
Locating Valid SLCAs for XML Keyword Search with
NOT Semantics

Rung-Ren Lin1, Ya-Hui Chang2�, and Kun-Mao Chao1

1Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan.

{r91054, kmchao}@csie.ntu.edu.tw
2Department of Computer Science and Engineering
National Taiwan Ocean University, Keelung, Taiwan.

yahui@ntou.edu.tw

ABSTRACT
Keyword search provides an easy way for users to pose
queries against XML documents, and it is important to
support queries with arbitrary combinations of AND,
OR, and NOT operators. The previous RELMN algo-
rithm processed such kind of queries by extending the
original SLCA definition in a straightforward way, but it
did not work correctly in some cases. In this paper, we
propose the concept of valid SLCAs as query results.
Basically, nodes in an XML document are classified ac-
cording to their usages, which is further used to define
the scope affected by a negative keyword. Only valid
nodes, which are not affected by any negative keyword,
are qualified to identify valid SLCAs. The experimental
results show that the proposed algorithm achieves higher
precision and recall, and is more efficient than the pre-
vious work.

1. INTRODUCTION
Keyword search provides an easy way for users to

obtain desired information from XML documents
by just giving some keywords they are interested
in, but irrelevant data may be returned due to lack-
ing exact query semantics. Many researchers ad-
vocate the idea that each returning result should
be based on an LCA (Lowest Common Ancestor),
which contains every keyword under its subtree at
least once [1][3][4][5][6][7]. Among all the LCA-
based techniques, the smallest-LCA (SLCA) [6] con-
cept is particularly popular since it can locate nodes
semantically closer to the query keywords. Specif-
ically, a node n is said to be an SLCA node if: (i)
n is an LCA node, and (ii) none of n’s children
are LCA nodes. Consider the sample XML tree
depicted in Figure 1, which represents the informa-
tion about course o↵erings at a particular school,
and each node is identified by a Dewey encoding.
�To whom all correspondence should be sent.

Table 1: Sample keyword queries.
Q1 Subject � Friday
Q2 Subject � Friday � !R101
Q3 2010 � Subject � !R101
Q4 Red Wood � Subject � Friday � !R103
Q5 Subject � Friday � !R102 � !2010
Q6 Subject � Friday � (R101 � R103)

Query Q1 in Table 1 is used to retrieve those sub-
jects whose classes are held on Friday. Since only
nodes 1.2.2 and 1.3.3 contain Subject and Friday

under their subtrees and none of their children do,
these two nodes are the SLCAs for Q1.

The limitation of the works above is that they
only concern the keywords with the AND operator.
It is therefore an important research issue to process
queries with arbitrary combinations of AND, OR,
and NOT operators, and the challenge mainly lies in
how to identify results satisfying the NOT seman-
tics. A straightforward idea is that the returning
SLCA should contain every “positive” keyword but
no “negative” keyword (keywords with NOT oper-
ators). Consider the sample query Q2 in Table 1,
where the exclamation mark “!” is used to repre-
sent the NOT operator. The semantics of query
Q2 is similar to that of query Q1, except that Q2

should not output the courses held in room 101.
Since the course rooted at node 1.2.2 contains the
unwanted negative keyword “R101”, only the sub-
tree rooted at 1.3.3 should be returned. Although
intuitive, such approach is sometimes too restric-
tive. Consider query Q3, asking for subjects whose
classes are o↵ered in 2010 but not held in room 101.
We cannot find an SLCA satisfying the above defi-
nition, but actually node 1.2.3.1, whose class is held
in room 103, is an answer reasonable for a human
user, which we call human answers in short. To
avoid the occurrences of such false negatives, when

SIGMOD Record, June 2014 (Vol. 43, No. 2) 29

Figure 1: A sample XML tree.

no satisfied nodes are found, our previously pro-
posed RELMN algorithm [2] will identify SLCAs
only based on positive keywords, and then prune
out nodes according to negative keywords.

Although the RELMN algorithm basically per-
forms well, the process of result identification is
complex, and it still might cause false negatives or
false positives in some cases, as will be discussed
in detail in Section 2. Therefore, we propose a new
approach to improve the e↵ectiveness and e�ciency
of processing XML keyword search with NOT se-
mantics. The main idea is to classify all nodes into
several groups based on their usage. This classi-
fication is used to define the scope that a negative
keyword can a↵ect. We then propose to return valid
SLCA as the query result, where a valid SLCA con-
tains every positive keyword under its subtree, and
each of which is not a↵ected by any negative key-
word. Consider query Q3 again. Node 1.2 is the
only SLCA based on positive keywords. Since its
descendant nodes 1.2.1.1 and 1.2.3.1 match the pos-
itive keywords, and are not within the scope a↵ected
by the negative keyword R101, node 1.2 is qualified
as a valid SLCA, which contains human answers and
should be returned. In summary, the contributions
of this paper are as follows:

• Based on a simple observation of XML doc-
uments, we propose a set of definitions which
identify nodes which should not be output due
to negative keywords.

• We design an e�cient algorithm called Valid-
SLCA to process queries with arbitrary com-
binations of AND, OR, and NOT operators.

• We perform an empirical evaluation by mea-
suring the precision, recall, and processing time
of two approaches. The experimental results
show that the new ValidSLCA algorithm is
more e�cient and gives better query results
than the previous RELMN algorithm [2].

The rest of this paper is organized as follows.

Section 2 briefly describes the RELMN algorithm.
The basic observation and definitions underlying
the new approach are presented in Section 3, and
the corresponding algorithm is discussed in Section
4. At last, experimental studies and conclusions are
given in Section 5 and Section 6, respectively.

2. THE RELMN APPROACH
We briefly describe the RELMN algorithm in this

section, and direct the readers to [2] for detailed
discussion.

The RELMN algorithm basically consists of two
steps. First, it searches the satisfied SLCAs of the
input query. Specifically, a node n satisfies the
query Q if n contains every “positive” keyword un-
der its subtree but does not contain any “negative”
keyword. Further, n is a satisfied SLCA if n satisfies
Q but none of n’s children do. As discussed in Sec-
tion 1, node 1.3.3 is a satisfied SLCA for query Q2.
When no satisfied SLCAs are found, the RELMN
algorithm will locate SLCAs purely based on posi-
tive keywords. Second, for every subtree rooted at
the identified SLCAs, it then prunes the unwanted
part based on the following rule: node n1 is able to
prune its sibling node n2 if n1 contains more pos-
itive keywords or contains less negative keywords
under its subtree than n2 does. Consider query Q3

again. RELMN will first identify node 1.2 based on
the positive keywords “2010” and “Subject”, and
then exclude the subtree rooted at node 1.2.2, since
it has the negative keyword R101 and is pruned by
node 1.2.3.

The time complexity of the above two steps are
respectively O(d|M | · w) and O(�z

i=1bi

), where d

is the depth of the XML tree, |M | is the sum of
the keyword frequencies, w is the number of clauses
of query Q in conjunctive normal form, z is the
number of nodes in the match tree for Q

1, and b

i

is
1A match (in RELMN) is a node containing a posi-
tive/negative keyword. The match tree for a given query
is a subtree of the XML tree, which consists of the nodes
along the path from each match up to the root.

30 SIGMOD Record, June 2014 (Vol. 43, No. 2)

the number of siblings of the i

th node.
We now discuss the cases where the RELMN algo-

rithm might cause false negatives or false positives.
Consider query Q4 in Table 1, asking for the course
information at the school “Red Wood”, and only the
subjects whose classes are held on Friday but not
in room 103 should be returned. Note that nodes
1.2.2 and 1.3.3 represent human answers. Neverthe-
less, RELMN will only return 1.3.3. The reason is
that RELMN will first identify node 1 as the only
SLCA, and then prune node 1.2 by node 1.3 because
it contains the negative keyword R103. Hence, node
1.2.2 is excluded too. Take query Q5 as another ex-
ample, asking for subjects whose classes are held
on Friday, but not in room R102, and not in year
2010. Observe that the human answer is empty.
However, RELMN will return both nodes 1.2.2 and
1.3.3, since they are both identified as SLCAs based
on positive keywords and cannot prune each other.

3. BASIC OBSERVATIONS AND DEFI-
NITIONS

In this section, we explain the observation on
XML documents which is underlying the new ap-
proach, and deliver the basic definitions. The main
idea is to identify the scope which is a↵ected by a
negative keyword according to node types. Since
the entity-relationship (ER) model has been widely
used for data modeling, we borrow some terms from
that model to classify the nodes in an XML tree
based on their usage as follows:

1. A node is a text node if it is a value.

2. A node is an attribute node if it has only one
child, which is a text node.

3. A node denotes an entity if its tag name is
identical to its siblings, such as a *-node in
the XML DTD (Document Type Definition).

4. A node is a dummy node if it is none of the
three nodes mentioned above.

For example, nodes 1.1.1 (Red Wood), 1.2.3.2.1
(Monday), and 1.3.1.1 (2011) are text nodes. Nodes
1.2.1 (Year) and 1.2.2.3 (Room) are attribute nodes.
Nodes 1.2 (Courses) and 1.2.3 (Course) are entity
nodes. In addition, the closest entity of node n

refers to the lowest entity node that are the an-
cestor of n. For instance, node 1.3 (Courses) is
the closest entity of node 1.3.1.1 (2011), and node
1.2.3 (Course) is the closest entity of node 1.2.3.2.1
(Monday).

We observe that a text node is generally used as
the attribute value of its closest entity. For exam-
ple, node 1.1.1 (Red Wood) is used to describe the

name of the school (node 1), node 1.3.1.1 (2011)
indicates the courses (node 1.3) belonging to year
2010, and node 1.2.3.2.1 (Monday) represents that
the course (node 1.2.3) is held on Monday. There-
fore, if a negative keyword matches a text node n,
it is reasonable to assume that the subtree rooted
at n’s closest entity is unwanted. For instance, if
the negative keyword is !R101, we assume that the
subtrees rooted at nodes 1.2.2 and 1.3.2 should not
be returned. In other words, we propose that the
query result is composed of the subtrees which rep-
resent positive keywords and are not “a↵ected” by
the negative keywords. For ease of discussion, we
assume that the query is in DNF in the rest of this
section. Hence, the clauses in a query are connected
with the OR operators, and keywords in the same
clause are connected with the AND operators. The
formal definitions are then given as follows:

Definition 1. If node n is a text node and cor-
responds to a given negative keyword, the closest
entity of n is termed a negator.

Definition 2. A node is a match of keyword k

if its tag name or content contains k. Moreover, a
match is valid if it has no ancestors that are negators
formed within the same clause.

Consider the positive keyword Friday in query
Q2. Among the two matches 1.2.2.2.1 and 1.3.3.2.1,
the former one will become invalid due to the nega-
tor (node 1.2.2) caused by the negative keyword
!R101.

Definition 3. For a given clause c, a node n is
said to be an SLCA if n contains every positive
keyword of c at least once under its subtree and
none of n’s children do. Furthermore, n is a can-
didate valid SLCA (VSLCA) if n contains at least
one valid match for every positive keyword of c.

Continuing the running example, both nodes 1.2.2
and 1.3.3 are SLCAs in our framework, but only
node 1.3.3 is a candidate VSLCA since node 1.2.2
has no valid matches for both Friday and Subject
under its subtree.

Definition 4. Given a keyword query in DNF
with only one clause, all the candidate VSLCAs n

are valid SLCAs. If there is more than one clause,
n is a valid SLCA only if n has no descendants that
are also candidate VSLCAs formed by other clauses.

The proposed new approach will return all iden-
tified valid SLCAs as the query result. Consider
query Q6, which searches the subjects whose classes
are held on Friday and in room 101 or 103. The

SIGMOD Record, June 2014 (Vol. 43, No. 2) 31

DNF of Q6 has two clauses: (Subject � Friday �
R101) and (Subject�Friday�R103), and the can-
didate VSLCAs of these two clauses are node 1.2.2
and node 1.2, respectively. The query result will be
node 1.2.2, since it is the descendant of node 1.2.

Note that in Definition 1, we only consider text
nodes for negative keywords. The reason is that
a negative non-text keyword is mainly used to de-
scribe unnecessary information, and does not af-
fect the validity of an SLCA. For instance, suppose
the negative non-text matches have no ancestor-
descendant relationships with other positive key-
words, such as in the query (Subject � R101 �
!Days). We can see that the SLCA node, 1.2.2
(Course), is a human answer and should not be
a↵ected by !Days. Even if the negative non-text
matches have ancestor-descendant relationships with
other positive keywords, such as in the query (Sub-
ject � R101 � !Room), node 1.2.2 (Course) should
still be returned.

4. THE VALIDSLCA ALGORITHM
The proposed ValidSLCA algorithm is listed in

Figure 2. Briefly, for the input query Q, we will con-
vert it into DNF Q

� (line 1). To get the candidate
VSLCAs of each clause, we first identify the SLCAs
based only on positive keywords by the approach
given in [6] (line 5). We then collect the negators in
line 6. The negators are used to determine the valid
matches by procedure V alidateMatches. Namely,
some of the matches will be removed if they are
the descendants of the negators. Next, we iden-
tify candidate VSLCAs by ensuring that there ex-
ists at least one valid match for each positive key-
word (lines 9-12). At last, those candidate VSLCAs
that are ancestors of others are removed (line 13).

Observe that the procedures ValidateMatches and
CombineSLCA are variants of merge sort algorithms
and are therefore linear to the input. Besides, two
B-tree indices are maintained for e�cient process-
ing. In the first index, the data associated with each
keyword k is a sorted list of Dewey numbers of all
the nodes which contain keyword k. If a node is a
text-node, we additionally record its closest entity.
Hence, we can e�ciently retrieve the match array of
the keyword (lines 3-4) and negators (line 6). The
second index is used to output meaningful answers
for users (line 14), which retrieves the tag name by
a given Dewey number. Both indices are created
and accessed based on the Oracle Berkeley DB2.

We next give the time complexity of ValidSLCA.
The details are omitted due to space constraints.
Let d be the maximum depth of the XML tree and
2http://www.oracle.com/database/

Input: A keyword query Q of arbitrary combination
with AND, OR, and NOT operators.

Output: All of the valid SLCAs of Q.

ValidSLCA(Q)
1 convert Q into DNF Q
2 for each clause ci of Q do
3 for each positive keyword kj of ci do
4 Mj all the matches of kj

5 Si compute SLCAs by { M1, M2, M3…}
6 E collect the negators by the negative

keywords of ci

7 for each Mj do
8 M j ValidateMatches(Mj, E)
9 for each n Si do

10 for each M j do
11 if n has no descendants belongs to M j then
12 remove n from Si

13 S CombineSLCA(S1, S2, S3…)
14 Output S /* all the valid SLCAs of query Q */

ValidateMatches(M, E)
1 i 1, j 1
2 while i |M| and j |E| do
3 if M[i] precedes E[j] then
4 i i + 1 /* M[i] is valid */
5 else if E[j] is the ancestor of M[i] then
6 remove M[i] from M /* M[i] is invalid */
7 i i + 1
8 else
9 j j + 1

10 return M

CombineSLCA(S1, S2, S3…)
1 S merge (S1, S2, S3…) by their Dewey Numbers
2 i 1, j 2
3 while j |S| do
4 if S[i] is the ancestor of S[j] then
5 remove S[j] from S
6 else
7 i j
8 j j + 1
9 return S
 Figure 2: The ValidSLCA algorithm.

Q

� be the DNF of the original input query Q. Sup-
pose Q

� has k clauses, and the i

th clause has p

i

pos-
itive keywords and n

i

negative keywords. That is,
the matches of positive keywords of c

i

are M1, M2, ...,

M

pi , and the matches of negative keywords of c

i

are N1, N2, ..., Nni . Let |Msum

i

| = �pi
j=1Mj

and
|Nsum

i

| = �ni
j=1Nj

be the sum of the size of positive
and negative matches. The overall time complex-
ity of algorithm ValidSLCA is O(�k

i=1�
pi
j=1(|Mj

| +
|Nsum

i

|) · d).
This section is concluded by showing how Algo-

rithm ValidSLCA can correctly process queries Q4

and Q5. Recall that nodes 1.2.2 and 1.3.3 are two

32 SIGMOD Record, June 2014 (Vol. 43, No. 2)

Figure 3: Portions of the XML trees.

Table 2: The information for the data sets.
Data Set Doc. Size Nodes Max/Avg Depth
Baseball 1.01 MB 51,599 7/6.5
Reed 277 KB 18,855 5/3.7
Mondial 1.7 MB 124,736 7/4.6
DBLP 127 MB 7,146,530 7/3.5

courses that should be returned by Q4, but RELMN
only identifies one, as discussed in Section 2. In
ValidSLCA, only node 1.2.3.3.1 (R103) matches the
negative keyword and the corresponding negator is
node 1.2.3. This negator will not a↵ect the posi-
tive matches under the subtrees rooted at 1.2.2 and
1.3.3, so we will identify node 1 as the valid SLCA
and return both courses. Consider another query
Q5, where the answer should be empty. The two
negative keywords (R102 and 2010) yield two nega-
tors (nodes 1.2 and 1.3.3) in total. Besides, the
positive keyword Friday has two matches 1.2.2.2.1
and 1.3.3.2.1. Since both of them are descendants of
negators, our approach will correctly return empty.

5. EXPERIMENTAL EVALUATION
In this section, we compare the performance of

RELMN and ValidSLCA algorithms. Both of them
were implemented in C++, and the experiments
were performed on a 1.67GHz dual-core CPU with
1.5GB RAM. Note that in order to be fair with the
RELMN approach, after identifying valid SLCAs,
we further adopt the pruning rules described in [5]
to remove subtrees containing less positive keywords
than their siblings. The time complexity of Valid-
SLCA therefore becomes O(�k

i=1�
pi
j=1(|Mj

|+|Nsum

i

|)·
d) + O(�k

i=1|Msum

i

| · d · 2pi).

Table 3: Test queries.
No. query

QB1 (Indians � Tigers) � Starting Pitcher � SURNAME
QB2 SURNAME � !Starting Pitcher � !Relief Pitcher
QB3 American � TEAM NAME � !Central
QB4 !American � TEAM NAME
QB5 Yankees � SURNAME � !Starting Pitcher � !Relief Pitcher
QB6 East � !Yankees � Second Base � HOME RUNS
QB7 American � (East � West) � TEAM NAME
QB8 Red Sox � HITS � !Outfield
QR1 subj � 04:10PM � !T � !W
QR2 subj � !T
QR3 subj � room � 301 � !M
QR4 instructor � CHEM � M � 01:10PM
QR5 instructor � CHEM � !M � 01:10PM
QR6 room � Love in Shakespeare � !02:40PM
QR7 room � Love in Shakespeare � !F
QR8 title � (M � W) � !01:10PM

We used four data sets, DBLP.xml2, Mondial.xml2,
Reed.xml3, and Baseball.xml4, to perform the ex-
periments. Some statistics about these data sets,
including their sizes, are listed in Table 2 for com-
parison. Besides, the metrics to compare the two al-
gorithms are precision, recall, and processing time.
The first two are calculated based on human an-
swers, which are obtained from three human experts
with di↵erences resolved by voting.

We first use the Baseball and Reed data sets to
analyze the precision and recall of RELMN and
ValidSLCA. Figure 3 shows the portions of these
two data sets to assist in analyzing the outcomes of
experiments. The test queries of these two data sets
are listed in Table 3, and the precision and recall
on the Baseball data set is displayed in Figure 4.
We can see that ValidSLCA gets better precision
than RELMN in QB2. In RELMN algorithm, all
the nodes with “surname” tag names satisfy QB2

and will be returned. Since some of the players are
starting pitchers or relief pitchers, it gets imperfect
precision and 100% recall. However, those players
who are starting pitchers or relief pitchers are con-
sidered as invalid matches in ValidSLCA. Hence,
ValidSLCA gets 100% precision and recall in QB2.
RELMN also gets imperfect precision in QB4 due to
the same reason. On the other hand, the precision
and recall on the Reed data set is displayed in Fig-
ure 5. The semantics of QR6 is to search the room of
course “Love in Shakespeare” which does not start
at 02:40PM. However, there only exists one course
titled “Love in Shakespeare”, and it coincidentally
starts at 02:40PM. That is, the answer should be
empty. Refer to Figure 3 (b). The closest entity of
!02:40PM is the node with tag name course. Hence,
ValidSLCA returns empty while RELMN still re-
turns course “Love in Shakespeare”. The similar
situation happens in QR7, which makes RELMN
get poor precision and recall, too.

The processing time is measured with four data
sets mentioned above. Since the query result may
be di↵erent between RELMN and ValidSLCA, we
only consider those queries which yield the same
3http://www.cs.washington.edu/research/xmldatasets/
4http://www.cafeconleche.org/books/biblegold/examples/

SIGMOD Record, June 2014 (Vol. 43, No. 2) 33

0%
20%
40%
60%
80%
100%

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8

RELMN ValidSLCA

0%
20%
40%
60%
80%
100%

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8

RELMN ValidSLCA

Figure 4: The Baseball data set.

0%

20%

40%

60%

80%

100%

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8

RELMN ValidSLCA

0%

20%

40%

60%

80%

100%

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8

RELMN ValidSLCA

Figure 5: The Reed data set.

0

3

QB1 QB3 QB5 QB7 QB8

m
s

RELMN ValidSLCA

0

3

QR1 QR3 QR4 QR5

m
s

RELMN ValidSLCA

0

1200

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8

m
s

RELMN ValidSLCA

0

40

QM1 QM2 QM3 QM4 QM5 QM6 QM7 QM8

m
s

RELMN ValidSLCA

Figure 6: The processing time.

query results by the two algorithms. Due to space
limitation, we do not explicitly list the test queries.
As shown in Figure 6, we can see that our new ap-
proach is more e�cient than the previous work in
most cases. One reason is that the pruning rules de-
fined in RELMN are very complex to process. Be-
sides, as shown in the time complexity of the two
algorithms, RELMN is a↵ected by the branch fac-
tor of the XML trees (b

i

), which may be very large.
On the other hand, ValidSLCA is a↵ected by the
number of the query keywords (p

i

), which is com-
parably small. Hence, the RELMN algorithm often
takes more time than ValidSLCA does.

6. CONCLUSIONS
In this paper, we propose an algorithm to process

keyword search with NOT semantics. The idea is to
classify matches as valid or invalid based on nega-
tive keywords, and only valid nodes are qualified to
identify valid SLCAs as query outputs. We empir-
ically evaluate the precision, recall, and processing
time by comparing the previous work and our new
approach. The experiments show that our new ap-
proach gives more reasonable query results and is
even more e�cient. As part of our future work, we
are interested in designing a novel ranking scheme
to order the query results so that users can focus on
most desirable ones.

7. REFERENCES
[1] G. Li, J. Feng, J. Wang, and L. Zhou.

E↵ective Keyword Search for Valuable LCAs
over XML Documents. In CIKM, 2007.

[2] R.-R. Lin, Y.-H. Chang, and K.-M. Chao.
Identifying Relevant Matches with NOT
Semantics over XML Documents. In
DASFAA, 2011.

[3] R.-R Lin, Y.-H. Chang, and K.-M. Chao.
Improving the Performance of Identifying
Contributors for XML Keyword Search. In
SIGMOD Record, 40(1), pp. 5-10, 2011.

[4] Y.-H. Chang. Optimizing XML Twig Queries
with Full-Text Predicates. In SIGMOD
Record, 41(1), pp. 5-10, 2012.

[5] Z. Liu and Y. Chen. Reasoning and
Identifying Relevant Matches for XML
Keyword Search. In PVLDB, 2008.

[6] Y. Xu and Y. Papakonstantinou. E�cient
Keyword Search for Smallest LCAs in XML
Databases. In SIGMOD, 2005.

[7] J. Zhou, Z. Bao, W. Wang, T. Ling, Z. Chen,
X. Lin, and J. Guo. Fast SLCA and ELCA
computation for XML Keyword Queries
Based on Set Intersection. In ICDE, 2012.

34 SIGMOD Record, June 2014 (Vol. 43, No. 2)

