithm is considered, whose target is
to choose the next crowd question that minimizes
the overall expected uncertainty – the single opti-
mization factor. The uncertainty is defined based on
estimating, per data pattern, the probability that
it was wrongly classified as (in)significant. An al-
ternative target function considered in [1] aims to
estimate the significance of all the itemsets, while
minimizing first the number of questions posed to
the crowd (termed crowd complexity), and then the
computational complexity of selecting these ques-
tions. The uncertainty is assumed to be controlled
by asking a su�cient number of users about each
itemset. I.e., the error is bounded while the crowd
and computational complexities are optimized.

3.2 Theoretical Results
The model for crowd mining sets the formal foun-

dations for the development of provably e�cient
crowdsourcing algorithms, as well as studying their
complexity bounds. We next overview such results
for the basic model described above, which are funda-
mental and can be adapted for more complex setting
(see Section 3.3). Formally, we define the problem
of CrowdMine as follows: given a domain of items
I, a taxonomy over its items, find the frequent
itemsets in the induced taxonomy of itemsets I(),
by posing closed questions to the crowd. (Open
questions are further considered in [3, 2], but the
theoretical results below only apply to close ques-
tions.) The following theorem summarizes the main
complexity results for CrowdMine established in [1].

Theorem 3.1 ([1]). The complexity bounds of
solving CrowdMine are stated in Table 1.

In the first column of Table 1, complexity bounds
are given in terms the input taxonomy . In con-
trast, in the second column, complexity bounds are
given in terms of both the input and the output of
the mining process, namely, the number of maxi-
mal (most specific) frequent itemsets (MFIs) and
minimal (most general) infrequent itemsets (MIIs).
Intuitively, the MFIs and MIIs are alternative con-
cise descriptions of the frequent itemsets, and thus
capture the output of the mining process.

The first row of Table 1 presents crowd complexity
results, defined as the number of distinct itemsets the
crowd is asked about (assuming questions are posed
to a su�cient number of users to determine the item-
set frequency). Given a taxonomy , CrowdMine
has a tight bound logarithmic in |S() |, the num-
ber of possible Boolean frequency functions, which
depends on . As reflected in the inequalities at the
bottom of Table 1, log |S() | is at most exponential
in | |. When the output is considered, the lower
complexity bound is the sum of the numbers of MFIs
and MIIs, and the upper bound adds the taxonomy
size as a multiplicative factor (i.e., its complexity
nearly but not exactly achieves the lower bound).

SIGMOD Record, December 2014 (Vol. 43, No. 4) 9

Algorithm
Input: R: the most general data pattern
Output: The set of MFIs M

1 Add R to an empty priority queue Q;
2 M ;;
3 while Q contains unclassified data patterns

do
4 A the minimal pattern in Q ;
5 if ask(A) then
6 while exists unclassified B s.t.

A l B do
7 if ask(B) then A B;
8 add A to M ;
9 return M ;

Algorithm 1: Crowd mining algorithm

This is proved by providing a constructive algorithm,
outlined in the sequel.

The second row of the table, presents computa-
tional complexity bounds, of performing an optimal
selection of the itemsets the crowd will be asked
about throughout the mining process. The crowd
complexity lower bound is trivially a lower bound of
computational complexity, but w.r.t. the output a
stronger hardness result is obtained by showing that
the problem is EQ-hard in the taxonomy size and
in the numbers of MFIs and MIIs. EQ is a basic
problem in Boolean function learning, not known to
be solvable in PTIME [1]. The upper bounds in the
bottom row are achieved by the same algorithm that
achieves the crowd complexity upper bound, and are
polynomial in |I()|, and at most exponential in | |.
See [1] for the proofs of these theoretical results.

The algorithm used in all the constructive6 upper
bound proofs in [1] is presented next in a slightly
simplified manner in Algorithm 1, based on its ex-
tension from [2]. Although the algorithm is simple,
it is both complexity-wise e�cient, useful in practice,
and can be adapted for more complex settings [2].

Algorithm 1 maintains a priority queue Q where
itemsets are ordered from the most general to the
most specific. Q is initialized with the single most
general pattern. Iteratively, the algorithm pops out
an unclassified data pattern A from Q, which is not
known to be (in)significant yet. To compute whether
the pattern is significant, the algorithm uses the
function ask(·), which abstracts, for simplicity, the
process of posing questions about A to several crowd
members. The algorithm then explores subsequent
patterns in the partial order (using the l relation),

6The exception is the upper crowd complexity w.r.t. the
input size, whose proof is a non-constructive one.

searching for patterns that are both more specific
and significant, until it discovers an MFI. Every
call to ask(·) can classify multiple patterns, using
semantic inference: if A  B and B is significant,
so is A; and vice versa.

The number of MFIs and MIIs is typically much
smaller than the number of itemsets [1]. Recall that
the crowd complexity of Algorithm 1 described above
is O(| | · (|mfi | + |mii |)). Intuitively, the inner loop
of the algorithm can check at most | | itemsets, since
we can attempt add each item to the current itemset
at most once (and if this results in an insignificant
itemset B, all the more specific itemsets C s.t. B 
C are inferred to be insignificant). Since each loop
identifies an MFI or an MII (if the first itemset
popped from Q is insignificant), we obtain the crowd
complexity bound mentioned above.

3.3 Extensions
The simple model of mining itemsets cannot cap-

ture all types of interesting patterns that one might
want to mine. E.g., it can express sets of co-occurring
items, but not more complex relationships between
them. This model is thus extended in [3] to min-
ing association rules: given two itemsets A and B,
A!B is an association rule denoting an implication
between A and B, which can be viewed as a likeli-
hood of transactions which contain A to also contain
B. For example, {co↵ee,fruits}! {yogurt} can sig-
nify that whenever people have co↵ee and fruits,
they are likely to also have yogurt. In [2], even more
complex data patterns are considered, namely sets
and association rules of RDF-style facts. Given a
vocabulary of items I = E [R, a fact f 2 E ⇥R⇥E
denotes a relationship r 2 R between two items
e1, e2 2 E , e.g., the fact Co↵ee drinkAt Starbucks
denotes a habit of drinking co↵ee in Starbucks. The
semantic order relation between itemsets is extended
in [2] to support sets of facts.

Algorithm 1 supports identifying MFIs within the
entire space of itemsets. However, people often may
be interested only in specific patterns. To restrict
the search, the work of [2] introduces a query lan-
guage called OASSIS-QL, which allows to specifying
subset of data patterns that are of interest to the
user, and mining only them from the crowd. Extend-
ing our example from the beginning of the section,
the dietician may only be interested in studying culi-
nary preferences with respect to dishes with ca↵eine,
or meals eaten at restaurants in a certain region.
Using a syntax based on SPARQL, the RDF query
language, OASSIS-QL allows selecting only the rele-
vant food fishes/ restaurants from a knowledge base.
The selected items are then used to generate rel-

10 SIGMOD Record, December 2014 (Vol. 43, No. 4)

evant habits on which questions are posed to the
crowd. It is proved in [2] that given a query, a notion
equivalent to MFI and MII can be defined over the
patterns that match it; then, Algorithm 1 is adapted
to support finding such MFIs and MIIs, which gives
a complexity bound similar to the one obtained in [1]
for itemsets and without a query.

3.4 Harvesting General Data
The model and algorithms described above only

deal with harvesting individual data from the crowd.
Another line of work in crowdsourcing considers har-
vesting general data from the crowd. For instance,
some recent work (e.g., [10, 16, 20, 21]) suggests
the construction of declarative frameworks, which
outsource the harvesting of certain missing values
or missing tuples to the crowd. While most of this
work focuses on the practical and technical aspects
of the problem, we mention here two example works
that focus on the theoretical aspects of general data
collection with the crowd.

The first is [4], which makes the closed-world as-
sumption that there is a known set of missing values.
Each value could be fetched by posing a specific ques-
tion to a su�cient (fixed) number of crowd members.
The paper considers several target functions, includ-
ing minimizing quality-related factors such as the
max or the sum of uncertainties over all the values,
while fixing cost-related parameters such as the over-
all number of questions asked, the maximal number
of questions per user, etc. The results in [4] establish
the complexity bounds of this problem and include
constructive, e�cient algorithms where possible. In
particular, all the considered variants of the problem
are proven to be in PTIME, except for optimizing
the sum of uncertainties given a bounded number
of questions per-user, or when the users are asked
groups of overlapping questions. These exceptions
are proved NP-hard.

The second work we mention is [25], which studies
the harvesting of data under an open-world assump-
tion. Many answers for a given question are collected
from the crowd, e.g., the crowd can be asked to list
ice-cream flavors. The key observation is that the
more answers are collected, the next answer is less
likely to provide a new value not obtained before.
For example, after the prominent ice-cream flavors
has been collected (e.g., vanilla, chocolate) a crowd
member is less likely to spontaneously choose a flavor
that is not in the list. To address this phenomenon,
statistical tools are developed in [25], for estimating
the future rate of incoming new values based on the
rate observed thus far. These tools support various
target functions that balance the cost (number of

questions) versus coverage (number of unique values
obtained) tradeo↵.

4. DATA PROCESSING WITH THE CROWD
In addition to harvesting data from the crowd,

the crowd has been proved to be very e↵ective in
tasks of processing data, such as cleaning, sorting
and matching data items (e.g., [9, 11, 15, 23, 24,
27, 29]). In particular, some recent work (e.g., [6,
7, 12, 14, 15, 17, 19, 26, 28]), including some of the
declarative crowdsourcing frameworks mentioned
before [10, 16, 20], consider the execution of common
query operators such as filter, join, count and max.
As an example, we elaborate, in this section, on the
theoretical foundations of computing top-k and
group-by queries, studied in [7].

Suppose we have a database of unlabeled photos,
PhotoDB, and we are interested in executing the
following query over it.

SELECT Most-recent(photo)
FROM PhotoDB
GROUP BY Person(photo)

PhotoDB contains only photos of a single person
(whose face can be recognized), e.g., Alice in her
o�ce or Bob in front of the Louvre, but not of
Alice and Bob together. We now wish to: (i) group
(cluster) the photos by the person they represent;
and (ii) find the most recent photo – or the k most
recent photos – of each person (max/top-k).

The query above includes two user-defined func-
tions: Person clusters photos of the same person,
and Most-recent selects the most recent photo
within each cluster. Note that the most recent photo
is also the one in which the photographed person
is the oldest. While the Person function might be
performed by face recognition software, it is slow
and costly. Furthermore, the results may not be
impressive for a time span of 20 years during which
the person ages from babyhood to being an adult.
As for ordering the photos by date, we assume there
is no trustworthy date of when the photo was taken.
This may be the case due to untuned dates in the
camera, scanned photos, etc. Thus, we ask crowd
members to identify the person in the photo and
compare the photo dates based on the person’s age
and perhaps other cues.

4.1 Formal Model
The data model in this setting is a standard one,

namely, a repository of photos. The user-defined
functions we wish to execute with the help of the
crowd may be viewed as fetching meta-data about
the photos. We next detail the crowd interface

SIGMOD Record, December 2014 (Vol. 43, No. 4) 11

Max/Top-k Clustering Correlated Clustering

⇥
�
n log 1

�

�
(constant error) ⌦(nJ) O

�
(n log (↵J) + ↵J) log n

�

�

n + o
�

n
� log 1

�

�
(variable error in general) O

�
nJ log n

�

�
(in general)

n + O
⇣

log log n
�2 log 1

�

⌘
(variable error, f(�) = ⌦(�)) O(nJ) (when " = 1

2)

n + O
�
log2 1

�

�
(variable error, f(�) = 2�)

Table 2: Summary of top-k and group by complexity results; k is constant; n is the database size; � is the
maximal error; f(�) is the error as a function of the distance between items �; J is the number of clusters;
1
2 � " is the user error; ↵ is a correlation factor.

model assumed in this setting, along with the model
of crowd errors.

Crowd interface. Two types of questions are used
to respectively group and order data items (photos).
• Type question. Given two data items i, i

0 return
TRUE i↵ they belong to the same type, e.g., the
two photos are of the same person.

• Value questions. Given two data items i, i

0

return TRUE i↵ i < i

0 by the order relation over
items, e.g., the photo i was taken before i

0.
Given a perfect oracle that answers these questions,
it is clearly possible to group the data items and
partially sort them to find the top-k. However, the
crowd may make mistakes, i.e. they may not cor-
rectly identify two pictures as being of the same
person (type error) or of one picture of a person
being more recent than another picture of that same
person (value error). Two models of error are con-
sidered in [7], as follows.
• Constant error model: Each type or value

question is answered correctly by the crowd with
a constant probability >

1
2 .

• Variable error model: Models an increase in
error probability for items that are closer in the
considered ordering.
While the constant error model is more standard

(and used in used in previous crowdsourcing work,
e.g., [6, 19]), the variable model is novel. It captures
the intuition that the closer items are in the order
relation, the harder it is for a crowd member to
correctly order them. It is much easier, e.g., to
compare the dates of two photos of the same person
with 10 years apart than photos with one week apart,
and the error probability increases accordingly.

Target function. Using either of the error models
mentioned above, it is impossible to guarantee per-
fect clustering or top-k selection. Hence, the tech-
niques described in [7] focus on bounding the total
error probability: given an arbitrarily small constant

� 2 (0,

1
2), the techniques compute the correct an-

swer with probability > 1� �. Within this bound,
the techniques aim to perform the grouping and/or
top-k selection tasks while minimizing the number
of questions posed to the crowd.

4.2 Theoretical Results
Let us formally define the problems of computing

top-k and group by queries with the crowd: let n be
the number of items in the database; k a constant;
and � > 0 the maximal allowed overall probability of
error. TOPk is the problem of computing the top-k
items in the database, CLUSTER is the problem of
clustering the n items, and CCLUSTER is the prob-
lem of clustering when the clusters are correlated
with an order over the data items. For the three
problems, the correct answer must be computed in
probability � 1� �, and the complexity is measured
by the number of questions posed to the crowd. The
next theorem summarizes the main results for these
problems, achieved in [7].

Theorem 4.1 ([7]). The complexity bounds of
solving TOPk, CLUSTER and CCLUSTER are stated in
Table 2.

We next briefly explain these results.

TOPk. It is proved in [7] that, when each value ques-
tion is answered correctly with probability 1

2 + "

for a constant ", the maximum can be computed
with probability � 1 � � in time O

�
n log 1

�

�
; they

also show that this bound is tight. In the novel
variable error model a much better upper bound
can be obtained: suppose the two elements being
compared by a value question are � apart in the
sorted order. Then the probability of error is  1

f(�)

for a monotone, non-negative error function f , i.e.,
the error in the answer decreases when the distance
� between the elements increases. For TOPk (with a
constant k), n + o(n) value questions are su�cient
given any strictly monotone error function f , where

12 SIGMOD Record, December 2014 (Vol. 43, No. 4)

o(n) denotes a function that is strictly asymptotically
smaller than n.

CLUSTER. For the general clustering problem using
the fixed cost model, a lower bound of ⌦(nJ) is
achieved for discovering J clusters. For the upper
bound, a simple algorithm that compares O(nJ)
pairs of elements by type questions proves that the
lower bound is tight when " = 1

2 ; if the answers to
the type questions are erroneous (" <

1
2), the number

of questions increases by a factor of O(log n).

CCLUSTER. Consider the case when item types are
correlated with an order over item values. E.g.,
suppose we have a database of hotels in a city, to
be clustered by districts. Then there may be a high
correlation between the district and the hotel rating.
Formally, let ↵ 2 [1, n� 1] be the correlation factor
between the value and type (order and clustering),
defined as follows: sort the items according to their
value; the distance between elements xi and xj of
type T is |{xl|xi < xl <, xl is not of type T}|. ↵ is
the maximal such distance +1. When ↵ is small the
correlation can be leveraged to reduce the clustering
complexity [7].

4.3 Additional Crowdsourced Operators
To complete the picture, we note a few more ex-

ample works about other data processing operators.
The problem of discovering the maximum element
in a set of data items, which is a sub-problem of [7]
(top-1), was also studied in [12]. However, instead
of finding the maximum element exactly, [12] fo-
cuses on the judgment problem (which element has
the maximum likelihood of being the maximum el-
ement) and the next vote problem (which future
comparisons will be most e↵ective). Finding the
exact solution to these problems was shown to be
hard, and instead, e�cient heuristics were proposed.

The crowd sourcing of filter or selection operator,
namely, using humans to provide a binary (or, in
general, n-ary) evaluation of data items, was studied
in [19], and later extended in [18]. Such an operator
can be used, e.g., to filter images in a database, by
asking crowd members to evaluate each image. The
main challenges addressed in this work include the
modeling the error of the crowd, and computing a
strategy for deciding whether to pose some ques-
tion to more people or make a decision. The model
of [19] assumes that the error probabilities are fixed
and known, which is later relaxed in [18] to sup-
port per-worker and per-question error probabilities.
The complexity bounds of the problem were studied
in [18, 19] for various target functions, which balance
cost and accuracy in di↵erent ways.

We also note the work of [17] about crowd-assisted
searching of elements within a directed acyclic graph,
by asking reachability questions. For example, this
operator can be used for classifying documents within
a hierarchy of categories, by asking “Does document
X belong to category Y?”, which is interpreted as
“Is the most specific category of X reachable from
Y?”, assuming that directed edges signify category
subsumption. Two target functions for this problem
were considered in [17], of either minimizing the
number of questions while obtaining full coverage,
or maximizing the accuracy within a fixed budget
of questions. The complexity bounds of computing
which questions to ask were studied for di↵erent
properties of the graph structure, and e�cient algo-
rithms were proposed, where possible.

5. CONCLUSION
In this paper, we discussed the foundations of

crowd data sourcing, focusing on its two main uses,
namely, harvesting data and processing it with the
crowd. We have highlighted the various challenges
in providing adequate formal models for the crowd,
and the general components of existing solutions
that alleviate these challenges. We have then re-
viewed in more detail a few particular examples for
crowdsourcing works, in light of their specific chal-
lenges, solutions and established results. We note
that many other related challenges were considered
by literature on crowdsourcing, which are out of the
scope of this paper. For instance, these include the
construction of data queries with the help of the
crowd; the management of reward o↵ered to crowd
members; the assignment of tasks based on crowd
member expertise and availability; and so on.

The survey of crowdsourcing works reveals some
interesting challenges for future work. In particular,
harvesting both individual and general data together
has not been considered, and may be beneficial, e.g.,
for dynamically refining a general knowledge base
according to harvested individual data. In addition,
crowdsourcing problems are typically studied with
respect to a predefined target function. A more
generic solution could employ a parameterizable tar-
get function, to support customizing the balance
between di↵erent cost and quality factors. Other
challenges include dealing with privacy issues; the se-
lection of crowd members according to their profiles;
the design of user interface; and the maintenance of
crowd-provided data, to account for trust, staleness,
etc. Finally, richer crowd and error models that cap-
ture, more fully, di↵erent aspects of user behavior
are also an intriguing research direction.

SIGMOD Record, December 2014 (Vol. 43, No. 4) 13

Acknowledgments. We are very grateful to Antoine
Amarilli, Susan B Davidson, Yael Grossman, Sanjeev
Khanna, Slava Novgorodov, Sudeepa Roy, Pierre
Senellart and Amit Somech, our collaborators on
the main work surveyed in this paper. We also thank
the anonymous reviewer for useful comments.

This work has been partially funded by the Euro-
pean Research Council under the FP7, ERC grant
MoDaS, agreement 291071, and by the Israel Min-
istry of Science.

6. REFERENCES
[1] A. Amarilli, Y. Amsterdamer, and T. Milo. On

the complexity of mining itemsets from the
crowd using taxonomies. In ICDT, 2014.

[2] Y. Amsterdamer, S. B. Davidson, T. Milo,
S. Novgorodov, and A. Somech. OASSIS:
query driven crowd mining. In SIGMOD, 2014.

[3] Y. Amsterdamer, Y. Grossman, T. Milo, and
P. Senellart. Crowd mining. In SIGMOD, 2013.

[4] R. Boim, O. Greenshpan, T. Milo,
S. Novgorodov, N. Polyzotis, and W.-C. Tan.
Asking the right questions in crowd data
sourcing. In ICDE, 2012.

[5] N. Bradburn, L. Rips, and S. Shevell.
Answering autobiographical questions: the
impact of memory and inference on surveys.
Science, 236(4798), 1987.

[6] A. Das Sarma, A. G. Parameswaran,
H. Garcia-Molina, and A. Y. Halevy.
Crowd-powered find algorithms. In ICDE,
2014.

[7] S. B. Davidson, S. Khanna, T. Milo, and
S. Roy. Using the crowd for top-k and
group-by queries. In ICDT, 2013.

[8] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the World-Wide
Web. Commun. ACM, 54(4), 2011.

[9] J. Fan, M. Lu, B. C. Ooi, W. Tan, and
M. Zhang. A hybrid machine-crowdsourcing
system for matching web tables. In ICDE,
2014.

[10] M. Franklin, D. Kossmann, T. Kraska,
S. Ramesh, and R. Xin. CrowdDB: answering
queries with crowdsourcing. In SIGMOD, 2011.

[11] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. W. Shavlik, and X. Zhu.
Corleone: hands-o↵ crowdsourcing for entity
matching. In SIGMOD, 2014.

[12] S. Guo, A. G. Parameswaran, and
H. Garcia-Molina. So who won?: dynamic max
discovery with the crowd. In SIGMOD, 2012.

[13] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and
M. Zhang. CDAS: A crowdsourcing data
analytics system. PVLDB, 5(10), 2012.

[14] A. Marcus, D. Karger, S. Madden, R. Miller,
and S. Oh. Counting with the crowd. In
VLDB, 2012.

[15] A. Marcus, E. Wu, D. R. Karger, S. Madden,
and R. C. Miller. Human-powered sorts and
joins. PVLDB, 5(1), 2011.

[16] A. Marcus, E. Wu, S. Madden, and R. C.
Miller. Crowdsourced databases: Query
processing with people. In CIDR, 2011.

[17] A. Parameswaran, A. Sarma,
H. Garcia-Molina, N. Polyzotis, and J. Widom.
Human-assisted graph search: it’s okay to ask
questions. PVLDB, 4(5), 2011.

[18] A. G. Parameswaran, S. Boyd,
H. Garcia-Molina, A. Gupta, N. Polyzotis, and
J. Widom. Optimal crowd-powered rating and
filtering algorithms. PVLDB, 7(9), 2014.

[19] A. G. Parameswaran, H. Garcia-Molina,
H. Park, N. Polyzotis, A. Ramesh, and
J. Widom. CrowdScreen: algorithms for
filtering data with humans. In SIGMOD, 2012.

[20] A. G. Parameswaran, H. Park,
H. Garcia-Molina, N. Polyzotis, and J. Widom.
Deco: declarative crowdsourcing. In CIKM,
2012.

[21] H. Park and J. Widom. CrowdFill: collecting
structured data from the crowd. In SIGMOD,
2014.

[22] R. Srikant and R. Agrawal. Mining generalized
association rules. In VLDB, 1995.

[23] M. Stonebraker, D. Bruckner, I. F. Ilyas,
G. Beskales, M. Cherniack, S. B. Zdonik,
A. Pagan, and S. Xu. Data curation at scale:
The Data Tamer system. In CIDR, 2013.

[24] C. Sun, N. Rampalli, F. Yang, and A. Doan.
Chimera: Large-scale classification using
machine learning, rules, and crowdsourcing.
PVLDB, 7(13), 2014.

[25] B. Trushkowsky, T. Kraska, M. J. Franklin,
and P. Sarkar. Crowdsourced enumeration
queries. In ICDE, 2013.

[26] P. Venetis, H. Garcia-Molina, K. Huang, and
N. Polyzotis. Max algorithms in crowdsourcing
environments. In WWW, 2012.

[27] J. Wang, T. Kraska, M. J. Franklin, and
J. Feng. CrowdER: crowdsourcing entity
resolution. PVLDB, 5(11), 2012.

[28] J. Wang, G. Li, T. Kraska, M. J. Franklin, and
J. Feng. Leveraging transitive relations for
crowdsourced joins. In SIGMOD, 2013.

[29] C. Zhang, L. Chen, H. V. Jagadish, and
C. Cao. Reducing uncertainty of schema
matching via crowdsourcing. PVLDB, 6(9),
2013.

14 SIGMOD Record, December 2014 (Vol. 43, No. 4)

