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ABSTRACT
Many organizations today are faced with the challenge
of processing and distilling information from huge and
growing collections of data. Such organizations are in-
creasingly deploying sophisticated mathematical algo-
rithms to model the behavior of their business processes
to discover correlations in the data, to predict trends and
ultimately drive decisions to optimize their operations.
These techniques, are known collectively asanalytics,
and draw upon multiple disciplines, including statistics,
quantitative analysis, data mining, and machine learn-
ing.

In this survey paper, we identify some of the key tech-
niques employed in analytics both to serve as an intro-
duction for the non-specialist and to explore the oppor-
tunity for greater optimizations for parallelization and
acceleration using commodity and specialized multi-core
processors. We are interested in isolating and docu-
menting repeated patterns in analytical algorithms, data
structures and data types, and in understanding how these
could be most effectively mapped onto parallel infras-
tructure. To this end, we focus on analytical models that
can be executed using different algorithms. For most
major model types, we study implementations of key al-
gorithms to determine common computational and run-
time patterns. We then use this information to character-
ize and recommend suitable parallelization strategies for
these algorithms, specifically when used in data man-
agement workloads.

1. ANALYTICS AT YOUR SERVICE
From streaming news updates on smart-phones,

to instant messages on micro-blogging sites, to posts
on social network sites, we are all being overwhelmed
by massive amounts of data [35, 29]. Access to such
a large amount of diverse data can be of tremen-
dous value if useful information can be extracted
and applied rapidly and accurately to a problem
at hand. For instance, we could contact all of our
nearby friends for a dinner at a local mutually agree-
able and well-reviewed restaurant that has adver-

tised discounts and table availability for that night ;
but finding and organizing all that information in
a short period of time is very challenging. Similar
opportunities exist for businesses and governments,
but the volume, variety and velocity of data can
be far greater. This process of identifying, extract-
ing, processing, and integrating information from
raw data, and then applying it to solve a problem
is broadly referred to as analytics.

Table 1 presents a sample of analytic applications
from different domains, along with their functional
characteristics. As this table illustrates, many ser-
vices that we take for granted and use extensively
in everyday life would not be possible without an-
alytics. For example, social networking applica-
tions such as Facebook, Twitter, and LinkedIn en-
code social relationships as graphs and use graph
algorithms to identify hidden patterns (e.g., find-
ing common friends). Other popular applications
like Google Maps, Yelp or FourSquare combine lo-
cation and social relationship information to answer
complex spatial queries (e.g., finding the nearest
restaurant of a particular cuisine that your friends
like). Usage of analytics has substantially improved
the capabilities and performance of gaming systems
as demonstrated by the recent win of IBM’s Wat-
son/DeepQA intelligent question-answer system over
human participants in the Jeopardy challenge [31].
The declining cost of computing and storage and
the availability of such infrastructure in cloud en-
vironments has enabled organizations of any size to
deploy advanced analytics and to package those an-
alytic applications for broad usage by consumers.

While consumer analytical solutions may help us
all to better organize or enrich our personal lives,
the analytic process is also becoming a critical ca-
pability and competitive differentiator for modern
businesses, governments and other organizations.
In the current environment, organizations need to
make on-time, informed decisions to succeed. Given
the globalized economy, many businesses have sup-
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Application (Domain) Principal Goals Key Functional Characteristics
Netflix and Pandora [3, 19] Video and music Analyzing structured and unstructured data,
(Consumer) recommendation Personalized recommendations
Yelp and FourSquare Integrated geographical Spatial queries/ranking, Streaming and persistent data
(Consumer) analytics
DeepQA (Watson) [12] Intelligent question-answer Real-time natural language, Unstructured data processing,
(HealthCare/Consumer) (Q/A) System Artificial intelligence techniques for result ranking
Telecom churn analysis [28] Analysis of Graph modeling of call records, Large graph dataset,
(Telecom) call-data records Connected component identification
Fraud analytics Detection of Identification of abnormal patterns
(Insurance/HealthCare) suspicious behavior Real-time data analysis over streaming and persistent data
Cognos consumer insight [30] Sentiment/Trend Processing large corpus of text documents, Extraction
Twitter sentiment [13] analysis transformation, Text indexing, Entity extraction
(Hospitality)
UPS [1], Airline scheduling [20] Transportation Mathematical programming solutions for transportation
(Logistics) routing
Integrated supply Maximize end-to-end Mathematical solutions for
Chain (Resource Planning) efficiencies optimizing under multiple constraints
Salesforce.com Customer data Reporting, Text search, Multi-tenant support,
(Marketing) analytics Automated price determination, Recommendation
Quantitative Trading Identify trading Identification of patterns in high-speed data
(Finance) opportunities Statistical modeling of financial instruments
Moody’s, Fitch, and S&P [7, 6] Financial credit Statistical analysis of large historical data
(Finance) rating
Amazon retail analysis End-to-end Analysis over large persistent and transactional data,
(Retail) retail management Integration with logistics and customer information
Energy trading Determining prices Processing large time-series data, Integrated stochastic
(Energy) models for generation, storage and transmission
Splunk [32] System management Text analysis of system logs, Large data sets
(Enterprise) analysis
Flickr and Twitter, Social network Graph modeling of relations, Massive graph datasets,
Facebook and Linkedin analysis Graph analytics, Multi-media annotations and indexing
(Consumer/Enterprise)
Voice of customer analytics [4] Analyzing customer Natural language processing, Text entity extraction
(Enterprise) voice records
Workforce Analytics Intelligent staffing Human resource matching,
(Enterprise) Intelligent work assignments
Genomics Genome analysis, Analysis of large text sequences,
(Medical/BioInformatics) sequencing, and assembly Processing of large graphs
fMRI analysis Analyzing synaptic Graph modeling, Graph analytics
(Medical) activities
Facial recognition [33] Biometric Analysis and matching of 2-/3-D images, Large data sets
(Government) classification
Predictive policing [21] Crime Spatial and temporal analytics of iamges and streams
(Government) prediction

Table 1: Well-known analytics solutions and their key characteristics
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ply chains and customers that span multiple con-
tinents. In the public sector, citizens are demand-
ing more access to services and information than
ever before. Huge improvements in communication
infrastructure have resulted in wide-spread use of
online commerce and a boom in smart, connected
mobile devices. More and more organizations are
run around the clock, across multiple geographies
and time zones and those organizations are being
instrumented to an unprecedented degree. This has
resulted in a deluge of data that can be studied to
harvest valuable information and make better deci-
sions. In many cases, these large volumes of data
must be processed rapidly in order to make timely
decisions. Consequently, many organizations have
employed analytics to help them decide what kind
of data they should collect, how this data should be
analyzed to glean key information, and how this in-
formation should be used for achieving their organi-
zational goals. Examples of such techniques can be
found in almost any sector of the economy, including
financial services [7, 6], government [33, 14], health-
care, retail [28, 24], manufacturing, logistics [1, 20],
hospitality, and eCommerce [8, 9].

1.1 Characterizing Analytics Workloads
The distinguishing feature of an analytics appli-

cation is the use of mathematical formulations for
modeling and processing the raw data, and for ap-
plying the extracted information [34]. These tech-
niques include statistical approaches, numerical lin-
ear algebraic methods, graph algorithms, relational
operators, and string algorithms. In practice, an an-
alytics application uses multiple formulations, each
with unique functional and runtime characteristics
(Table 1). Further, depending on the functional
and runtime constraints, the same application can
use different algorithms. While many of the appli-
cations process a large volume of data, the type of
data processed varies considerably. Internet search
engines process unstructured text documents as in-
put, while retail analytics operate on structured
data stored in relational databases. Some applica-
tions such as Google Maps, Yelp, or Netflix use both
structured and unstructured data. The velocity of
data also differs substantially across analytics appli-
cations. Search engines process read-only historical
data whereas retail analytics process both historical
and transactional data. Other applications, such as
the monitoring of medical instruments, work exclu-
sively on real-time or streaming data. Depending on
the mathematical formulation, the volume and ve-
locity of data and the expected I/O access patterns,
the data structures and algorithms used by ana-

lytical applications vary considerably. These data
structures include vectors, matrices, graphs, trees,
relational tables, lists, hash-based structures, and
binary objects. They can be further tuned to sup-
port in-memory, out-of-core, or streaming execution
of the associated algorithm. Thus, analytics appli-
cations are characterized by diverse requirements,
but share a common focus on the application of ad-
vanced mathematical modelling, typically on large
data sets.

1.2 Systems Implications
Although analytics applications have come of age,

they have not yet received significant attention from
the data management and systems communities. It
is important to understand systems implications of
the analytics applications, not only because of their
diverse and demanding requirements, but also, be-
cause systems architecture is currently undergoing
a series of disruptive changes. Wide-spread use of
technologies such as multi-core processors, special-
ized co-processors or accelerators, flash memory-
based solid state drives (SSDs), and high-speed net-
works has created new optimization opportunities.
More advanced technologies such as phase-change
memory are on the horizon and could be game-
changers in the way data is stored and analyzed.

In spite of these trends, currently there is limited
usage of such technologies in the analytics domain.
Even in the current implementations, it is often dif-
ficult for analytics solution developers to fine-tune
system parameters, both in hardware and software,
to address specific performance problems. Naive
usage of modern technologies often leads to unbal-
anced solutions that further increase optimization
complexity. Thus, to ensure effective utilization of
system resources: CPU, memory, networking, and
storage, it is necessary to evaluate analytics work-
loads in a holistic manner.

1.3 Our Study
In this paper, we aim to understand the applica-

tion of modern systems technologies to optimizing
analytics workloads by exploring the interplay be-
tween overall system design, core algorithms, soft-
ware (e.g., compilers, operating system), and hard-
ware (e.g., networking, storage, and processors).
Specifically, we are interested in isolating repeated
patterns in analytical applications, algorithms, data
structures, and data types, and using them to make
informed decisions on systems design. Over the past
two years, we have been examining the functional
flow of a variety of analytical workloads across mul-
tiple domains (Table 1), and as a result of this exer-
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cise, we have identified a set of commonly-used an-
alytical models, called analytics exemplars [5]. We
believe that these exemplars represent the essence
of analytical workloads and can be used as a toolkit
for performing exploratory systems design for the
analytics domain. We use these exemplars to il-
lustrate that analytics applications benefit greatly
from holistically co-designed software and hardware
solutions and demonstrate this approach using the
Netezza [11] appliance as an example. In spite of the
recent efforts in integrating analytics components
into database systems, a lot of work still needs to
be done [25, 15, 11], in particular, for accelerating
analytics workloads within the context of database
systems. We hope this study acts as a call to ac-
tion for researchers to focus future data manage-
ment and systems research on analytics.

2. ANATOMY OF ANALYTICS WORK-
LOADS

To motivate the study of analytics workloads, we
first describe in detail a recent noteworthy analytics
application: the Watson intelligent question/answer
(Q/A) system [12].

2.1 The Watson DeepQA System
Watson is a computer system developed to play

the Jeopardy! game-show against human partici-
pants [31]. Waston’s goals are to correctly interpret
the input natural language questions, accurately
predict answers to the input questions and finally,
intelligently choose the input topics and the wager
amounts to maximize the gains. Watson is designed
as an open-domain Q/A system using the DeepQA
system, a probabilistic evidence-based software ar-
chitecture whose core computational principle is to
assume and pursue multiple interpretations of the
input question, to generate many plausible answers
or hypotheses and to collect and evaluate many dif-
ferent competing evidence paths that might support
or refute those hypotheses through a broad search
of large volumes of content.

This process is accomplished using multiple stages:
the first, question analysis and decomposition stage
parses the input question and analyzes it to detect
any semantic entities like names or dates. The anal-
ysis also identifies any relations in the question us-
ing pattern-based or statistical approaches. Next,
using this information, a keyword-based primary
search is performed over a varied set of sources, such
as natural language documents, relational databases
and knowledge bases, and a set of supporting pas-
sages (initial evidence) is identified. This is followed
by the candidate (hypothesis) generation phase which
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Figure 1: Simplified functional flow of busi-
ness analytics applications

uses rule-based heuristics to select a set of candi-
dates that are likely to be the answers to the input
question. The next step, Hypothesis and Evidence
Scoring, for each evidence-hypothesis pair, applies
different algorithms that dissect and analyze the ev-
idence along different dimensions of evidence such
as time, geography, popularity, passage support,
and source reliability. The end result of this stage is
a ranked list of candidate answers, each with a con-
fidence score indicating the degree to which the an-
swer is believed correct, along with links back to the
evidence. Finally, these evidence features are com-
bined and weighted by a logistic regression to pro-
duce the final confidence score that determines the
successful candidate (i.e. the correct answer). In
addition to finding correct answers, Watson needs
to master the strategies to select the clues to it’s
advantage and bet the appropriate amount for any
given situation. The DeepQA system models dif-
ferent scenarios of the Jeopardy! game using differ-
ent simulation approaches (e.g., Monte Carlo tech-
niques) and uses the acquired insights to maximize
Watson’s winning chances by guiding topic selec-
tion, answering decisions and wager selections.
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2.2 Functional Flow of Analytics Applica-
tions

The Watson system displays many traits that are
common across analytics applications. They all have
one or more functional goals. These goals are ac-
complished by one or more multi-stage processes,
where each stage is an independent analytical com-
ponent. To study the complex interactions between
these components, it is useful to examine the func-
tional flow of an analytics application from the cus-
tomer usage to implementation stages. As Figure 1
illustrates, execution of an analytics application can
be partitioned into three main phases: (1) solution,
(2) library, and (3) implementation.

2.2.1 The Solution Phase

The solution phase is end-user focused and cus-
tomized to to satisfy user’s functional goals, which
can be one of the following: prediction, prescription,
reporting, recommendation, quantitative analysis,
simulation, pattern matching, or alerting1. For ex-
ample, Watson’s key functional goals are: pattern
matching for input question analysis, prediction for
choosing answers, and simulation for wager and clue
selection. Usually, any functional goal needs to
be achieved under certain runtime constraints, e.g.,
calculations to be completed within a fixed time pe-
riod, processing very large datasets or large volumes
of data over streams, supporting batch or ad-hoc
queries, or supporting a large number of concurrent
users. For example, for a given clue, the Watson
system is expected to find an answer before any of
the human participants in the quiz. To achieve the
functional and runtime goals of an application, the
analytical solution leverages well-known analytical
disciplines such as machine learning, data mining,
statistics, business intelligence, and numerical anal-
ysis. Specifically, for a given analytical problem, the
solution chooses appropriate problem types from
these disciplines to build processes. Examples of
analytic problem types include supervised and un-
supervised learning, optimization, structured and
unstructured data analysis, inferential and descrip-
tive statistics, and modeling and simulation.

Table 2 presents a set of analytics applications
along with their functional goals and the analytic
problem types used to achieve these goals. As illus-
trated in Table 2, in many cases, a functional goal
can be achieved by using more than one problem
types. The choice of the problem type to be used
depends on many factors that include runtime con-
straints, underlying software and hardware infras-

1We have expanded the classification proposed by Dav-
enport et al. [8, 9].

tructure, etc. For example, customer churn analy-
sis is a technique for predicting the customers that
are most likely to leave the current service provider
(retail, telecom or financial) for a competitor. This
analysis can use one of the three problem types: in-
ferential statistics, supervised learning or unstruc-
tured data analysis. One approach models individ-
ual customer’s behavior using various parameters
such as duration of service, user transaction history,
etc. These parameters are then fed either to a sta-
tistical model such as regression or to a supervised
learning model such as a decision tree, to predict
if a customer is likely to defect [22]. The second
approach, models behavior of a customer based on
her interactions with other customers. This strat-
egy is commonly used in the telecom sector, where
customer calling patterns are used to model sub-
scriber relationships as a graph. This unstructured
graph can then be analyzed to identify subscriber
groups and their influential leaders: usually the ac-
tive and well-connected subscribers. These leaders
can then be targeted for marketing campaigns to
reduce defection in the members of her group [23].

2.2.2 The Library Phase

The library component is usually designed to be
portable and broadly applicable across multiple an-
alytic solutions (e.g., the DeepQA runtime that pow-
ers the Watson system). A library usually provides
implementations of specific models of the common
problem types. For example, an unsupervised learn-
ing problem can be solved using one of many mod-
els including associative mining, classification, or
clustering [16]. Each model can, in turn, use one
or more algorithms for its implementation. For in-
stance, the associative rule mining model can be im-
plemented using the different associative rule min-
ing or decision tree algorithms. Similarly, classifi-
cation can be implemented using nearest-neighbor,
neural network, or naive Bayes algorithms. It should
be noted that in practice, the separation between
models and algorithms is not strict and many times,
an algorithm can be used for supporting more than
one models. For instance, neural networks can be
used for clustering or classification.

2.2.3 The Implementation Phase

Finally, depending on how the problem is formu-
lated, each algorithm uses specific data structures
and kernels. For example, many algorithms for-
mulate the problem using dense or sparse matrices
and invoke kernels like matrix-matrix and matrix-
vector multiplication, matrix factorization, and lin-
ear system solvers. These kernels are sometimes
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Analytical applications Functional goals Problem types
Supply chain management, Product scheduling, Prescription Optimization
Logistics, Routing, Workforce management
Revenue prediction, Disease spread prediction, Prediction Unsupervised/Supervised learning
Semiconductor yield analysis, Predictive policing Descriptive/Inferential statistics
Retail sales analysis, Financial reporting, Budgeting, Reporting Structured/Unstructured data analysis
System management analysis, Social network analysis
VLSI sensitivity analysis, Insurance risk modeling, Simulation Modeling and simulation
Credit risk analysis, Physics/Biology simulations, Games Descriptive/Inferential statistics
Topic/Sentiment analysis, Computational chemistry, Pattern matching Structured/Unstructured data analysis
Document management, Searching, Bio-informatics Unsupervised/Supervised learning
Cross-sale analysis, Customer retention, Music/Video, Recommendation Unsupervised/Supervised Learning
Restaurant recommendation, Intrusion detection Structured/Unstructured data analysis
Web-traffic analysis, Fraud detection, Geological Alerting Descriptive/Inferential statistics
Sensor networks, Geographical analytics (Maps) Unsupervised/Supervised learning
Customer relationship analysis, Weather forecasting Quantitative analysis Descriptive/Inferential statistics
Econometrics, Computational finance Unsupervised/Supervised learning

Table 2: Examples of analytics applications, associated functional goals, and analytical problem
types

optimized for the underlying system architecture,
in form of libraries such as IBM ESSL [17] or In-
tel MKL [18]. Any kernel implementation can be
characterized according to how it manages paral-
lel execution, if at all, and how it manages data
and maps it to the system memory and I/O ar-
chitecture. Many parallel kernels can use shared
or distributed memory parallelism. In particular,
if the algorithm is embarrassingly parallel, requires
large data, and the kernel is executing on a dis-
tributed system, it can often use the MapReduce
approach [10]. At the lowest level, the kernel imple-
mentation can often exploit hardware-specific fea-
tures such as short-vector data parallelism (SIMD)
or task parallelism on multi-core CPUs, massive
data parallelism on GPUs, and application-specific
parallelism using Field Programmable Gate Arrays
(FPGAs).

3. ANALYTICS EXEMPLARS
Given the wide variety of algorithmic and system

alternatives for executing analytics applications, it
is difficult for solution developers to make the right
choices to address specific performance issues. To
alleviate this problem, we have analyzed the func-
tional flow (Figure 1) of a wide set of key appli-
cations across multiple analytics domains and have
isolated repeated patterns in analytical applications,
algorithms, data structures, and data types. We
have been using this information to optimize ana-
lytic applications and libraries for modern systems
and in some cases, specialize our processor and sys-
tem designs to better suit analytic applications.

Towards this goal, we have identified a set of
widely-used analytical models that capture the most

important computation and data access patterns of
the analytics applications that we have studied [5,
27]. These models, referred to as Analytics Exem-
plars, cover the prevalent analytical problem types
and each exemplar can be used to address one or
more functional goals. Table 3 presents the list
of thirteen exemplars, along with target functional
goals and key algorithms used for implementing these
exemplars.

3.1 Key Algorithms
As Table 3 illustrates, each exemplar can be im-

plemented by one or more distinct algorithms. Some
of the algorithms can be used for implementing more
than one exemplars, e.g., the Naive Bayes algorithm
can be used in text analytics and for general clus-
tering purposes. Each algorithm, depending on the
runtime constraints, i.e., whether the application
data can fit into main memory or not, can use a va-
riety of algorithmic kernels (Figure 1). For more de-
tails on the algorithms and their implementations,
the reader is referred to [5, 36].

3.2 Computational Patterns
Table 4 presents a summary of computational

patterns, key data types, data structures and func-
tions used by algorithms for each exemplar. As Ta-
ble 4 illustrates, while different exemplars demon-
strate distinct computational and runtime charac-
teristics, they also exhibit key similirities. Broadly,
the analytic exemplars can be classified into two
classes: the first class exploits linear-algebraic for-
mulations and the second uses non-numeric data
structures (e.g., hash tables, trees, bit-vectors, etc.).
Exemplars belonging to the first class, e.g., Math-
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Model Exemplar (Problem type) Functional goals Key algorithms
Regression analysis Prediction Linear, Non-linear, Logistic
(Inferential statistics) Quantitative Analysis Probit regression
Clustering Recommendation, K-Means and Hierarchical clustering
(Supervised learning) Prediction, Reporting EM Clustering, Naive Bayes
Nearest-neighbor search Prediction, K-d, Ball, and Metric trees, Approx. Nearest-neighbor
(Unsupervised learning) Recommendation Locality-sensitive Hashing, Kohonen networks
Association rule mining Recommendation Apriori, Partition, FP-Growth,
(Unsupervised learning) Eclat and MaxClique, Decision trees
Neural networks Prediction Single- and Multi-level perceptrons,
(Supervised learning) Pattern matching RBF, Recurrent, and Kohonen networks
Support Vector Machines Prediction SVMs with Linear, Polynomial, RBF,
(Supervised learning) Pattern matching Sigmoid, and String kernels
Decision tree learning Prediction ID3/C4.5, CART, CHAID, QUEST
(Supervised learning) Recommendation
Time series processing Pattern matching, Trend, Seasonality, Spectral analysis,
(Data analysis) Alerting ARIMA, Exponential smoothing
Text analytics Pattern matching Naive Bayes classifier, Latent semantic analysis,
(Data analysis) Reporting String-kernel SVMs, Non-negative matrix factorization
Monte Carlo methods Simulation Markov-chain, Quasi-Monte Carlo methods
(Modeling and simulation) Quantitative analysis
Mathematical programming Prescription Primal-dual interior point, Branch & Bound methods,
(Optimization) Quantitative analysis Traveling salesman, A* algorithm, Quadratic programming
On-line analytical processing Reporting Group-By, Slice and Dice, Pivoting,
(Structured data analysis) Prediction Rollup and Drill-down, Cube
Graph analytics Pattern matching Eigenvector Centrality, Routing, Coloring,
(Unstructured data analysis) Recommendation Searching and flow algorithms, Clique and motif finding

Table 3: Analytics exemplar models, along with problem types and key application domains

ematical Programming, Regression Analysis, and
Neural Networks, operate primarily on matrices and
vectors. Matrices are either sparse or dense, and are
used in various linear algebraic kernels like the ma-
trix multiplication, inversion, transpose, and factor-
ization. The second class, which includes cluster-
ing, nearest-neighbor search, associative rule min-
ing, decision tree learning, use data structures like
hash-tables, queues, graphs, and trees, and oper-
ate on them using set-oriented, probabilistic, graph-
traversal, or dynamic programming algorithms. Ex-
emplars like mathematical programming, text ana-
lytics, and graph analytics can use either of these
approaches. The analytic exemplars use a vari-
ety of types, such as integers, strings, bit-vector,
and single and double precision floats, to repre-
sent the application data. This information is then
processed using different functions that compare,
transform, and modify input data. Examples of
common analytic functions include various distance
functions (e.g., Euclidian), kernel functions (e.g.,
Linear, Sigmoid), aggregation functions (e.g., Sum),
and Smoothing functions (e.g., correlation). These
functions, in turn, make use of intrinsic library func-
tions such as log, sine or sqrt.

3.3 Runtime Characteristics
Table 5 summarizes the runtime characteristics

of the analytics exemplars. The key distinguishing
feature of analytics applications is that they usu-
ally process input data in read-only mode. The
input data can be scalar, structured with one or
more dimensions, or unstructured, and is usually
read from files, streams or relational tables in the
binary or text format. In most cases, the input
data is large, which requires analytics applications
to store and process data from disk. Notable ex-
ceptions to this pattern are Monte Carlo Methods
and Mathematical Programming, which are inher-
ently in-memory as they operate on small input
data. The results of analysis are usually smaller
than the input data. Only two exemplars, associ-
ation rule mining and on-line analytical processing
(OLAP) generate larger output. Finally, analytics
applications can involve one or more stages (real-
time execution can be considered to have only one
stage), where each stage invokes the corresponding
algorithm in an iterative or non-iterative manner.
For the iterative workloads, for the same input data
size, the running time can vary depending on the
precision required in the results.

4. SYSTEM IMPLICATIONS
Given the varied computational and runtime char-

acteristics of the analytics exemplars, it is clear that
a single systems solution for different analytics ap-
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Model Exemplar Computational pattern Key data types, Data structures, and Functions
Regression Matrix inversion, LU decomposition Double-precision and Complex data
Analysis Transpose, Factorization Sparse/Dense matrices, Vectors
Clustering Metric-based iterative convergence Height-balanced tree, Graph,

Distance functions, log function
Nearest-Neighbor Non-iterative distance calculations Higher-dimensional data structures,
Search Singular value decomposition, Hashing Hash tables, Distance functions
Rule Mining Set intersections, Unions, and Counting Hash-tree, Prefix trees, Bit vectors
Neural Networks Iterative Feedback networks Sparse/dense matrices, Vectors,

Matrix multiplication, Inversion, Factorization Double-precision/Complex data
Smoothing functions

Support Vector Factorization, Matrix multiplication Double-precision Sparse matrices, Vectors
Machines Kernel functions (e.g., Linear)
Decision Trees Dynamic programming Integers, Double-precision, Trees,

Recursive Tree Operations Vectors, log function
Time Series Smoothing via averaging, Correlation Integers, Single-/Double-precision, Dense matrices
Processing Fourier and Wavelet transforms Vectors, Distance and Smoothing functions
Text Analytics Parsing, Bayesian modeling, String matching Integers, Single-/Double-precision, Strings

Hashing, Singular value decomposition Sparse matrices, Vectors, Inverse indexes,
Matrix multiplication, Transpose, Factorization String functions, Distance functions

Monte Carlo Random number generators Double-precision, Bit vectors
Methods Polynomial evaluation, Interpolation Bit-level operations, log, sqrt functions
Mathematical Matrix multiplication, Inversion, Factorization Integers, Double-precision, Sparse Matrices,
Programming Dynamic programming, Greedy algorithms, Vectors, Trees, Graphs

Backtracking-based search
On-line Analytical Grouping and ordering Prefix trees, Relational tables, OLAP Operators
Processing Aggregation over hierarchies Sorting, Ordering, Aggregation operators
Graph Analytics Graph traversal, Eigensolvers, Matrix-vector, Integer, Single-/Double-precision, Adjacency Lists

Matrix-matrix multiplication, Factorization Trees, Queues, Dense/Sparse matrices

Table 4: Computational characteristics of the analytics exemplars

Model Exemplar Execution characteristics Input-Output characteristics
Methodology Memory Issues (Read-only) Input Data Output Data

Regression Analysis Iterative In-memory Large historical Small
Disk-based Structured Scalar

Clustering Iterative In-memory Large historical Small scalar
Disk-based Unstructured or structured Unstructured or structured

Nearest-Neighbor Non-iterative In-memory Large historical Small
Search Structured Scalar or structured
Association Rule Iterative In-memory Large historical Larger
Mining Non-iterative Disk-based Structured Structured
Neural Networks Iterative In-memory Large Small

Two Stages Disk-based Structured Scalar
Support Vector Iterative In-memory Large Small
Machines Two Stages Disk-based Structured Scalar
Decision Tree Iterative In-memory Large Small
Learning Two Stages Disk-based Structured & Unstructured Scalar
Time Series Non-iterative In-memory High volume streaming Small scalar or streaming
Processing Real-time Structured or unstructured Structured or unstructured
Text Analytics Iterative In-memory Large historical or streaming Large or small

Non-iterative Disk-based Structured or unstructured Structured or unstructured
Monte Carlo s Iterative In-memory Small Large
Methods Scalar Scalar
Mathematical Iterative In-memory Small Small
Programming Scalar Scalar
On-line Analytical Non-iterative In-memory Large historical Larger
Processing (OLAP) Disk-based Structured Structured
Graph Analytics Iterative In-memory Large historical Small

Disk-based Unstructured Scalar or unstructured

Table 5: Runtime characteristics of the analytics exemplars
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plications would be sub-optimal. As Tables 4 and
5 demonstrate, each exemplar has a unique set of
computational and runtime features, and ideally,
every exemplar would get a system tailor-made to
match its requirements. However, we have also ob-
served that different analytic exemplars share many
computational and runtime features. Therefore, for
a systems designer, the challenge is to customize
analytics systems using as many re-usable software
and hardware components as possible.

4.1 System Acceleration Opportunities
Table 6 describes system opportunities for accel-

erating analytics exemplars. Based on the computa-
tional and runtime characteristics described in Ta-
bles 4 and 5, we first identify key bottlenecks in the
execution of analytic exemplars, namely compute-
bound, memory-bound, and I/O bound (which cov-
ers both disk and network data traffic). As Table 6
illustrates, a majority of the analytics exemplars are
compute bound in the in-memory mode and I/O-
bound when in the disk-based mode. The compute-
bound exemplars can benefit from traditional task-
based parallelization approaches on multi-core pro-
cessors, as well as by hardware-based acceleration
via SIMD instructions or using GPUs. When used
in the disk-based scenarios, these exemplars can im-
prove their I/O performance by using solid state
drives or data compression. Some of the analyt-
ics exemplars are memory-bound due to their re-
liance on algorithms that traverse large in-memory
data structures such as trees or sparse matrices.
For these exemplars, a better memory sub-system,
with faster, larger, and deeper memory hierarchies,
would be most beneficial. Once the memory ac-
cesses are optimized, these exemplars can also bene-
fit from traditional computational acceleration tech-
niques. Finally, some of the exemplars exhibit unique
computational patterns (e.g., bit-level manipulations,
pattern matching, or string processing) which could
be accelerated using special-purpose processors such
as FPGAs or by introducing new instructions in
general-purpose processors. In most cases, the ex-
emplars can be accelerated using commodity hard-
ware components (e.g., multi-core processors, GPUs
or SSDs). These hardware components can be then
used to optimize re-usable software kernel functions
(e.g., numerical linear algebra, distance functions,
etc.), which themselves can be parallelized by a va-
riety of parallelization techniques such as task par-
allelism, distributed-memory message-passing par-
ellelism or MapReduce [26, 2]. These functions can
be used as a basis of specialized implementations of
the exemplars. Such hardware-software co-design

enables optimized analytics solutions that can bal-
ance customization and commoditization.

4.2 The Netezza Example
An example of hardware-software co-design for

database workloads is the Netezza data warehouse
and analytics appliance [11]. The Netezza appli-
ance supports both SQL-based OLAP and analyt-
ics queries. Netezza uses a combination of FPGA-
based acceleration and customized software to op-
timize data-intensive mixed database and analytics
workloads with concurrent queries from thousands
of users. The Netezza system uses two key prin-
ciples to achieve scalable performance: (1) Reduce
unnecessary data traffic by moving processing closer
to the data, and (2) Use parallelization techniques
to improve the processing costs. A Netezza appli-
ance is a distributed-memory system with a host
server connected to a cluster of independent servers
called the snippet blades (S-Blades). A Netezza
host first compiles a query using a cost-based query
optimizer that uses the data and query statistics,
along with disk, processing, and networking costs
to generate plans that minimize disk I/O and data
movement. The query compiler generates executable
code segments, called snippets which are executed
in parallel by S-blades. Each S-blade is a
self-contained system with multiple multi-core CPUs,
FPGAs, gigabytes of memory, and a local disk sub-
system. For a snippet, the S-Blade first reads the
data from disks into memory using a technique to
reduce disk scans. The data streams are then pro-
cessed by FPGAs at wire speed. In a majority
of cases, the FPGAs filter data from the original
stream, and only a tiny fraction is sent to the S-
Blade CPUs for further processing. The FPGAs
can also execute some additional functions which
include decompression, concurrency control, projec-
tions, and restrictions. The CPUs then execute ei-
ther database operations like sort, join, or aggrega-
tion or core mathematical kernels of analytics appli-
cations on the filtered data streams. Results from
the snippet executions are then combined to com-
pute the final result. The Netezza architecture also
supports key data mining and machine learning al-
gorithms on numerical data (e.g., matrices) stored
in relational tables.

A key lesson learned from the design of Netezza
has been the huge value of specializing system de-
sign for analytics. Orders of magnitude improve-
ments in efficiency can be achieved by carefully an-
alyzing the system requirements and innovating us-
ing a collaborative software-hardware design method-
ology. As analytics applications become more main-
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Model Exemplar Bottleneck Acceleration requirements and opportunities
Regression Analysis Compute-bound Shared- and Distributed-memory task parallelism
Clustering I/O-bound Data parallelism via SIMD or GPUs
Nearest-Neighbor Search Faster I/O using solid state drives
Neural Networks
Support Vector Machines
Association Rule Mining I/O-bound Shared-memory task parallelism

Faster I/O using solid state drives
Faster bit operations or tree traversals via FPGAs

Decision Tree Learning Memory-bound Larger and deeper memory hierarchies
Data parallelism via SIMD

Time Series Processing Compute-bound Shared- and Distributed-memory task parallelism
Memory-bound Data parallelism via SIMD or GPUs

High-bandwidth, low-latency memory subsystem
Pattern matching via FPGA

Text Analytics Memory-bound Shared- and Distributed-memory task parallelism
I/O-bound Data parallelism via SIMD or GPUs

Larger and deeper memory hierarchies
Faster I/O via solid state drives
Pattern matching and string processing via FPGA

Monte Carlo Methods Compute-bound Shared- and Distributed-memory task parallelism
Data parallelism via SIMD or GPUs
Faster bit manipulations using FPGAs or ASICs

Mathematical Programming Compute-bound Shared-memory task parallelism
Massive data-parallelism via GPUs
Larger and deeper memory hierarchies
Search-tree traversals via FPGAs

On-line Analytical Processing Memory-bound Shared- and Distributed-memory task parallelism
I/O-bound Data parallelism via SIMD or GPUs

Larger and deeper memory hierarchies
Pattern Matching via FPGAs,
Faster I/O using solid state drives

Graph Analytics Memory-bound Shared-memory task parallelism
Larger and deeper memory hierarchies

Table 6: Opportunities for parallelizing and accelerating analytics exemplars
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stream, future database systems need to be designed
in an integrated manner to support both the classi-
cal and analytics workoads.

5. SUMMARY
In this survey paper and the accompanying re-

search report [5], we have reviewed the growing field
of analytics that uses mathematical formulations to
solve business and consumer problems. We have
identified some of the key techniques employed in
analytics, called analytics exemplars, both to serve
as an introduction for the non-specialist, and to ex-
plore the opportunity for greater optimization for
parallel computer architectures, and systems soft-
ware. We hope this work spurs follow-on work on
analyzing and optimizing analytics workloads.
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