

ASSET Queries: A Declarative Alternative to MapReduce

Damianos Chatziantoniou*
Department of Management Science and Technology,

Athens University of Economics and Business (AUEB)
damianos@aueb.gr

Elias Tzortzakakis
Institute of Computer Science

Foundation for Research and Technology (FORTH)
tzortzak@ics.forth.gr

ABSTRACT
Today’s complex world requires state-of-the-art data analysis
over truly massive data sets. These data sets can be stored
persistently in databases or flat files, or can be generated in real-
time in a continuous manner. An associated set is a collection of
data sets, annotated by the values of a domain D. These data sets
are populated using a data source according to a condition θ and
the annotated value. An ASsociated SET (ASSET) query consists
of repeated, successive, interrelated definitions of associated
sets, put together in a column-wise fashion, resembling a
spreadsheet document. We present DataMingler, a powerful GUI
to express and manage ASSET queries, data sources and
aggregate functions and the ASSET Query Engine (QE) to
efficiently evaluate ASSET queries. We argue that ASSET
queries: a) constitute a useful class of OLAP queries, b) are
suitable for distributed processing settings, and c) extend the
MapReduce paradigm in a declarative way.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Languages

General Terms
Design, Management, Languages.

Keywords
MapReduce , Spreadsheets, ASSET Queries, DataMingler.

1. INTRODUCTION
Business needs of modern applications require advanced
data analysis over voluminous data sets, usually partitioned
across different disks or processing nodes, possibly in
different formats (e.g. flat files and/or multiple-vendor
databases). To accommodate the enormous processing
requirements of these applications, novel
hardware/database architectures have been proposed (e.g.
[8],[17]) and programming paradigms have been
developed (e.g. MapReduce [9].) In addition, several well-
funded start-ups, such as AsterData, Greenplum, Netezza
and Vertica now offer products for large-scale data
analytics alongside with IBM, Oracle and Teradata.

The goals of this work are the following:

(a) Distributed computation of OLAP queries over very
large data warehouses: a data warehouse may be
distributed to several nodes for reliability, load-efficiency
and cost-efficiency reasons. An interesting research
question is what kind of OLAP questions can be efficiently
evaluated over distributed data warehouses, and how much
and which part of the computation one can “move” to the
node hosting a partition.
(b) Simple query formulation: representation of a query
should be as simple and intuitive as possible, yet amenable
to appropriate distributed processing rewrites. MapReduce
is an option, but it lacks declarative simplicity
([1],[10],[14]). In addition, there is a plethora of OLAP
queries that could benefit from a MapReduce
implementation, but cannot be expressed as MapReduce
jobs (e.g. pivoting, hierarchical comparisons, complex
comparisons, trends, correlated aggregation [7].)
(c) Heterogeneous data sources: data sources can be
persistent or continuous, databases of different vendors, or
flat files. In general, a data source can be anything that
presents a relational interface to our system and has an
iterator defined over it. While we briefly discuss ASSET
queries in the context of data streams in this paper, a
detailed presentation can be found in [4].

As a running example, consider a financial
application with schema:

Clients(clientID, address, zip, income)
Stocks(stockID, categID, description)

Transactions(clientID, stockID, volume, timestamp, type, amount)

Typical data warehousing queries include:

Q1. For each stock, find certain demographics of its buyers
(e.g. average income) and compare them to those of
the stock’s category.

Q2. Find the most frequent stock category a user buys or
sells, for a predefined set of users.

Q3. For each stock, compare the demographics (e.g.
average income) of its large-volume buyers versus its
small-volume buyers.

* Part of this research was performed while the author was visiting Aster
Data Systems Inc., Redwood Shores, CA.

SIGMOD Record, June 2009 (Vol. 38, No. 2) 35

Additional queries of this “style” can also be found in
[6],[7]. They constitute a useful subclass of OLAP queries
and share a pattern: for each tuple of a table, they compute
a “define-subset, reduce-subset” sequence, where each
“define-subset” phase of a step uses previously defined
aggregates and/or the tuple’s attributes. For example,
consider query Q2. While SQL is the de facto option, one
could formulate it in a stepwise, set-oriented fashion:

1: for each user u {
2: T={find the transactions of u};
3: F={StockIDs of T’s members};
4: S={select the stocks with StockID in F};
5: C= mostOften(S.categID);
6: print (u, C);
7: }

Line 2 defines a subset of transactions T; Line 3
defines a (set-valued) aggregate over T; Line 4 defines a
subset of stocks; Line 5 defines an aggregate over this set.
One could find such formulations easier than SQL,
especially those with a procedural background. At the
same time, such implementations, with the appropriate
indexing, data structure selection and memory sizes can
perform significantly better than current DBMS. Finally, if
a data source is partitioned across nodes, parallel
processing becomes “cleaner”. Such queries resemble
MapReduce jobs, but there are two notable differences: (a)
there may be several reduce sets for the same map value,
and (b) these reduce sets can be correlated.

Our approach is based on the concept of associated set
(ASSET), which is just a collection of tuples associated to
a value (not necessarily atomic). An ASSET query consists
of one or more associated sets, put together in a specific
way. It resembles a spreadsheet report, where earlier
columns serve as the basis for later columns via formulas
and the first few columns are somehow initialized to
external values. In our framework, users initially define
the base columns using a database or flat file and they then
build incrementally the report by adding columns. Each
cell of the new column represents a data set (the associated
set), populated from a data source according to a condition
θ, involving attributes of the source and aggregates of
previously defined associated sets. We claim that this
column-wise formulation of a query can be not only
intuitive and flexible, but also efficient and robust in terms
of associated sets’ evaluation. Similar claims for
spreadsheet-like query languages can be found in [3],[18].

In this paper, we present (a) the ASSET Query Engine
(QE), which parses, optimizes and executes ASSET
queries, and (b) DataMingler, a spreadsheet-like tool to
express ASSET queries. In our view, ASSET queries can
be useful in:
Novel Programming Paradigms: MapReduce [9] is one
of the most active research issues over the last few years.
The claim is that with appropriate configuration of the
Map and Reduce functions, a large number of

computational tasks can be easily represented and
efficiently executed. While this approach offers significant
procedural flexibility over declarative approaches and
employs a simple computational model, it lacks the
optimizability and ease of use of modern database systems
[10]. While we completely agree with the claims of [10],
the ability to loop over the values of a domain and define
an (associated to that value) data set is quite appealing
both in terms of representation and evaluation. It has been
used, directly or indirectly, in parameterized query
processing, in set-valued attribute proposals [13], in
grouping constructs [6], relational join operators ([5],[16])
and elsewhere. The goal should be to balance the trade-offs
between declarative optimizability and procedural
flexibility in a database-proper way, such as in Hive [12]
and Pig [14]. For example, Pig adds a semi-declarative
layer over MapReduce, by proposing a language
combining declarative and procedural features. In our
approach, ASSET queries “restrict” the Map function to
have a declarative nature while the Reduce function can be
anything (using C++).
Performance: The answer to an ASSET query is
represented by a – possibly nested – data structure, which
can always be made memory resident (horizontally
segmented, if necessary). This data structure can be
indexed multiple times, using different methods; can be
decorrelated, if parts of it contain the same data; can be
computed locally or partitioned and sent to the nodes
containing the data sources. The claim is that the
representation of an ASSET query is appropriate to
identify and employ the above-mentioned optimization
techniques.
Integrating Heterogeneous Data Sources: By allowing a
column’s data source to be essentially an iterator over
anything that presents a relational interface, we can
integrate into the same report data sets from heterogeneous
data sources.
SQL Extensions: Sticking to SQL for query formulation
has traditionally been a “must do” for every proposal,
given its popularity among database users. Fortunately, it
seems that there is a simple and intuitive SQL extension
that allows ASSET query formulation, following the
syntactic paradigm of [7].

2. EVALUATION OF ASSET QUERIES
Let us re-visit query Q2. The basic idea is simple.

First, for each client id (table B0 in Figure 1), define the
set of client’s transactions T, using as data source the
Transactions table, and keep the stock ids of T as a set-
valued aggregate function, called all(). These are the Fi
sets in Figure 1. B0 is then extended with a column
containing Fi sets and is named B1. Then, for each row i of
B1, define the set of stocks S with stockID in Fi, using as
data source the Stocks table, and compute the

36 SIGMOD Record, June 2009 (Vol. 38, No. 2)

mostOften(categID) element of S. The entire process of
defining column-wise this query is depicted in Figure 1.

Figure 1: Representation of query Q2

Therefore the idea is to start from a set of base
columns and add recursively new columns: for each row
define a set of values using some condition θ (the
associated set), compute one or more aggregates over these
sets, extend the base schema with these aggregates and
start over. The definition of the associated set is done
declaratively, while the aggregate functions over the
associated set is a C++ method with a simple- or vector-
type return value. Each associated set’s definition
resembles a single MapReduce application with the
mapping phase (initial values) already computed.

The claims are: (a) ASSET queries can express more
complex OLAP queries than MapReduce, queries similar
to [7], and (b) there are significant optimization
opportunities in representing a query in such a way.

Let us revisit query Q2: in most distributed data
warehousing configurations, Transactions table will be
partitioned across several processing nodes, while Stocks
table will be replicated at each node. One evaluation plan
would be to distribute B0 to all nodes, compute the partial
Si’s, and ship them back to and concatenate them (union)
at the coordinating node. The optimizer could deduce that
S1, S2, etc. are used later only for membership testing and
keep them as inverted lists (to the row ids) to facilitate the
efficient computation of S sets. These optimizations are
possible due to the representation of ASSET queries. One
can argue that the size of B1 may be large, but given
current RAM sizes, it actually is very feasible and makes
sense: maximize RAM’s role as much as possible. The
impact on performance by employing these optimizations
techniques can be huge: from non-ending queries down to
a few hundreds of seconds (Section 5).

Due to space limitations, we cannot define formally
the concept of associated set. In short, given a set of base
values V, an associated set A w.r.t. a data source S is a
collection of empty data structures, able to hold S’
elements, annotated by the values of V, i.e. there is one
data structure for each v∈V. One can consider this as the
schema of the associated set. An instance of A, w.r.t. a
condition θ, is the collection of the data structures
populated by S’ elements, according to θ and v. The
purpose is to compute aggregates over the data structures.
An ASSET query consists of a base set of values V (i.e. a
table) and successive definitions of associated sets, where
aggregates of previously defined associated sets can be
used for the definition of subsequent associated sets. An
ASSET query is constructed incrementally, column-by-
column, where a column corresponds to an associated set
and is described by a data source, a defining condition and
the aggregates to be computed over the associated set.

Evaluation of ASSET queries can be optimized in
several ways. For example, an associated set and its
aggregates can be computed either locally or remotely,
where the data source (or partition of it) exists, by sending
all the required data to the remote node; not materializing
the associated set if the required aggregate computation is
distributive or algebraic; build appropriate indexes on
previously defined associated sets by analyzing the
condition θ (e.g. build - or keep - it as an inverted list, if θ
asks for membership into the associated set); choosing the
most appropriate data structure to represent the associated
set (B+ trees, min-max heaps, etc.); keep a single instance
of identical associated sets of different rows of the base
table, by creating a linked list within the new column. We
have implemented most of these into our ASSET QE.

The first step in evaluating an ASSET query is to
assign the associated sets into computational rounds: a
computational round consists of independent to each other
(directly or transitively) associated sets – there is a
dependency between two associated sets if the one uses
aggregates of the other (in its defining condition or
aggregates). The output of a computational round is the
base table for the next one. The data sources of the
associated sets consist of data partitions. A computational
round consists of one or more basic computations, one for
each data partition of the computational round. It is a local
computation of the associated sets using this data partition.
To accommodate an optimization framework, we have
developed two operators, one for the computational round
and one for the basic computation:

• ASR(B, A1(S1),…Ak(Sk)), where B is the base table,
A1,…, Ak the associated sets that have to be computed
in the computational round and S1,…,Sk their
respective data sources.

SIGMOD Record, June 2009 (Vol. 38, No. 2) 37

• ASB(B, S, A), where B is the base table, S a data
partition and A the set of associated sets using this
data partition.

This process is graphically depicted by Figure 2. The
base table is sent to each data partition’s node and the
basic computation executes there. The whole process is
coordinated by a main (coordinating) program. For
example, consider Query Q2. Transactions table may be
partitioned across several nodes (sources). The list of
clientIDs (i.e. B0) could be sent to all nodes, the partial Fis
computed locally at the node and sent back to the
coordinator, where they are concatenated to form Fis.

Figure 2: Evaluation of ASSET queries

This plain execution strategy can be generalized to a
more elaborate one, where base tables are horizontally
partitioned according to their estimated sizes and the
computation of the ASSET query “flows” from left to
right, possibly in parallel. The following algorithm
describes this idea:

1: compute B 0; round=1;

2: repeat {

3: Partition B 0 to B 0
1, B 0

2, …, B 0
k;

4: A={the set of assoc. sets of current round};

5: B 1 = AS R
round (B 0

1,A) U... U ASR
round (B 0

k,A);

6: round++;

7: B 0 = B 1;

8: } until (round>n);
Note that the combination step of line 5 can be

omitted if partitioning remains the same from one
computational round to the next. In general, one can think
of an evaluation strategy represented by a graph with fork
and join points at the end of computational rounds.

The complete architecture of our system is shown in
Figure 3. An ASSET query is formulated either
graphically using DataMingler or textually using an
extended version of SQL . In both cases, an XML-based
specification file is generated. Section 3 describes query
formulation of ASSET queries. The XML-based
specification file of an ASSET query is passed to the main
parser (assetGenGlobal), which coordinates the execution
of two lower-level parsers (assetGenRound and
assetGenBasic) and produces the main (coordinating) C++
program. The assetGenRound parser assigns the associated

sets to computational rounds and the assetGenBasic parser
generates efficient C++ programs implementing the basic
computations. The main C++ program manages the
ASSET structure (the data structure representing the
answer of the ASSET query) and coordinates the basic
computations. All the generated C++ programs are then
compiled and executed. Section 4 presents the ASSET
Query Engine.

Figure 3: Expressing and evaluating ASSET queries

3. QUERY FORMULATION
ASSET queries can be formulated by either a GUI called
DataMingler, or an extended SQL textual interface. Both
generate an XML-based specification of the query that is
fed to the ASSET QE.
3.1 Extended SQL

We follow the formalism of grouping variables [7].
The idea is quite simple: we want a syntax that allows the
addition of “extra” columns to the resulting table of an
SQL query – similar to an outer-join operation. We
propose an “extended by” clause to declare the associated
sets and their respective data sources and a “such that”
clause to provide their defining conditions. These clauses
immediately follow a <select..from..where> query. The
proposed syntax is:

select A from R where θ group by A’
extended by A 1(S 1), A 2(S 2), … , A n(S n)
such that θ1, θ2, ..., θn

The selection list A may contain aggregate functions

defined over the associated sets A1, A2, …, An. The answer

38 SIGMOD Record, June 2009 (Vol. 38, No. 2)

of the <select..from..where.. group by> SQL query serves
as the base-values table. Condition θi involves attributes of
the base-values table, constants and aggregates of
associated sets A1,…,Ai-1., i=1,…n. For example, query Q2
can be expressed as (recall from Section 2 that all(attr) is
an aggregate function returning the set of attr values of the
involved table):

select clientID, Y.mostOften(categID)
from Clients
extended by X(Transactions), Y(Stocks)
such that X.clientID=clientID,
 Y.stockID in X.all(stockID)

3.2 DataMingler – A Spreadsheet-Like Tool
We have developed a spreadsheet-like GUI to manage data
sources, user-defined aggregate functions and ASSET
queries. It has been implemented in C++ code using the
Qt4 C++ library for Windows from Trolltech. Since Qt is
platform independent, DataMingler can be easily compiled
for Unix/Linux operating systems.

3.2.1 Data Source Management
An ASSET query uses heterogeneous and possibly

multi-partitioned data sources. These sources may refer to
local or remote databases, data streams or flat files and
must firstly be appropriately defined through DataMingler.
Each description consists of the source’s schema and a
number of attributes specific to the type of the source (e.g.
delimiter and location for flat files; IP, port, username and
password for databases, etc.) All data sources are stored in
an XML-based specification file. Currently we support
databases (Postgres, MySQL, Oracle, SQL Server), flat
files and socket-based streams. Figure 4 shows the first
step in defining the Transactions data source.

Figure 4: Defining a new data source in DataMingler

All data sources may consist of multiple partitions, not
necessarily of the same schema – only common attributes
appear in query formulation. A partition in the case of

databases/flat files/data stream is just another
table/file/stream source, located locally or remotely. As a
result, a data source may consist of multiple
tables/files/streams distributed at several processing nodes.

3.2.2 Aggregate Functions
The goal is to describe the signature of a C++ function

into an XML-based dictionary, so some type-checking and
user-guidance can take place. The user specifies the input
parameters and their types and the type of the return value
(Figure 5).

Figure 5: Defining a new aggregate function, allUnique,

returning a set of distinct integers

The user also specifies a “gluing” function, in the case of
distributed computation of an associated set (e.g. “sum” is
the gluing function for “count”.) Aggregate functions can
be either distributive or algebraic (holistic computations
can be achieved through aggregate functions returning the
entire or part of the associated set and the use of “null”
associated sets, described later). In the case of algebraic
aggregate functions, the user must specify the involved
distributive functions, the correspondence between the
parameters and the finalization code (in C++).

3.2.3 Asset Queries
Users specify ASSET Queries through DataMingler in

a spreadsheet-like manner, column by column. The user
initially specifies a base table that can be an SQL query
over one of the database sources, the contents of a flat file
source or manually inserted schema and values. Thus, the
first columns of the spreadsheet correspond to the base-
values table attributes. The spreadsheet document is then
extended with columns representing associated sets, one at
a time. The user specifies the name, source, defining
condition and aggregate functions of the associated set.
The data source can be (a) one of the existing data sources
described earlier through DataMingler, (b) of type “this”,
in which case the so-far defined spreadsheet table serves as
the data source to the associated set, and (c) of type “null”,
in which case the user specifies an expression involving
aggregates of previously defined columns – similar to a

SIGMOD Record, June 2009 (Vol. 38, No. 2) 39

spreadsheet formula involving only same-row cells. Figure
6 shows the window for the definition of an associated set.

Figure 6: Building an ASSET query

Associated sets may be correlated, since aggregations
performed over one associated set may be used by another.
This might occur during specification of the latter’s
defining condition, its functions’ parameters or its
computation formula in case of “null” sets. DataMingler
identifies dependencies, performs a topological sort and
places them into “processing rounds”, as required by the
ASSET QE, explained in the following section.

4. The ASSET QUERY ENGINE (QE)
Once an ASSET query has been formulated and
represented as an XML-based specification, it is passed to
the ASSET QE for optimization, code generation and
execution.
assetGenGlobal: This is the top-level parser of the
ASSET QE. It gets the XML-based specification of an
ASSET query and generates (a) the round-related XML
specifications of the query and (b) the main (coordinating)
C++ program for the query. Each round-related
specification contains the data sources’ description of the
round and the associated sets that will be computed. Note
that from this point on, each partition of a data source
becomes a distinct, individual data source. The query’s
main C++ program, instantiates and populates all the
necessary data structures, creates all the local indexes and
decorrelation lists over the ASSET structure and
coordinates all the basic computational threads executing
locally or remotely. In the latter case, it sends parts of the
ASSET structure to the appropriate nodes and receives
back (and glues together) the computed column(s).
assetGenRound: This is the round-level parser: it groups
the associated sets of the round by source and generates an
XML-based specification file for each source. Recall that

with the term “source” we mean partitions of the original
data sources. It determines whether the computation over
the source will execute locally or remotely, deduces the
indexes and decorrelation lists over the base-values table
and resolves the minimal base-values table that has to be
sent to the remote node (in case of remote computation.)
Currently supported indexes are hash maps, binary trees
and inverted lists, deduced by the defining condition of the
associated sets.
assetGenBasic: This is the source-level parser that gets a
source-specific XML-based specification file and generates
an efficient C++ program (the “basic computational
thread”) to scan the data source and compute the
associated sets related to that source. This thread
communicates with the main program to receive the
round-specific base table (only the required columns),
builds indexes over and decorrelates the base table,
computes the associated sets and serializes the result back
to the coordinating program (if executing remotely). The
engine also decides to decorrelate the base table on a single
attribute with respect to an associated set (i.e. we may have
different decorrelation lists for different associated sets), if
the associated set is using a hash index on that attribute
and its estimated cardinality is low (this can be measured
while receiving the base table).

Once all the basic computational threads have been
generated, then the whole process is driven by the query’s
main C++ program. We currently assume that the entire
ASSET structure (the output of the ASSET query) fits in
main memory – which is not unrealistic for a large class of
ASSET queries and today’s memory sizes. However, since
the entire code generation assumes boundary limits of the
ASSET structure, we can easily specify the computation of
an ASSET query in horizontal chunks - currently has to be
done manually, by altering the query’s main C++ program.

5. PERFORMANCE
Figure 7 shows the performance of the query Q2 when

the size of Transactions table varies from 100M to 600M
records (15GB to 90GB) – all in one partition. We
assumed 10M clients and 10K stocks. We tried to compare
ASSET query engine’s performance with standard SQL
formulation using PostgreSQL but we could not get any
results for even 200M records after 21 hours. All
experiments performed on a Linux Dell machine with a
Quad Core Intel Xeon CPU @ 3.00GHz having 12 disks,
300GB each at 15K rpm, RAID5 configuration and 32GB
of main memory.

6. CONCLUSIONS AND FUTURE WORK
In this paper we introduced ASSET queries, a useful class
of data analysis queries that can be efficiently evaluated in
distributed settings. While the basic component of an
ASSET query, the associated set, is similar to a
MapReduce operator, the ability to have multiple

40 SIGMOD Record, June 2009 (Vol. 38, No. 2)

associated sets, possibly correlated, placed next to each
other in the same query, increases greatly the complexity
of data analysis performed and offers significant
optimization capabilities.

Figure 7: ASSET QE performance on query Q2

The main differences between ASSET queries and
MapReduce can be summarized as: a) the data set of the
mapping phase is defined using a condition, instead of
using an arbitrary mapping function – less flexibility, more
room for optimization, b) one may define multiple reduce
sets for the same value, by using different defining
conditions – this is not obvious how it can be done in one
MapReduce, c) correlated aggregation ([6],[11]), an
important topic in data analysis, can be expressed in one
query instead of multiple, providing additional hints to the
optimizer, and d) while overlapping reduce sets can be
easily defined in ASSET queries by arbitrary conditions, in
MapReduce special configuration of the mapping function
is required.

We argued in [4] that ASSET queries’ framework
seems appropriate for expressing a significant class of data
stream queries. In this case, data sources are continuous
streams of data, associated sets are frequently represented
as queues and the dependencies between associated sets
dictate the order of update of the ASSET structure.

Current research involves theoretical work, improving
implementation and benchmarking. We would like to: (a)
develop a theoretical (algebraic) framework for associated
sets, (b) extend our optimization platform, and (c) compare
our performance results to those in [1] and [15]. In
addition, it seems that a query language over the powerset
of a relation (defining a set of subsets of the relation) could
unify several proposals for ad hoc OLAP. We are
investigating whether the associated sets framework can
serve as the basis of such a language.

7. ACKNOWLEDGMENTS
This research work was partially supported by EU-ICT
Grant ST-5-034957-STP. The authors would like to thank
Prof. Diomidis Spinellis for pointing out useful references.

8. REFERENCES
[1] Abouzeid, A., et al. HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for Analytical
Worksloads. In VLDB, 2009, 922-933.

[2] Akinde, M. O., Bohlen, M. H., Johnson, T., Lakshmanan, L.
V. S., Srivastava, D. Efficient OLAP Query Processing in
Distributed Data Warehouses. In EDBT, 2002, 336-353.

[3] Bin, L. and Jagadish, HV: A Spreadsheet Algebra for a
Direct Data Manipulation Query Interface. In ICDE, 2009,
417-428.

[4] Chatziantoniou, D., Pramatari, K., Sotiropoulos, Y.
COSTES: Continuous Spreadsheet-like Computations. In
Intern. Workshop on RFID Data Management (ICDE 2008).

[5] Chatziantoniou, D., Akinde, M., Johnson, T. and S. Kim, S.
The MD-Join: An Operator for Complex OLAP. In Int.
Conf. on Data Engineering (ICDE), 2001, 524-533.

[6] Chatziantoniou, D. and Ross, K. Querying Multiple
Features of Groups in Relational Databases. In VLDB,
1996, 295-306.

[7] Chatziantoniou, D. Using grouping variables to express
complex decision support queries. In DKE Journal, 61(1),
2007, 114-136.

[8] Cieslewicz, J., Berry, J., et al. Realizing parallelism in
database operations. In DaMoN, 2006.

[9] Dean, J. and Ghemawat S. MapReduce: Simplified Data
Processing on Large Clusters. In 6th Symp. on Operating
System Design and Implementation, 2004, 137-150.

[10] DeWitt, D.J, Stonebraker, M. MapReduce: A major step
backwards. The Database Column, http://www.
databasecolumn.com/2008/01/mapreduce-a-major-step-
back.html

[11] Gehrke, J., Korn, F. and Srivastava, D. On Computing
Correlated Aggregates Over Continual Data Streams. In
SIGMOD Conference, 2001, 13-24.

[12] Hive Project. http://hadoop.apache.org/hive/
[13] Mamoulis, N. Efficient Processing of Joins on Set-valued

Attributes. In ACM SIGMOD, 2003, 157-168.
[14] Olston, C., Reed, B., Srivastava, U., Kumar, R. and

Tomkins, A. Pig latin: a not-so-foreign language for data
processing. In ACM SIGMOD, 2008, 1099-1110.

[15] Pavlo, A., et al. A Comparison of Approaches to Large-
Scale Data Analysis. In ACM SIGMOD, 2009, 165-178.

[16] Steenhagen, HJ., Apers, P., Blanken, HM. Optimization of
nested queries in a complex object model. In EDBT, 1994,
337-350.

[17] Stonebraker, M., et al. C-Store: A Column-oriented DBMS.
In Intern. Conf. on VLDB, 2005, 553-564.

[18] Witkowski, A., Bellamkonda, S., et al. Spreadsheets in
RDBMS for OLAP. In SIGMOD, 2003, 52-63.

SIGMOD Record, June 2009 (Vol. 38, No. 2) 41

