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ABSTRACT  
Today’s complex world requires state-of-the-art data analysis 
over truly massive data sets. These data sets can be stored 
persistently in databases or flat files, or can be generated in real-
time in a continuous manner. An associated set is a collection of 
data sets, annotated by the values of a domain D. These data sets 
are populated using a data source according to a condition θ and 
the annotated value. An ASsociated SET (ASSET) query consists 
of repeated, successive, interrelated definitions of associated 
sets, put together in a column-wise fashion, resembling a 
spreadsheet document. We present DataMingler, a powerful GUI 
to express and manage ASSET queries, data sources and 
aggregate functions and the ASSET Query Engine (QE) to 
efficiently evaluate ASSET queries. We argue that ASSET 
queries: a) constitute a useful class of OLAP queries, b) are 
suitable for distributed processing settings, and c) extend the 
MapReduce paradigm in a declarative way.   

Categories and Subject Descriptors 
H.2.3 [Database Management]: Languages—Query Languages 

General Terms 
Design, Management, Languages. 

Keywords 
MapReduce , Spreadsheets, ASSET Queries, DataMingler. 

1. INTRODUCTION  
Business needs of modern applications require advanced 
data analysis over voluminous data sets, usually partitioned 
across different disks or processing nodes, possibly in 
different formats (e.g. flat files and/or multiple-vendor 
databases). To accommodate the enormous processing 
requirements of these applications, novel 
hardware/database architectures have been proposed (e.g. 
[8],[17]) and programming paradigms have been 
developed (e.g. MapReduce [9].) In addition, several well-
funded start-ups, such as AsterData, Greenplum, Netezza 
and Vertica now offer products for large-scale data 
analytics alongside with IBM, Oracle and Teradata.  

The goals of this work are the following:  

(a) Distributed computation of OLAP queries over very 
large data warehouses: a data warehouse may be 
distributed to several nodes for reliability, load-efficiency 
and cost-efficiency reasons. An interesting research 
question is what kind of OLAP questions can be efficiently 
evaluated over distributed data warehouses, and how much 
and which part of the computation one can “move” to the 
node hosting a partition. 
(b) Simple query formulation: representation of a query 
should be as simple and intuitive as possible, yet amenable 
to appropriate distributed processing rewrites. MapReduce 
is an option, but it lacks declarative simplicity 
([1],[10],[14]). In addition, there is a plethora of OLAP 
queries that could benefit from a MapReduce 
implementation, but cannot be expressed as MapReduce 
jobs (e.g. pivoting, hierarchical comparisons, complex 
comparisons, trends, correlated aggregation [7].) 
(c) Heterogeneous data sources: data sources can be 
persistent or continuous, databases of different vendors, or 
flat files. In general, a data source can be anything that 
presents a relational interface to our system and has an 
iterator defined over it. While we briefly discuss ASSET 
queries in the context of data streams in this paper, a 
detailed presentation can be found in [4]. 

As a running example, consider a financial 
application with schema: 
 

Clients(clientID, address, zip, income) 
Stocks(stockID, categID, description) 

Transactions(clientID, stockID, volume, timestamp, type, amount) 
 

Typical data warehousing queries include: 
 

Q1. For each stock, find certain demographics of its buyers 
(e.g. average income) and compare them to those of 
the stock’s category. 

Q2. Find the most frequent stock category a user buys or 
sells, for a predefined set of users. 

Q3. For each stock, compare the demographics (e.g. 
average income) of its large-volume buyers versus its 
small-volume buyers. 
 

_____________________________________________________________ 

* Part of this research was performed while the author was visiting Aster 
Data Systems Inc., Redwood Shores, CA. 
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Additional queries of this “style” can also be found in 
[6],[7]. They constitute a useful subclass of OLAP queries 
and share a pattern: for each tuple of a table, they compute 
a “define-subset, reduce-subset” sequence, where each 
“define-subset” phase of a step uses previously defined 
aggregates and/or the tuple’s attributes. For example, 
consider query Q2. While SQL is the de facto option, one 
could formulate it in a stepwise, set-oriented fashion:  

 
1: for each user u { 
2:   T={find the transactions of u}; 
3:   F={StockIDs of T’s members}; 
4:   S={select the stocks with StockID in F}; 
5:   C= mostOften(S.categID); 
6:   print (u, C); 
7: } 
 

Line 2 defines a subset of transactions T; Line 3 
defines a (set-valued) aggregate over T; Line 4 defines a 
subset of stocks; Line 5 defines an aggregate over this set. 
One could find such formulations easier than SQL, 
especially those with a procedural background. At the 
same time, such implementations, with the appropriate 
indexing, data structure selection and memory sizes can 
perform significantly better than current DBMS. Finally, if 
a data source is partitioned across nodes, parallel 
processing becomes “cleaner”. Such queries resemble 
MapReduce jobs, but there are two notable differences: (a) 
there may be several reduce sets for the same map value, 
and (b) these reduce sets can be correlated. 

Our approach is based on the concept of associated set 
(ASSET), which is just a collection of tuples associated to 
a value (not necessarily atomic). An ASSET query consists 
of one or more associated sets, put together in a specific 
way. It resembles a spreadsheet report, where earlier 
columns serve as the basis for later columns via formulas 
and the first few columns are somehow initialized to 
external values. In our framework, users initially define 
the base columns using a database or flat file and they then 
build incrementally the report by adding columns. Each 
cell of the new column represents a data set (the associated 
set), populated from a data source according to a condition 
θ, involving attributes of the source and aggregates of 
previously defined associated sets. We claim that this 
column-wise formulation of a query can be not only 
intuitive and flexible, but also efficient and robust in terms 
of associated sets’ evaluation. Similar claims for 
spreadsheet-like query languages can be found in [3],[18].  

In this paper, we present (a) the ASSET Query Engine 
(QE), which parses, optimizes and executes ASSET 
queries, and (b) DataMingler, a spreadsheet-like tool to 
express ASSET queries. In our view, ASSET queries can 
be useful in: 
Novel Programming Paradigms: MapReduce [9] is one 
of the most active research issues over the last few years. 
The claim is that with appropriate configuration of the 
Map and Reduce functions, a large number of 

computational tasks can be easily represented and 
efficiently executed. While this approach offers significant 
procedural flexibility over declarative approaches and 
employs a simple computational model, it lacks the 
optimizability and ease of use of modern database systems 
[10]. While we completely agree with the claims of [10], 
the ability to loop over the values of a domain and define 
an (associated to that value) data set is quite appealing 
both in terms of representation and evaluation. It has been 
used, directly or indirectly, in parameterized query 
processing, in set-valued attribute proposals [13], in 
grouping constructs [6], relational join operators ([5],[16]) 
and elsewhere. The goal should be to balance the trade-offs 
between declarative optimizability and procedural 
flexibility in a database-proper way, such as in Hive [12] 
and Pig [14]. For example, Pig adds a semi-declarative 
layer over MapReduce, by proposing a language 
combining declarative and procedural features. In our 
approach, ASSET queries “restrict” the Map function to 
have a declarative nature while the Reduce function can be 
anything (using C++). 
Performance: The answer to an ASSET query is 
represented by a – possibly  nested – data structure, which 
can always be made memory resident (horizontally 
segmented, if necessary). This data structure can be 
indexed multiple times, using different methods; can be 
decorrelated, if parts of it contain the same data; can be 
computed locally or partitioned and sent to the nodes 
containing the data sources. The claim is that the 
representation of an ASSET query is appropriate to 
identify and employ the above-mentioned optimization 
techniques. 
Integrating Heterogeneous Data Sources: By allowing a 
column’s data source to be essentially an iterator over 
anything that presents a relational interface, we can 
integrate into the same report data sets from heterogeneous 
data sources. 
SQL Extensions: Sticking to SQL for query formulation 
has traditionally been a “must do” for every proposal, 
given its popularity among database users. Fortunately, it 
seems that there is a simple and intuitive SQL extension 
that allows ASSET query formulation, following the 
syntactic paradigm of [7]. 

2. EVALUATION OF ASSET QUERIES 
Let us re-visit query Q2. The basic idea is simple. 

First, for each client id (table B0 in Figure 1), define the 
set of client’s transactions T, using as data source the 
Transactions table, and keep the stock ids of T as a set-
valued aggregate function, called all(). These are the Fi 
sets in Figure 1. B0 is then extended with a column 
containing Fi sets and is named B1. Then, for each row i of 
B1, define the set of stocks S with stockID in Fi, using as 
data source the Stocks table, and compute the 
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mostOften(categID) element of S. The entire process of 
defining column-wise this query is depicted in Figure 1. 

 

 
 

Figure 1: Representation of query Q2 
 

Therefore the idea is to start from a set of base 
columns and add recursively new columns: for each row 
define a set of values using some condition θ (the 
associated set), compute one or more aggregates over these 
sets, extend the base schema with these aggregates and 
start over. The definition of the associated set is done 
declaratively, while the aggregate functions over the 
associated set is a C++ method with a simple- or vector-
type return value. Each associated set’s definition 
resembles a single MapReduce application with the 
mapping phase (initial values) already computed.  

The claims are: (a) ASSET queries can express more 
complex OLAP queries than MapReduce, queries similar 
to [7], and (b) there are significant optimization 
opportunities in representing a query in such a way.  

Let us revisit query Q2: in most distributed data 
warehousing configurations, Transactions table will be 
partitioned across several processing nodes, while Stocks 
table will be replicated at each node. One evaluation plan 
would be to distribute B0 to all nodes, compute the partial 
Si’s, and ship them back to and concatenate them (union) 
at the coordinating node. The optimizer could deduce that 
S1, S2, etc. are used later only for membership testing and 
keep them as inverted lists (to the row ids) to facilitate the 
efficient computation of S sets. These optimizations are 
possible due to the representation of ASSET queries. One 
can argue that the size of B1 may be large, but given 
current RAM sizes, it actually is very feasible and makes 
sense: maximize RAM’s role as much as possible. The 
impact on performance by employing these optimizations 
techniques can be huge: from non-ending queries down to 
a few hundreds of seconds (Section 5).  

Due to space limitations, we cannot define formally 
the concept of associated set. In short, given a set of base 
values V, an associated set A w.r.t. a data source S is a 
collection of empty data structures, able to hold S’ 
elements, annotated by the values of V, i.e. there is one 
data structure for each v∈V. One can consider this as the 
schema of the associated set. An instance of A, w.r.t. a 
condition θ, is the collection of the data structures 
populated by S’ elements, according to θ and v. The 
purpose is to compute aggregates over the data structures.  
An ASSET query consists of a base set of values V (i.e. a 
table) and successive definitions of associated sets, where 
aggregates of previously defined associated sets can be 
used for the definition of subsequent associated sets. An 
ASSET query is constructed incrementally, column-by-
column, where a column corresponds to an associated set 
and is described by a data source, a defining condition and 
the aggregates to be computed over the associated set. 

Evaluation of ASSET queries can be optimized in 
several ways. For example, an associated set and its 
aggregates can be computed either locally or remotely, 
where the data source (or partition of it) exists, by sending 
all the required data to the remote node; not materializing 
the associated set if the required aggregate computation is 
distributive or algebraic; build appropriate indexes on 
previously defined associated sets by analyzing the 
condition θ (e.g. build - or keep - it as an inverted list, if θ 
asks for membership into the associated set); choosing the 
most appropriate data structure to represent the associated 
set (B+ trees, min-max heaps, etc.); keep a single instance 
of identical associated sets of different rows of the base 
table, by creating a linked list within the new column. We 
have implemented most of these into our ASSET QE. 

The first step in evaluating an ASSET query is to 
assign the associated sets into computational rounds: a 
computational round consists of independent to each other 
(directly or transitively) associated sets – there is a 
dependency between two associated sets if the one uses 
aggregates of the other (in its defining condition or 
aggregates). The output of a computational round is the 
base table for the next one. The data sources of the 
associated sets consist of data partitions. A computational 
round consists of one or more basic computations, one for 
each data partition of the computational round. It is a local 
computation of the associated sets using this data partition. 
To accommodate an optimization framework, we have 
developed two operators, one for the computational round 
and one for the basic computation:  

• ASR(B, A1(S1),…Ak(Sk)), where B is the base table, 
A1,…, Ak the associated sets that have to be computed 
in the computational round and S1,…,Sk their 
respective data sources. 
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• ASB(B, S, A), where B is the base table, S a data 
partition and A the set of associated sets using this 
data partition. 

This process is graphically depicted by Figure 2. The 
base table is sent to each data partition’s node and the 
basic computation executes there. The whole process is 
coordinated by a main (coordinating) program. For 
example, consider Query Q2. Transactions table may be 
partitioned across several nodes (sources). The list of 
clientIDs (i.e. B0) could be sent to all nodes, the partial Fis 
computed locally at the node and sent back to the 
coordinator, where they are concatenated to form Fis. 

 

Figure 2: Evaluation of ASSET queries 

This plain execution strategy can be generalized to a 
more elaborate one, where base tables are horizontally 
partitioned according to their estimated sizes and the 
computation of the ASSET query “flows” from left to 
right, possibly in parallel. The following algorithm 
describes this idea: 

1: compute B 0; round=1; 

2: repeat { 

3:    Partition B 0 to B 0
1, B 0

2, …, B 0
k; 

4:    A={the set of assoc. sets of current round}; 

5:    B 1 = AS R
round (B 0

1,A) U... U ASR
round (B 0

k,A); 

6:    round++; 

7:    B 0 = B 1; 

8: } until (round>n);  
Note that the combination step of line 5 can be 

omitted if partitioning remains the same from one 
computational round to the next. In general, one can think 
of an evaluation strategy represented by a graph with fork 
and join points at the end of computational rounds. 

The complete architecture of our system is shown in 
Figure 3. An ASSET query is formulated either 
graphically using DataMingler or textually using an 
extended version of SQL . In both cases, an XML-based 
specification file is generated.  Section 3 describes query 
formulation of ASSET queries. The XML-based 
specification file of an ASSET query is passed to the main 
parser (assetGenGlobal), which coordinates the execution 
of two lower-level parsers (assetGenRound and 
assetGenBasic) and produces the main (coordinating) C++ 
program. The assetGenRound parser assigns the associated 

sets to computational rounds and the assetGenBasic parser 
generates efficient C++ programs implementing the basic 
computations. The main C++ program manages the 
ASSET structure (the data structure representing the 
answer of the ASSET query) and coordinates the basic 
computations. All the generated C++ programs are then 
compiled and executed. Section 4 presents the ASSET 
Query Engine. 

 

 
 

Figure 3: Expressing and evaluating ASSET queries 

3. QUERY FORMULATION 
ASSET queries can be formulated by either a GUI called 
DataMingler, or an extended SQL textual interface. Both 
generate an XML-based specification of the query that is 
fed to the ASSET QE. 
3.1 Extended SQL 

We follow the formalism of grouping variables [7]. 
The idea is quite simple: we want a syntax that allows the 
addition of “extra” columns to the resulting table of an 
SQL query – similar to an outer-join operation. We 
propose an “extended by” clause to declare the associated 
sets and their respective data sources and a “such that” 
clause to provide their defining conditions. These clauses 
immediately follow a <select..from..where> query. The 
proposed syntax is: 

select A from R where θ group by A’ 
extended by A 1(S 1), A 2(S 2), … , A n(S n) 
such that θ1, θ2, ..., θn 

 
The selection list A may contain aggregate functions 

defined over the associated sets A1, A2, …, An. The answer 
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of the <select..from..where.. group by> SQL query serves 
as the base-values table. Condition θi involves attributes of 
the base-values table, constants and aggregates of 
associated sets A1,…,Ai-1., i=1,…n. For example, query Q2 
can be expressed as (recall from Section 2 that all(attr) is 
an aggregate function returning the set of attr values of the 
involved table): 

 

select clientID, Y.mostOften(categID) 
from Clients 
extended by X(Transactions), Y(Stocks) 
such that X.clientID=clientID, 
          Y.stockID in X.all(stockID)  

3.2 DataMingler – A Spreadsheet-Like Tool 
We have developed a spreadsheet-like GUI to manage data 
sources, user-defined aggregate functions and ASSET 
queries. It has been implemented in C++ code using the 
Qt4 C++ library for Windows from Trolltech. Since Qt is 
platform independent, DataMingler can be easily compiled 
for Unix/Linux operating systems.  

3.2.1 Data Source Management 
An ASSET query uses heterogeneous and possibly 

multi-partitioned data sources. These sources may refer to 
local or remote databases, data streams or flat files and 
must firstly be appropriately defined through DataMingler. 
Each description consists of the source’s schema and a 
number of attributes specific to the type of the source (e.g. 
delimiter and location for flat files; IP, port, username and 
password for databases, etc.) All data sources are stored in 
an XML-based specification file. Currently we support 
databases (Postgres, MySQL, Oracle, SQL Server), flat 
files and socket-based streams. Figure 4 shows the first 
step in defining the Transactions data source. 

 

 
Figure 4: Defining a new data source in DataMingler 

All data sources may consist of multiple partitions, not 
necessarily of the same schema – only common attributes 
appear in query formulation. A partition in the case of 

databases/flat files/data stream is just another 
table/file/stream source, located locally or remotely. As a 
result, a data source may consist of multiple 
tables/files/streams distributed at several processing nodes. 

3.2.2 Aggregate Functions 
The goal is to describe the signature of a C++ function 

into an XML-based dictionary, so some type-checking and 
user-guidance can take place. The user specifies the input 
parameters and their types and the type of the return value 
(Figure 5).  

 

  
Figure 5: Defining a new aggregate function, allUnique, 

returning a set of distinct integers 

The user also specifies a “gluing” function, in the case of 
distributed computation of an associated set (e.g. “sum” is 
the gluing function for “count”.) Aggregate functions can 
be either distributive or algebraic (holistic computations 
can be achieved through aggregate functions returning the 
entire or part of the associated set and the use of “null” 
associated sets, described later). In the case of algebraic 
aggregate functions, the user must specify the involved 
distributive functions, the correspondence between the 
parameters and the finalization code (in C++). 

3.2.3 Asset Queries 
Users specify ASSET Queries through DataMingler in 

a spreadsheet-like manner, column by column. The user 
initially specifies a base table that can be an SQL query 
over one of the database sources, the contents of a flat file 
source or manually inserted schema and values. Thus, the 
first columns of the spreadsheet correspond to the base-
values table attributes. The spreadsheet document is then 
extended with columns representing associated sets, one at 
a time. The user specifies the name, source, defining 
condition and aggregate functions of the associated set. 
The data source can be (a) one of the existing data sources 
described earlier through DataMingler, (b) of type “this”, 
in which case the so-far defined spreadsheet table serves as 
the data source to the associated set, and (c) of type “null”, 
in which case the user specifies an expression involving 
aggregates of previously defined columns – similar to a 
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spreadsheet formula involving only same-row cells. Figure 
6 shows the window for the definition of an associated set. 

 

 

Figure 6: Building an ASSET query 

Associated sets may be correlated, since aggregations 
performed over one associated set may be used by another. 
This might occur during specification of the latter’s 
defining condition, its functions’ parameters or its 
computation formula in case of “null” sets. DataMingler 
identifies dependencies, performs a topological sort and 
places them into “processing rounds”, as required by the 
ASSET QE, explained in the following section. 

 

4. The ASSET QUERY ENGINE (QE) 
Once an ASSET query has been formulated and 
represented as an XML-based specification, it is passed to 
the ASSET QE for optimization, code generation and 
execution. 
assetGenGlobal: This is the top-level parser of the 
ASSET QE. It gets the XML-based specification of an 
ASSET query and generates (a) the round-related XML 
specifications of the query and (b) the main (coordinating) 
C++ program for the query. Each round-related 
specification contains the data sources’ description of the 
round and the associated sets that will be computed. Note 
that from this point on, each partition of a data source 
becomes a distinct, individual data source. The query’s 
main C++ program, instantiates and populates all the 
necessary data structures, creates all the local indexes and 
decorrelation lists over the ASSET structure and 
coordinates all the basic computational threads executing 
locally or remotely. In the latter case, it sends parts of the 
ASSET structure to the appropriate nodes and receives 
back (and glues together) the computed column(s). 
assetGenRound: This is the round-level parser: it groups 
the associated sets of the round by source and generates an 
XML-based specification file for each source. Recall that 

with the term “source” we mean partitions of the original 
data sources. It determines whether the computation over 
the source will execute locally or remotely, deduces the 
indexes and decorrelation lists over the base-values table 
and resolves the minimal base-values table that has to be 
sent to the remote node (in case of remote computation.) 
Currently supported indexes are hash maps, binary trees 
and inverted lists, deduced by the defining condition of the 
associated sets. 
assetGenBasic: This is the source-level parser that gets a 
source-specific XML-based specification file and generates 
an efficient C++ program (the “basic computational 
thread”) to scan the data source and compute the 
associated sets related to that source. This thread 
communicates with the main program to receive the 
round-specific base table (only the required columns), 
builds indexes over and decorrelates the base table, 
computes the associated sets and serializes the result back 
to the coordinating program (if executing remotely). The 
engine also decides to decorrelate the base table on a single 
attribute with respect to an associated set (i.e. we may have 
different decorrelation lists for different associated sets), if 
the associated set is using a hash index on that attribute 
and its estimated cardinality is low (this can be measured 
while receiving the base table). 

Once all the basic computational threads have been 
generated, then the whole process is driven by the query’s 
main C++ program. We currently assume that the entire 
ASSET structure (the output of the ASSET query) fits in 
main memory – which is not unrealistic for a large class of 
ASSET queries and today’s memory sizes. However, since 
the entire code generation assumes boundary limits of the 
ASSET structure, we can easily specify the computation of 
an ASSET query in horizontal chunks - currently has to be 
done manually, by altering the query’s main C++ program. 

5. PERFORMANCE 
Figure 7 shows the performance of the query Q2 when 

the size of Transactions table varies from 100M to 600M 
records (15GB to 90GB) – all in one partition. We 
assumed 10M clients and 10K stocks. We tried to compare 
ASSET query engine’s performance with standard SQL 
formulation using PostgreSQL but we could not get any 
results for even 200M records after 21 hours. All 
experiments performed on a Linux Dell machine with a 
Quad Core Intel Xeon CPU @ 3.00GHz having 12 disks, 
300GB each at 15K rpm, RAID5 configuration and 32GB 
of main memory. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we introduced ASSET queries, a useful class 
of data analysis queries that can be efficiently evaluated in 
distributed settings. While the basic component of an 
ASSET query, the associated set, is similar to a 
MapReduce operator, the ability to have multiple 
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associated sets, possibly correlated, placed next to each 
other in the same query, increases greatly the complexity 
of data analysis performed and offers significant 
optimization capabilities. 
 

  

Figure 7: ASSET QE performance on query Q2 

The main differences between ASSET queries and 
MapReduce can be summarized as: a) the data set of the 
mapping phase is defined using a condition, instead of 
using an arbitrary mapping function – less flexibility, more 
room for optimization, b) one may define multiple reduce 
sets for the same value, by using different defining 
conditions – this is not obvious how it can be done in one 
MapReduce, c) correlated aggregation ([6],[11]), an 
important topic in data analysis, can be expressed in one 
query instead of multiple, providing additional hints to the 
optimizer, and d) while overlapping reduce sets can be 
easily defined in ASSET queries by arbitrary conditions, in 
MapReduce special configuration of the mapping function 
is required. 

We argued in [4] that ASSET queries’ framework 
seems appropriate for expressing a significant class of data 
stream queries. In this case, data sources are continuous 
streams of data, associated sets are frequently represented 
as queues and the dependencies between associated sets 
dictate the order of update of the ASSET structure. 

Current research involves theoretical work, improving 
implementation and benchmarking. We would like to: (a) 
develop a theoretical (algebraic) framework for associated 
sets, (b) extend our optimization platform, and (c) compare 
our performance results to those in [1] and [15]. In 
addition, it seems that a query language over the powerset 
of a relation (defining a set of subsets of the relation) could 
unify several proposals for ad hoc OLAP. We are 
investigating whether the associated sets framework can 
serve as the basis of such a language. 
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