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ABSTRACT
The Linked Data Benchmark Council (LDBC) is an EU
project that aims to develop industry-strength benchmarks
for graph and RDF data management systems. It in-
cludes the creation of a non-profit LDBC organization,
where industry players and academia come together for
managing the development of benchmarks as well as
auditing and publishing official results. We present an
overview of the project including its goals and organi-
zation, and describe its process and design methodology
for benchmark development. We introduce so-called
“choke-point” based benchmark development through
which experts identify key technical challenges, and in-
troduce them in the benchmark workload. Finally, we
present the status of two benchmarks currently in devel-
opment, one targeting graph data management systems
using a social network data case, and the other targeting
RDF systems using a data publishing case.

1. INTRODUCTION
Graph and RDF databases have been created to

support the storing and analysis of complex rela-
tionships in highly interconnected data occurring in
application domains like e.g. social network anal-
ysis, linked open data, etc. Both data manage-
ment technologies hold the notion of graph as their
main abstraction mechanism for data modeling and
querying. These technologies are relatively young,
certainly in their tradition of industry-strength prod-
ucts supporting this graph data model, yet have
aroused significant interest from users looking be-
yond the relational model. In order for practition-
ers to compare these new data management sys-
tems with each other, and with established rela-
tional technology, benchmarks can play a helpful

role. Relevant benchmark challenges can further
help spur technological progress, to more quickly
mature these nascent industries.

Current graph and RDF benchmarks, however,
do not fully attain all the desirable characteristics [5]
(i.e., relevant, repeatable, fair, verifiable and eco-
nomical), and sometimes neglect the particularities
and requirements in RDF and graph data manage-
ment [2, 3, 4, 7] (e.g. complex graph queries over
irregularly shaped and correlated data).

The Linked Data Benchmark Council (LDBC)1

is an EU project that brings together a community
of academic researchers and industry, whose main
objective is the development of open source, yet
industrial grade, benchmarks for graph and RDF
databases. The founding industry members of LDBC
are the graph database companies Neo Technologies
and Sparsity Technologies, and the RDF database
companies Ontotext and OpenLink Systems. A re-
sult of the project will be the LDBC non-profit orga-
nization, open for worldwide industry participation,
which during and after the end of the EU project
will supervise the creation and maintenance of the
benchmarks as well as the activities for obtaining,
auditing and publishing the benchmarking results.

This paper describes the goals of the LDBC as
well as its organizational structure. It also presents
the status of two benchmarks in current develop-
ment: a graph data management benchmark based
on the social network use-case, and an industry-
strength RDF benchmark for semantic data enrich-
ment based on a real-life semantic publishing use
case (the BBC semantic publishing platform).

1Linked Data Benchmark Council is EU project FP7-
317548 (see http://ldbc.eu). Renzo Angles was
funded by Fondecyt Chile grant 11100364.
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In this paper we also describe a process for de-
veloping benchmarks based on technical challenges
called “choke points”, developed by LDBC. This
methodology depends on a combination of workload
input by end users, and access to true technical ex-
perts in the architecture of the systems being bench-
marked. The overall goal of the choke-point based
approach is to ensure that a benchmark workload
covers a spectrum of technical challenges, forcing
systems onto a path of technological innovation in
order to score good results.

2. ORGANIZATIONAL STRUCTURE
The LDBC is organized in three platforms:

The board of LDBC members. This is formed
by one representative (director) per each member
organization of LDBC with voice and one single
vote per organization in their assembly. Meetings
of the directors make all policy decisions, though
certain decisions, among which the adoption of new
benchmarks, is handled through a written vote and
requires an absolute majority of all members.

Technical User Community (TUC)2. It is an
open organization that brings together users of RDF
and graph technologies, researchers, industry par-
ticipants, and delegates of the LDBC members in
physical events (TUC meetings) to discuss about
possible benchmark use cases and scenarios and to
assess the quality of the benchmark proposals and
the adequacy to their needs. LDBC organizes mul-
tiple TUC meetings per year, providing logistics and
travel assistance to external invitees.

Task Forces. A Task Force is an internal LDBC
structure that carries the development of a bench-
mark from beginning to end. It is formed by experts
from member organizations of LDBC, and it works
on the proposal, creation of the use case and sce-
nario based on the TUC discussions, choke points
suggested by technical experts and the implemen-
tation of the different parts of the benchmark (e.g.
data and workload generation).

3. DEVELOPMENT METHODOLOGY
The development of a benchmark in LDBC is ini-

tiated by board decision, designed and constructed
by a task force, and supported by TUC input and
feedback. This process results in the creation of four
main elements: (1) the data schema, which defines
the structure of the data used by the benchmark;
(2) the workload, which defines the set of operations
that the system under benchmarking has to perform
during the benchmark execution; (3) performance
2http://www.ldbc.eu:8090/display/TUC/

metrics, which are used to measure (quantitatively)
the performance of the systems; and (4) execution
rules, which are defined to assure that the results
from different executions of the benchmark are valid
and comparable.

The final result, a benchmark specification, con-
sists of both textual documentation and - insofar
possible - a standard implementation (i.e. data gen-
erator, workload generator and test driver). LDBC
software is open source, and is disseminated through
GitHub (see https://github.com/ldbc).

Choke Point based Design. Literature until now
has described the technical work required when de-
signing a good database system benchmark in rel-
atively vague terms. LDBC intends to formalize
some of the best practices and raise the state-of-
the-art in this area, in its guidelines for benchmark
development.

On the surface, a benchmark models a particu-
lar scenario, and this should be believable, in the
sense that users of the benchmark must be able to
understand the scenario and believe that this use-
case matches a larger class of use cases appearing in
practice. On a deeper – technical – level, however, a
benchmark exposes technology to a workload. Here,
a benchmark is valuable if its workload stresses im-
portant technical functionality of actual systems.
This stress on elements of particular technical func-
tionality we call “choke points”. To understand
benchmarks on this technical level, intimate knowl-
edge of actual system architectures is needed. The
LDBC consortium was set up to gain access to those
architects of the initial LDBC industry members, as
well as to the architects of database systems Dex3,
Neo4j4, Virtuoso5, RDF-3X6, Hyper7, MonetDB8

and Vectorwise9.
LDBC authors [1] analyzed the relational TPC-

H benchmark in terms of 28 different choke points;
providing both a good illustration of the choke point
concept, and an interesting to-do list for those opti-
mizing a system for TPC-H. Specific examples among
those 28 are choke points like exploiting functional
dependencies in group-by, foreign-key joins with a
low match ratio (to be exploited by e.g. bloom
filters), and discovering correlation among key at-
tributes in a clustered index (e.g. using zone maps).

Choke points can be an important design ele-

3http://www.sparsity-technologies.com
4http://www.neo4j.org
5http://virtuoso.openlinksw.com
6https://www.mpi-inf.mpg.de/~neumann/rdf3x/
7http://hyper-db.de
8http://www.monetdb.org
9http://www.actian.com/vectorwise
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ment during benchmark definition. The technical
experts in a task force identify choke points rele-
vant for a scenario, and document these explicitly.
Subsequently, as the benchmark workload evolves
during the process of its definition, a close watch is
kept on which queries in the workload test which
choke point to which extent, aiming for complete
coverage using a limited amount of queries. Choke
points thus can ensure that existent techniques are
present in a system, but can also be used to reward
future systems that improve performance on still
open technical challenges.

3.1 Phases of the design process
Analysis. This phase is oriented to determine the
requirements of the benchmark based on the anal-
ysis of the application domain, workload character-
ization, and selection and definition of choke points.
The workload characterization abstracts the selected
real-life scenario into a basic data schema, identi-
fying the typical data structures found and their
relationships. Workload requirements are derived
from captured static and dynamic behavior of real
workloads (e.g. obtained from members or through
the TUC). The identification of choke points comes
from the architectural analysis in existing systems
from expert knowledge.

Design. In this phase, a detailed schema is for-
mulated, including design of attribute value distri-
butions and correlations, and join connectivity be-
tween different schematic elements. Also, the work-
load is fleshed out into concrete sets of queries with
example parameter bindings. A check is made on
which of the queries in the workload hit which choke
points, ensuring that all are covered. Finally, we
define the metrics for measuring performance, and
rules for benchmark execution and result reporting.

Implementation. In this phase, the needed soft-
ware tools are designed and implemented, partic-
ularly the data generator, the workload generator,
and drivers for one or more systems. Data genera-
tors must conform to certain minimum standards,
for instance, in case of benchmarks at scale, these
should be designed with parallelism in mind. Spe-
cial properties and relationships in the data must be
specified and implemented (e.g. data consistency,
data distributions and correlations).

The workload generator needs to chose substi-
tution parameters for the operations of the work-
load. Proper selection of substitution parameters
is steered by the data distributions and their corre-
lations as generated by the test driver, and by the
choke points behind the individual queries in the
workload, and may require post-generation dataset

analysis. An important point is that different sub-
stitution parameters for one query should always
lead to (roughly) the same data access and execu-
tion characteristics (in terms of e.g. cardinalities,
locality and optimal query plans) such that behav-
ior is stable and understandable.

Testing. With the ability to run the workload on
one or more existing systems comes the task of test-
ing it. A basic aim is verification to ensure that
the implementation yields the correct and intended
results. A second aim is validation by measuring
not only the performance, but all relevant quan-
titative and qualitative features of the benchmark
(cardinalities, query plans, operators used, detailed
performance profiles). This experimentation thus
provides insight in how far the benchmark indeed
tests the choke points that were targeted.

Considering that the data generator, the work-
load generator and the methods for substitution pa-
rameter generation are mutually dependent, bench-
mark development is by necessity iterative, such
that we may fall back to the Design stage to refine
these aspects.

Distribution. This phase is oriented to prepare
the benchmark for wider usage. It consists of clean-
ing up the design and implementation to include
only the relevant pieces of software. It includes all
the operations to package the test drivers, datasets
and/or data generators as well as documentation
(including execution, auditing and reporting rules).

4. ONGOING DEVELOPMENT

4.1 Social Network Benchmark
The Social Network Benchmark (SNB)10 is de-

signed for evaluating a broad range of technolo-
gies for tackling graph data management workloads.
The systems targeted are quite broad: from graph,
RDF, and relational database systems to Pregel-like
graph programming frameworks.

The scenario of the benchmark, a social network,
is chosen with the following goals in mind: it should
be understandable to a large audience, and this
audience should also understand the relevance of
managing such data; the scenario in the benchmark
should cover the complete range of interesting chal-
lenges, according to the benchmark scope; and the
query challenges in it should be realistic in the sense
that, though synthetic, similar data and workloads
are encountered in practice.

10http://www.ldbc.eu:8090/display/TUC/Social+
network+benchmark+task+force
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SNB includes a data generator11 that enables the
creation of synthetic social network data with the
following characteristics: the data schema is rep-
resentative of a real social network (see Figure 1);
the data generated includes properties occurring in
real data, e.g. irregular structure, structure/value
correlations and power-law distributions; and the
software generator is easy-to-use, configurable and
scalable.

The requirement to generate at scale a complex
social graph with special data distributions that
at the same time exhibits certain interesting value
correlations (e.g. German people having predomi-
nantly German names) and structural correlations
(e.g. friends being mostly people living near), poses
an interesting challenge. The SNB data generator
builds on the work on correlated social network gen-
eration in S3G2 [6], whose source code has been
adapted to the SNB data schema. S3G2 comes with
the ability to leverage parallelism through Hadoop,
ensuring fast and scalable generation of huge datasets.

SNB is intended to cover all main aspects of social
network data management, and therefore splits into
three separate workloads:

– Interactive workload. This workload tests sys-
tem throughput with relatively simple queries and
concurrent updates. The workloads test ACID fea-
tures and scalability in an online operational set-
ting. Given the high write intensity, this workload
may also be used to let the dataset grow, which will
be implemented by pre-generating data in the gen-
erator but only importing the data corresponding to
one time point in the bulk load, and playing out the
rest of the modifications in the update workload.

– Business intelligence workload. This work-
load consists of complex structured queries for an-
alyzing online behavior of users for marketing pur-
poses. The workload stresses query execution and
optimization. The targeted systems are expected
to be those that offer an abstract query language.
Queries typically touch a large fraction of the data
and do not require repeatable read.

– Graph Analytics Workload. This workload
tests the functionality and scalability of the sys-
tems for graph analytics that typically cannot be ex-
pressed in a query language. The analytics is done
on most of the data in the graph as a single oper-
ation and produces large intermediate results. The
analysis is not expected to be transactional or need
isolation. This workload targets graph program-
ming frameworks, though systems with a query-
language might compete using iterative implemen-

11https://github.com/ldbc/ldbc_socialnet_bm/
tree/master/ldbc_socialnet_dbgen

tations that repeatedly fire queries and keep inter-
mediate results in temporary data structures.

A benchmarked system does not need to run all
workloads. Each workload in SNB produces a sin-
gle metric for performance at the given scale and a
price/performance metric at the scale.

4.2 Semantic Publishing Benchmark
The Semantic Publishing Benchmark (SPB)12 sim-

ulates the management and consumption of RDF
metadata that describes media assets, or creative
works. The scenario is a media organization that
maintains RDF descriptions of its catalogue of cre-
ative works (e.g. from the BBC). The benchmark
is designed to reflect a scenario where a large num-
ber of aggregation agents provide the heavy query
workload, while at the same time a steady stream of
creative work description management operations
are in progress. This benchmark plainly targets
RDF database systems, which support at least basic
forms of semantic inference.

The RDF descriptions of this benchmark use an
ontology that defines numerous properties for con-
tent, for example: date of creation, short/long de-
scriptions, etc. Furthermore, a tagging ontology is
used to connect individual creative work descrip-
tions to instances from reference datasets, including
sports, geographical, or political information. The
data used will fall under the following categories:
reference data, which is a combination of several
Linked Open Data datasets, e.g. GeoNames and
DBpedia; domain ontologies, that are specialist on-
tologies used to describe certain areas of expertise
of the publishing, e.g., sport and education; publi-
cation asset ontologies, that describe the structure
and form of the assets that are published, e.g., news
stories, photos, video, audio, etc.; and tagging on-
tologies and the metadata, that links assets with
reference/domain ontologies.

The data generator is initialized by using sev-
eral ontologies and datasets. The instance data col-
lected from these datasets are then used at several
points during the execution of the benchmark. Data
generation is performed by generating SPARQL frag-
ments for create operations on creative works and
executing them against the RDF database system.

Two separate workloads are modeled in SPB:

– Editorial workload. It simulates creating, up-
dating and deleting creative work metadata descrip-
tions. Media companies use both manual and semi-
automated processes for efficiently and correctly man-
aging asset descriptions, as well as annotating them

12http://www.ldbc.eu:8090/display/TUC/Semantic+
Publishing+Task+Force
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Figure 1: The data schema of the Social Network Benchmark represented in UML.

with relevant instances from reference ontologies.

– Aggregation workload. It simulates the dy-
namic aggregation of content for consumption by
the distribution pipelines (e.g. a web-site). The
publishing activity is described as “dynamic”, be-
cause the content is not manually selected and ar-
ranged on, say, a web page. Instead, templates for
pages are defined and the content is selected when
a consumer accesses the page. In this workload,
SPARQL queries are used to find relevant content.

Measurement in SPB is performed on the up-
date/retrieve rate of queries executed by editorial
and aggregation agents for a fixed amount of time.
Metrics describe the queries per second rate that
each RDF database system is capable to sustain
during the benchmarking period.

5. CONCLUSIONS
In this paper we presented the Linked Data Bench-

mark Council (LDBC), a new initiative towards for
benchmarking Graph and RDF data management
systems. LDBC aims to bring some of the best
practices of the TPC to the small but growing graph
and RDF database industry. A main technical ad-
vance is its “choke point” driven benchmark design,
which ensures that interesting and well-chosen tech-
nical challenges will emerge from implementing the
benchmarks. The LDBC currently has two bench-
marks under development by its “task forces”: the
Social Network Benchmark (SNB) and the Semantic
Publishing Benchmark (SPB). The latter focuses on
testing RDF database systems, whereas the former
actually splits into three different sub-benchmarks

(the interactive workload, the BI workload, and the
graph analytics workload) that all work on a shared
dataset. This benchmark thus targets graph, RDF
and relational database systems, as well as graph
programming frameworks.

We hereby invite the reader to join the Technical
User Community (TUC) to influence the LDBC.
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