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The database group at TUM was established in 1972
by Rudolf Bayer [4] who retired in 2004. The group is
reponsible for the foundational and advanced database
curriculum of the department’s 3500 undergraduate and
graduate students. The group consists of two post-docs
and around 15 doctoral students. In the following we
will overview the research agenda of the last couple of
years only; previous projects and publications can be
viewed on our web site.

1. THE HYPER PROJECT
Most of the recent work of the TUM database group

was done within the context of the long-term HyPer pro-
ject. The goal of this project is to develop a high-per-
formance database engine that (finally) unites the two
seemingly disparate worlds: OLTP and OLAP. For this
purpose we developped a hybrid main memory database
system that supports OLTP- and OLAP-applications –
in parallel on the same database state. The key idea is
to exploit the OS/processor-support for virtual memory
management. This allows to spawn consistent database
snapshots to isolate OLAP queries from the OLTP trans-
actions – even though they share the same database [13].
After about three years of development, HyPer now is a
fairly mature database system and can be experimented
with by other researchers via our web site hyper-db.
de as shown in Figure 1.

In HyPer the OLTP process “owns” the database and
periodically (e.g., in the order of seconds or minutes)
forks an OLAP process. This OLAP process constitutes
a fresh transaction consistent snapshot of the database.
Thereby, we exploit operating systems functionality to
create virtual memory snapshots for new, cloned pro-
cesses. In Unix, for example, this is done by creating a
child process of the OLTP process via the fork system
call.

The forked child process obtains an exact copy of the
parent processes address space, as exemplified on the
lower right-hand side in Figure 1 by the overlayed page
frame panel. This virtual memory snapshot that is cre-
ated by the fork-operation will be used for executing

a session of OLAP queries. These queries can be ex-
ecuted in parallel threads or serially, depending on the
system resources or client requirements. In essence, the
virtual memory snapshot mechanism constitutes a OS-
/hardware supported shadow paging mechanism as pro-
posed decades ago for disk-based database systems by
Lorie [17]. However, the original proposal incurred se-
vere costs as it had to be software-controlled and it de-
stroyed the clustering on disk. Neither of these draw-
backs occurs in the virtual memory snapshotting as clus-
tering across RAM pages is not an issue. Furthermore,
the sharing of pages and the necessary copy-on-update/
write is managed by the operating system with effective
hardware support of the MMU (memory management
unit) via the page table that translates VM addresses to
physical pages and traps necessary replication (copy-on-
write) actions.

Our performance results demonstrate that HyPer com-
bines the best of the two “worlds”: HyPer’s OLTP per-
formance is comparable to that of dedicated OLTP en-
gines (like VoltDB or Hekaton) and HyPer’s OLAP query
response times match those of the best pure OLAP en-
gines (e.g., MonetDB and VectorWise). It should be em-
phasized that HyPer can match (or beat) these two best-
of-breed transaction (VoltDB) and query (MonetDB, Vec-
torWise) processing engines at the same time by per-
forming both workloads in parallel on the same database
state. This performance evaluation was carried out on
the basis of a new business intelligence benchmark, the
so-called CH-benCHmark [7], that combines the trans-
actional workload of TPC-C with the OLAP queries of
TPC-H – executed against the same database state. Hy-
per’s excellent performance is due to the following de-
sign choices:

• HyPer relies on in-memory data management with-
out the ballast of traditional database systems that
is caused by DBMS-controlled page structures and
buffer management. The SQL table definitions are
transformed into simple vector-based virtual mem-
ory representations – which constitutes a column-
oriented physical storage scheme.
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Figure 1: www.hyper-db.de Web Site

• The OLAP processing is separated from the mis-
sion-critical OLTP transaction processing by fork-
ing virtual memory snapshots. Thus, no concur-
rency control mechanisms other than the hardware-
assisted VM management are needed to separate
the two workload classes.

• Transactions and queries are specified in SQL and
are efficiently compiled into LLVM assembly code
[21]. The transactions are specified in an SQL
scripting language (called HyPer-Script) and re-
gistered as precanned, stored procedures. For the
JIT-compiled interactive queries the very fast com-
pilation into assembly language (LLVM) as op-
posed to a slow cross-compilation (into C/C++)
is essential. The query evaluation follows a data-
centric paradigm by applying as many operations
on a data object as possible in between pipeline
breakers. This evaluation scheme goes one step
beyond cache-locality towards register-locality.

• The lock-free execution model [16, 18] in com-
bination with group committing achieves extreme
scalability in terms of transaction throughput – with-
out compromising the “holy grail” of ACID (that
was sacrificed by the NoSQL/key value stores).

• While in-core OLAP query processing can be based

on sequential scans, this is not possible for trans-
action processing. Therefore, we have developed
a sophisticated main-memory indexing structure,
the ART tree [15].

• We developed an extremely efficient loading pro-
cess [19] that allows to use HyPer for big data ex-
ploration by loading data a window at a time for
deep data analysis.

• For efficiently scaling out the HyPer database en-
gine we developed a locality-sensitive query en-
gine [23].

• The index structure DeltaNI [10] was developed to
support hierarchical data in main-memory database
systems.

• HyPer has a very small memory footprint which
allows to run the same system on both, brawny
nodes with up to several TB of main-memory and
a hundred cores as well as on wimpy nodes, such
as tablets and smartphones [20].

Considering that it is an active research project the
implementation of HyPer is fairly mature. Even though
it is not open source, we make it publicly available for
experimentation via our web site hyper-db.de. We
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Figure 2: An Execution Plan with visible Pipeline
Fragments for a Three-Way-Join

also use it for teching purposes; e.g., our 750 students
of the lecture “Foundations of Database Systems” use
it for learning SQL programming and query optimizer
experiments.

2. OVERVIEW OF RECENT WORK

2.1 Efficient Query Compilation
HyPer uses a lock-free execution model. This as-

sumes that transactions, in particular OLTP transactions,
are very fast. HyPer achieves this by using LLVM for
just-in-time compilation of SQL queries to machine code
[21]. The compilation works in a data-centric manner:
Instead of compiling one operator at a time, the com-
piler generates code for each individual data pipeline of
the execution plan. This is illustrated in Figure 2. The
pipelines, i.e., the data flow paths from one materializa-
tion point to the next, are compiled in a bottom-up man-
ner where every operator pushes tuples towards its con-
sumer. In code this means that most pipeline fragments
consist of a few tight loops, which is favorable for mod-
ern CPUs and results in excellent performance. This
compilation step avoids the high CPU overhead of clas-
sical interpreted execution frameworks. For disk-based
systems this overhead was largely neglectable, but for
in-memory processing any interpretation overhead is very
visible.

2.2 NUMA-Aware Many-Core Parallelism
The main impetus of hardware performance improve-

ment nowadays comes from increasing multi-core par-
allelism rather than from speeding up single-threaded
performance. Intel’s new mainstream server Ivy Bridge
EX (that we recently obtained) can run 120 concurrent
threads in a 4-socket configuration. We use the term
many-core for such architectures with tens or hundreds
of cores.

At the same time, increasing main memory capacities
of up to several TB per server have led to the develop-
ment of main-memory database systems. In these sys-
tems query processing is no longer I/O bound, and the
huge parallel compute resources of many-cores can be
truly exploited. Unfortunately, the trend to move mem-
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ory controllers into the chip and hence the decentral-
ization of memory access, which was needed to scale
throughput to huge memories, leads to non-uniform mem-
ory access (NUMA). In essence, the computer has be-
come a network in itself as the access costs of data items
varies depending on which chip the data and the ac-
cessing thread are located. Therefore, many-core paral-
lelization needs to take RAM and cache hierarchies into
account. [1, 3] developed and analyzed massively paral-
lel join algorithms. In HyPer [14] we extend this work to
an effective end-to-end parallelization scheme covering
entire query evaluation plans. In particular, the NUMA
division of the RAM has to be considered carefully to
ensure that threads work (mostly) on NUMA-local data.

HyPer employs an adaptive morsel-driven query exe-
cution framework – as described in [14]. Our approach
is sketched in Figure 3 for the three-way-join query R ./

A

S ./
B

T . Parallelism is achieved by processing each
pipeline on different cores in parallel, as indicated by
the two (upper and lower) probe-probe-store-pipelines
in the figure. The core idea is a scheduling mecha-
nism (the “dispatcher”) that allows flexible parallel exe-
cution of an operator pipeline, that can change the par-
allelism degree even during query execution. A query
is divided into segments, and each executing segment
takes a morsel (typically 100,000) of input tuples and
executes these, materializing results in the next pipeline
breaker. The morsel framework enables NUMA local
processing as indicated by the color coding in the figure:
A thread operates on NUMA-local input and writes its
result into a NUMA-local storage area. Our dispatcher
runs a fixed, machine-dependent number of threads, such
that even if new queries arrive there is no resource over-
subscription, and these threads are pinned to the cores,
such that no unexpected loss of NUMA locality can oc-
cur due to the OS moving a thread to a different core.

The crucial feature of morsel-driven scheduling is that
task distribution is done at run-time and is thus fully
elastic. This allows to achieve perfect load balancing,
even in the face of uncertain size distributions of in-
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Figure 4: Hot/cold Clustering for Compression.

termediate results, as well as the hard-to-predict per-
formance of modern CPU cores that varies even if the
amount of work they get is the same. It is elastic in
the sense that it can handle workloads that change at
run-time (by reducing or increasing the parallelism of
already executing queries in-flight) and can easily inte-
grate a mechanism to run queries at different priorities.

2.3 Compacting the In-Memory Database
Our approach [11] to compression in hybrid OLTP &

OLAP column stores is based on the observation that
while OLTP workloads frequently modify the dataset,
they often follow the working set assumption: Only a
small subset of the data is accessed and an even smaller
subset of this working set is being modified (cf. Fig-
ure 4). In business applications, this working set is mostly
comprised of tuples that were added to the database in
the recent past, as it can be observed in the TPC-C work-
load (cf. www.tpc.org).

Our system uses a lightweight monitoring component
to observe accesses to the dataset and identify oppor-
tunities to reorganize data such that it is clustered into
hot and cold parts. After clustering, the database system
compresses cold chunks to reduce memory consumption
and streamline queries. In future versions we will even
stage the frozen parts to less expensive memory, e.g., to
non-volatile memory NVM, SSD or disk storage media.
Our concept of compaction has received a lot of atten-
tion and is currently being incorporated in Microsoft’s
Hekaton [9] as well as in HStore/VoltDB [8].

2.4 Radix Tree Indexing in Main-Memory
Databases

The efficiency of transaction processing largely de-
pends on which index structures are used, as exemplified
by the first three select-statements of the newOrder im-
plementation of the TPC-C benchmark. In main-memory,
dictionary-like data structures supporting insert, update,
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Figure 5: The Adaptive Radix Tree ART: Sample
Path for the Key 218237439 Traversing all four Node
Types

and delete are often implemented as hash tables or com-
parison-based trees (e.g. self-balancing binary trees or
B-trees). Hashing is usually much faster than a tree as
it offers constant lookup time in contrast to the logarith-
mic behavior of comparison-based trees. The advantage
of trees is that the data is stored in sorted order, which
enables additional operations like range scan, minimum,
maximum, and prefix lookup.

The radix tree, also known as trie, prefix tree, or dig-
ital search tree, is another dictionary-like data structure.
In contrast to comparison-based structures, which com-
pare opaque key values using a comparison function,
radix trees directly use the binary representation of the
key. Although radix trees are often introduced as a data
structure for storing character strings, they can be used
to store any data type by considering values as strings of
bits or bytes.

The complexity of radix trees for insert, lookup, and
delete is O(k) where k is the length of the key. The
access time is independent of the number of elements
stored. Besides the length of the key, the height of a
radix tree depends on the number of children each node
has. For example, a radix tree with a fanout of 256 that
stores 32 bit integers has a height of 4.

So far radix trees suffered from space underutilization
problems as typically an array of 256 pointers was allo-
cated for each node – even though some nodes might
have a very low fan-out compared to others. Therefore,
we developed in [15] the Adaptive Radix Tree (ART),
which uses four different node types that can handle up
to (i) 4, (ii) 16, (iii) 48, and (iv) 256 entries. Thereby, a
good space utilization of ART-trees is guaranteed while
still being able to achieve a maximum height of k for k-
byte keys. That is, 32 bit integers are indexed with a tree
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of height 4, 64 bit integers require height 8. These adap-
tive nodes are exemplified by the sample path for the 32-
bit key 218237439 consisting of the the 4 byte-chunks
13&2&9&255 in Fig. 5. This path starts at the root,
which happens to be of type Node4, and then covers the
three other node types. The structural representation of
these node types varies, as illustrated in the figure. In
designing the node structure the trade-off between space
utilization and intra-node search performance was taken
into account.

Besides adaptive nodes, we employ other compres-
sion techniques that bound the worst-case space con-
sumption per key/value pair to 52 bytes – even for ar-
bitrarily long keys [15].

2.5 Lock-Free Synchronization via Hard-
ware Transactional Memory

The upcoming hardware transactional memory (HTM)
support in mainstream processors like Intel’s Haswell
appears to be a perfect fit for optimizing the emerging
main-memory database systems. Transactional memory
[12] is a very intriguing concept that allows for auto-
matic atomic and concurrent execution of arbitrary code.

However, transactional memory is no panacea for trans-
action processing. First, database transactions also re-
quire properties like durability, which are beyond the
scope of transactional memory. Second, at least the cur-
rent hardware implementations of transactional mem-
ory are limited. For the Haswell architecture the read-
/write sets have to fit into the L1 cache with a capacity
of 32KB, which limits the scope of a transaction. Fur-
thermore, HTM transactions may fail due to a number
of unexpected circumstances like collisions caused by
cache associativity, hardware interrupts, etc. Therefore,
it does not seem to be viable to map an entire database
transaction to a single monolithic HTM transaction. In
addition, one always needs a “slow path” to handle the
pathological cases (e.g., associativity collisions).

We therefore developed in [15] an architecture where
transactional memory is used as a building block for
assembling complex database transactions. Along the
lines of the general philosophy of transactional mem-
ory we start executing transactions optimistically, us-
ing (nearly) no synchronization and thus running at full
clock speed. By exploiting HTM we get many of the re-
quired checks for free, without complicating the database
code, and can thus reach a much higher degree of paral-
lelism than classical locking or latching. In order to min-
imize the number of conflicts in the transactional mem-
ory component, we carefully control the data layout and
the access patterns of the involved operations, which al-
lows to operate largely without explicit synchronization.

Because the maximum size of hardware transactions
is limited, only a database transaction that is small can
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Figure 6: Transforming database transactions into
HTM transactions

directly be mapped to a single hardware transaction. We
therefore assemble complex database transactions by us-
ing hardware transactions as building blocks, as shown
in Figure 6. The key idea here is to use a customized
variant of timestamp ordering (TSO) to “glue” together
these small hardware transactions. TSO is a classic con-
currency control technique, which was extensively stud-
ied in the context of disk-based and distributed database
systems [6, 5]. For disk-based systems, TSO is not com-
petitive to locking because most read accesses result in
an update of the read timestamp, and thus a write to disk.
The timestamp updates are obviously much cheaper in
RAM. On the opposite, fine-grained locking is much
more expensive than maintaining timestamps in main
memory, as we showed in [15].

Timestamp ordering uses read and write timestamps
to identify read/write and write/write conflicts. Each
transaction is associated with a monotonically increas-
ing timestamp, and whenever a data item is read or up-
dated its associated timestamp is updated, too. The read
timestamp of a data item records the youngest reader of
this particular item, and the write timestamp records the
last writer. This way, a transaction recognizes if its oper-
ation collides with an operation of a “younger” transac-
tions (i.e., a transaction with a larger timestamp), which
would be a violation of transaction isolation. In par-
ticular, an operation fails if a transaction tries to read
data from a younger transaction, or if a transaction tries
to update a data item that has already been read by a
younger transaction.

Lock-free execution is generally unsuitable for “ill-
natured” transactions like long-running OLAP-style que-
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ries or transactions querying external data – even if they
occur rarely in the workload. In [18] we developed an
approach whereby long transactions are first executed
tentatively on the virtual memory snapshot and then ap-
plied to the main database as a short install transaction.

3. AWARDS
In the last couple of years the database group at TUM

has obtained the following awards:

• The team “Campers” of Henrik Mühe and Florian
Funke (mentored by Alfons Kemper and Thomas
Neumann) was among the finalists of the ACM
SIGMOD Programming Contest 2013 and achieved
second place.

• The team “AWFY” of Moritz Kaufmann, Manuel
Then, Tobias Mühlbauer, und Andrey Gubichev
(mentored by Alfons Kemper and Thomas Neu-
mann) won the ACM SIGMOD Programming Con-
test 2014.

• The ICDE 2014 Best Paper Award was presented
to Viktor Leis, Alfons Kemper and Thomas Neu-
mann for their paper ”Exploiting Hardware Trans-
actional Memory in Main-Memory Databases” [16].

• Thomas Neumann was awarded the Early Career
Research Contribution Award at VLDB 2014 for
his work on “Engineering High-Performance Data-
base Engines” [22].

4. GUESTS

• Nikolaus Augsten (University of Salzburg) visited
the group to work on similarity join processing [2].

• Peter Boncz (CWI/VU Amsterdam) was awarded
the Humboldt Prize to work with us on multi-core
parallel query processing [14].

5. VLDB 2017 AT TUM
The database group of TUM will organize the VLDB

2017 conference in Munich. It will take place during the
last week of August 2017 at the main campus of TUM
in downtown Munich.
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